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Immunological shifts during early-stage Parkinson’s disease
identified with DNA methylation data on longitudinally
collected blood samples
Steven C. Pike 1,2,3✉, Matthew Havrda 1,4, Francesca Gilli1,3, Ze Zhang2 and Lucas A. Salas 1,2✉

Parkinson’s disease (PD) is the second most common neurodegenerative disease in the United States. Decades before motor
symptoms manifest, non-motor symptoms such as hyposmia and rapid eye movement (REM) sleep behavior disorder are highly
predictive of PD. Previous immune profiling studies have identified alterations to the proportions of immune cells in the blood of
clinically defined PD patients. However, it remains unclear if these phenotypes manifest before the clinical diagnosis of PD. We
utilized longitudinal DNA methylation (DNAm) microarray data from the Parkinson’s Progression Marker’s Initiative (PPMI) to
perform immune profiling in clinically defined PD and prodromal PD patients (Prod). We identified previously reported changes in
neutrophil, monocyte, and T cell numbers in PD patients. Additionally, we noted previously unrecognized decreases in the naive B
cell compartment in the defined PD and Prod patient group. Over time, we observed the proportion of innate immune cells in PD
blood increased, but the proportion of adaptive immune cells decreased. We identified decreases in T and B cell subsets associated
with REM sleep disturbances and early cognitive decline. Lastly, we identified increases in B memory cells associated with both
genetic (LRRK2 genotype) and infectious (cytomegalovirus seropositivity) risk factors of PD. Our analysis shows that the peripheral
immune system is dynamic as the disease progresses. The study provides a platform to understand how and when peripheral
immune alterations occur in PD and whether intervention at particular stages may be therapeutically advantageous.
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INTRODUCTION
Parkinson’s disease (PD) is an age-related neurodegenerative
disorder with multisystemic manifestations characterized histo-
pathologically by the loss of dopaminergic (DA) neurons in the
substantia nigra pars compacta1. PD-related proteinopathy is
characterized by the identification of aggregates of alpha-
synuclein protein and alpha-synuclein immunoreactive Lewy
Bodies in brain regions near and distal to the sites of
neurodegeneration2. The diagnostic criteria for PD rely on the
clinical determination of bradykinesia, in conjunction with rest
tremor or rigidity, while ruling out other potential causes3,4. Before
the onset of motor symptoms and years before clinical diagnosis,
non-motor symptoms such as REM sleep behavior disorder (RBD)
and hyposmia are common5–7. Patients who experience these
symptoms but do not exhibit clear motor deficits are considered
to be in the prodromal phase of PD7.
Inflammation is an easily identified histopathological compo-

nent of PD8. Current data support the role of inflammation in the
pathogenesis of PD citing microglial activation9, the identification
of genetic variation in genes such as HLA-DR10,11, and evidence of
immune infiltration in the brain parenchyma12–15. Interactions
between the peripheral immune system and PD are poorly
understood but analysis of post-mortem tissue, cerebrospinal fluid
(CSF), and blood have provided evidence of complex interactions
between peripheral, local, innate, and adaptive immune responses
during the neurodegenerative process16.
The innate immune system provides an early-stage line of

defense against infectious agents or damage to other cells in the
body. Broadly, these cells recognize damaged neurons in the PD

brain, clear debris, and relay the signal to the periphery17.
Microglia are the central nervous system (CNS) resident innate
immune cells, while myeloid (neutrophils, basophils, eosinophils,
and monocytes) and natural killer (NK) cells are those in the blood.
Microglia detect PD-related damage-associated molecular pat-
terns (DAMPs) such as alpha-synuclein proteinopathy or neuronal
damage and relay signals to peripheral immune cells17. However,
the role of peripheral immune cells in initiating or propagating
inflammatory damage in the CNS of PD patients is not entirely
known. Neutrophils can increase the permeability of the blood-
brain barrier (BBB), giving all immune cells increased access to the
CNS18. Evidence for neutrophil activity in the PD brain is based on
the observed expression of myeloperoxidase19. Basophils and
eosinophils are specialized in responses to allergens and parasitic
infections; some associations have been reported between asthma
or allergies to plants, pollen, or antibiotics and an increased risk of
PD20,21. Monocytes are phagocytes that can clear debris and
recruit immune cells. In PD, monocytopenia, increased phagocytic
behavior, and decreased viability and cytokine production upon
ex vivo stimulation have been observed22–24. Lastly, NK cells
recognize non-specific biomarkers and have been thought to aid
in the clearance of alpha-synuclein and communication with
dying neurons25. Others have noted that the activity and numbers
of NK cells increase as PD progresses22,26–29.
The adaptive immune system provides a secondary line of

defense against antigens and produces a memory response
facilitated by T and B cells. Recent work has suggested both
pathogenic and neuroprotective roles of the adaptive immune
cells in various neurodegenerative contexts30. T cells have been
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identified within the substantia nigra of PD patients31–33.
Additionally, PD patients possess CD4+ T cells that are primed
to a Th1 proinflammatory phenotype and react to epitopes of
alpha-synuclein34–36. B cells are the antibody-producing cells of
the body. In PD, antibodies specific to alpha-synuclein have been
identified in patient serum and CSF37,38. Whether an inflammatory
immune response is a cause or a consequence of tissue damage in
neurodegenerative diseases like PD is still controversial. However,
it is agreed that the CNS has a direct line of communication with
the peripheral immune system, and intercepting these signals
may allow us to monitor CNS disease states from the blood39.
Immune profiling on an epidemiological scale is challenging

due to the lack of fresh samples that can be processed using flow/
mass cytometry. Epigenomics technology has opened the
potential to scale this type of data collection without sacrificing
resolution. DNA methylation (DNAm) is an epigenetic marker
placed on cytosine bases and is used to regulate gene expression
and cell differentiation40; cell-type specific genes can be expressed
and are hypomethylated, while other genes are repressed with
hypermethylation of regulatory gene elements41. These durable,
intrinsic lineage markers allow researchers to use DNAm data to
estimate the composition of a specimen by using cell-type specific
DNAm profiles42–45. This approach, known as cellular deconvolu-
tion, can be used to assess compositional differences as a
potential element of the disease processes and allow for control
of confounding by cellular heterogeneity across samples in
epigenome-wide association studies (EWAS)46.
Several studies have already performed immune profiling of PD

blood samples using conventional methods such as flow
cytometry and DNAm data23,47–54. However, our current knowl-
edge of the peripheral immune dynamics in PD is limited. Firstly,
many of these studies investigated broad proportions of immune
cells where details about subsets of B cells, T cells, and
granulocytes may have been lost due to technical limitations23,52.
Similarly, previous DNA-based assessments have utilized earlier
versions of deconvolution platforms that also do not investigate
some of these cell subtypes49. Secondly, many of these studies
have assessed immune dysregulation in clinically defined PD
cases; nonetheless, we know that CNS damage may begin
decades before motor symptom onset55. There is a significant
gap in our understanding of when precisely the peripheral
immune perturbations manifest concerning the onset of neuro-
logical damage rather than a clinical diagnosis of PD.
To fill this gap, we utilized the data available from the

Parkinson’s Progression Markers Initiative (PPMI) to study the
early immunological perturbations during PD. The PPMI is a large
PD case-control study implemented to identify PD biomarkers56,57.
The PPMI collected a battery of longitudinal data, including whole
blood DNA data, from PD patients, healthy participants, and a
group of prodromal PD patients58. Our goal is to perform an in-
depth analysis of cellular composition using the PPMI data with a
deconvolution library developed and validated by our laboratory
that extends to 12 cell types42. We can assess how early the
immunological perturbations manifest in the PD progression
timeline by analyzing the prodromal PD patients in parallel to the
clinically defined PD patients. We hypothesize that immunological
dysregulation will manifest alongside the earliest clinically
observable events, and thus, we will see peripheral immunological
perturbations in prodromal PD patients.

RESULTS
Patient data
Participants selected for this analysis were assigned to one of
three patient groups (Table 1). The healthy control group (HC)
were neurologically healthy participants of similar demographics
to the case groups. The Parkinson’s disease group (PD) consisted

of participants diagnosed with PD less than two years before the
screening visit and were naive to PD-specific medications. The
prodromal PD group (Prod) consisted of participants who
exhibited symptoms indicative of early stages of PD or tested
positive for PD genetic risks alleles (Table 2). After enrollment,
blood DNAm and clinical data were collected annually.
Raw bulk DNAm data were downloaded from the PPMI

database and analyzed (Fig. 1). After the quality control
assessment, we included 2184 samples in our study (Supplemen-
tary Table 1). The FlowSorted.BloodExtended.EPIC package was
used to deconvolute each blood sample, i.e., calculate the
proportions of immune cells42: this includes basophils (Bas), naive
and memory B cells (Bnv, Bmem), naive and memory CD4+T cells
(CD4nv, CD4mem), naive and memory CD8+T cells (CD8nv,
CD8mem), eosinophils (Eos), monocytes (Mono), neutrophils
(Neu), natural killer cells (NK), and T regulatory cells (Treg). These
values were then adjusted to account for each cell type’s limit of
detection (LoD, see Methods). Because 98.5% of samples were
below the LoD for Tregs, these cells were excluded from all
subsequent analyses (Supplementary Fig. 1).
We noticed two batch effects present in the dataset (Supple-

mentary Fig. 2). The first was associated with the DNAm data
processing batch; the second was associated with the run date of
the array. Each of these variables was transformed into binary
variables and they were included as covariates in all subsequent
analyses. Sensitivity analyses confirmed our findings were valid in
a subset of data that did not include these batch effects (data not
shown).

Comparing the cellular proportions of PD and Prod groups to
HC
We performed regression analyses to estimate the effect of PD on
the proportion of each immune cell. Our regression analyses were
adjusted for the patient’s age at their baseline visit, sex, and batch
effects. We conducted two parallel analyses using cross-sectional
and longitudinal approaches. This dual strategy captures inter-
timepoint dynamics across linear cross-sectional models at each
study time point. We then utilized a longitudinal model to have a
well-powered estimate for the overall effect of having PD on the
immune proportion. Radar plots show the average difference in
cell proportion between the PD group and the HC group at the BL
sample (Fig. 2a) and at the final major study timepoint (Fig. 2b).
We performed a single-sample t-test for each effect size to test if
the estimate was non-zero and generate a p-value. We used a
linear mixed effects model for the longitudinal approach,
including a random effect for each patient to account for the
repeated measures and time as an additional variable (Fig. 2c).
We anticipated that comparing the linear effect sizes from these

models would visually inflate the changes to abundant cell types
such as Neu. To calibrate the effect sizes, we divided each by the
standard deviation of the cell proportion in the HC group
(Fig. 2d–f). These values represent the mean difference in cell
proportion in the units of the number of standard deviations away
from the healthy population (Eq. II, see Methods). This data
representation allows us to visualize small yet significant changes
in lowly abundant cell types, such as Bnv cells.
Consistent across both cross-sectional and longitudinal methods,

we found that the PD group had lower proportions of CD4mem
and Bnv and higher proportions of Neu. We also identified a
decrease in Eos (β̂Z = -0.48, p= 0.015) and Mono (β̂Z = -0.61,
p= 0.0057) proportions in the longitudinal model. At the baseline
visit, we found a decrease in Mono proportions (β̂Z = -0.79,
p= 0.0023); however, it was no longer significant at the Year 3
time point (β̂Z = -0.45, p= 0.082).
We employed the same dual approaches to compare the

cellular composition of the Prod group to HC (Fig. 3). We first
looked at yearly time points in the study (Fig. 3a, b) in addition to
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a longitudinal model (Fig. 3c). At the baseline time point, we
observed a decrease in Bnv (β̂Z = -0.42, p= 0.047) and Mono
(β̂Z = -0.62, p= 0.031) (Fig. 3d). Although not statistically sig-
nificant, we observed an increase in Bmem cells (β̂Z = 0.19,
p= 0.21). At the Year 3 time point, we found a decrease in
CD4mem cells (β̂Z = -1.2, p= 0.050) (Fig. 3e). Looking at the
longitudinal model, we observe an overall reduction in Bnv cells

(β̂Z = -0.42, p= 0.027) (Fig. 3f). We also identified strong trends in
Bmem (β̂Z = 0.21, p= 0.15) and Mono (β̂Z = -0.47, p= 0.059) in
the longitudinal model.
We directly compared the PD and Prod groups to each other to

identify changes in cell composition that may differ between pre-
motor deficit PD and clinically defined PD (Supplementary Fig. 3).
We identified that the increased levels of Neu is specific to the

Table 1. Baseline characteristics of the subset of PPMI participants included in this analysis.

Healthy Controls (HC) Prodromal (Prod) Parkinson’s Disease (PD) p-value p-value symbol Statistical Test

n 83 175 298

Biographical

Female (%) 28 (33.7) 84 (48.0) 115 (38.6) 0.048 * a

Pre-menopause (% of Female) 1 (0.4) 2 (2.4) 6 (5.2) 0.73 a

Age (mean (SD)) 61.18 (10.48) 63.43 (7.26) 62.14 (9.47) 0.133 c

Self-reported race (%) 0.046 * a

Race other than white 8 (9.6) 5 (2.9) 10 (3.4)

White 75 (90.4) 169 (96.6) 288 (96.6)

Not Specified 0 (0.0) 1 (0.6) 0 (0.0)

Hispanic/Latino (%) <0.001 *** a

No 81 (97.6) 146 (83.4) 278 (93.3)

Yes 1 (1.2) 29 (16.6) 20 (6.7)

Not Specified 1 (1.2) 0 (0.0) 0 (0.0)

DaT Scan Imaging

DaT Scan Positive (%) 1 (1.2) — 289 (99.7)

Putamen

Right SBR (median [IQR]) 2.07 [1.73, 2.47] — 0.75 [0.57, 1.00] <0.001 *** b

Left SBR (median [IQR]) 2.00 [1.73, 2.50] — 0.73 [0.57, 0.95] <0.001 *** b

AsI (median [IQR]) 5.11 [2.60, 8.28] — 16.50 [7.45, 25.44] <0.001 *** b

Caudate

Right SBR (median [IQR]) 2.79 [2.50, 3.28] — 1.93 [1.52, 2.33] <0.001 *** b

Left SBR (median [IQR]) 2.82 [2.51, 3.28] — 1.99 [1.56, 2.30] <0.001 *** b

AsI (median [IQR]) 3.46 [1.92, 5.76] — 8.80 [4.71, 13.35] <0.001 *** b

Clinical Survey Scores

MDS-UPDRS Part 1 (median [IQR]) 2.00 [1.00, 4.00] 3.00 [1.00, 6.00] 4.00 [2.00, 7.00] <0.001 *** b

MDS-UPDRS Part 2 (median [IQR]) 0.00 [0.00, 0.50] 0.00 [0.00, 2.00] 5.00 [3.00, 8.00] <0.001 *** b

ESS (median [IQR]) 4.00 [3.00, 7.00] 5.00 [3.00, 8.00] 6.00 [3.00, 8.00] 0.056 b

MoCA (median [IQR]) 28.00 [27.00, 29.00] 27.00 [25.00, 29.00] 27.00 [26.00, 29.00] <0.001 *** b

GDS (median [IQR]) 1.00 [1.00, 2.00] 1.00 [1.00, 2.00] 2.00 [1.00, 3.00] 0.131 b

STAI (median [IQR]) 53.00 [45.25, 63.00] 57.00 [48.00, 70.75] 64.00 [52.00, 78.00] <0.001 *** b

REM (median [IQR]) 2.00 [1.00, 4.00] 4.00 [2.00, 6.00] 4.00 [2.00, 6.00] <0.001 *** b

Samples per Study Visit

BL (baseline) 83 175 298

V03 (9 months) 1 0 4

V04 (12 months) 81 172 276

V05 (18 months) 1 5 12

V06 (24 months) 79 170 278

V07 (30 months) 2 31 19

V08 (36 months) 77 126 271

V09 (42 months) 4 6 13

Samples per patient (median [IQR]) 4 [4, 4] 4 [4, 4] 4 [4, 4]

Statistical tests a = chi-squared, b = Kruskal–Wallis Rank Sum Test, c = One-way ANOVA.
SD standard deviation, IQR inter-quartile range, SBR signal binding ratio, AsI asymmetry index, MDS-UPDRS1 Movement Disorder Society Unified Parkinson’s
Disease Rating Scale Part 1 (total score), MDS-UPDRS2 Movement Disorder Society Unified Parkinson’s Disease Rating Scale Part 2 (total score), ESS Epworth
Sleepiness Scale (total score), MoCA Montreal Cognitive Assessment (total score), STAI State-Trait Anxiety Inventory (total score), REM REM Sleep Behavior
Questionnaire (total score), GDS Geriatric Depression Scale (total score), VXX PPMI visit number XX.
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clinically defined PD patients (β̂Z = 2.2, p= 0.0032 in the long-
itudinal model). We also observe marginal decreases in CD4T cell
populations in the PD group compared to the Prod group.
Because we obtained different results across cross-sectional

time points, we assessed how the cell proportions changed over
time in each group and determined if they changed at different
rates using stratified longitudinal models (Fig. 4). Interestingly, we

observed a decrease in CD8nv cells over time in all groups (HC
β̂time = -0.060, p= 0.0013; Prod β̂time = -0.034, p= 0.0098; PD
β̂time = -0.032, p= 2.7E-4). For the Prod group, we also observed
an increase in Bas (β̂time = 0.046, p= 1.6E-5), and a decrease in Bnv
(β̂time = -0.054, p= 0.0031) and CD4nv cells (β̂time = -0.13,
p= 0.0022). For the PD group, we observed a decrease in Bnv
(β̂time = -0.067, p= 8.1E-6), CD4nv (β̂time = -0.079, p= 0.019),
CD4mem (β̂time = -0.18, p= 5.4E-4), and CD8mem (β̂time = -0.12,
p= 0.023) over time, while we saw an increase in Mono
(β̂time = 0.063, p= 0.052) and Neu (β̂time = 0.49, p= 9.4E-4).
To formally test if the rate of change in the PD or Prod group is

unique from the HC group, we performed likelihood ratio tests
between models that did and did not include an interaction term
for case status and time. A significant result implies that allowing
the model to fit unique trends over time for each group
(interaction model) better represents the data compared to a
model that tries to fit one trend for the entire dataset (additive
model). Comparing PD to HC, the likelihood ratio test was
significant for Bas (p= 0.0097), Bmem (p= 0.036), and CD8nv
(p= 0.046). Comparing Prod to HC, the likelihood ratio test was
significant for Bmem (p= 0.016), Bnv (p= 0.035), and CD8nv
(p= 0.036).
Lastly, we assessed whether the immune profile is associated

with clinical measures of disease activity. Using seven clinical
scores and two DaT imaging variables (Table 3), we assessed the
relationship between PD symptomology and the proportions of
immune cells (Fig. 5). At the baseline visit, we identified that
patients in the highest quartile of sleep disturbances had lower
proportions of CD8mem (β̂Z = -0.24, p= 0.038) and Bmem
(β̂Z = -0.045, p= 0.015) compared to those in the lowest quartile
(Fig. 5a). We identified decreased proportions of CD4nv
(β̂Z = -0.27, p= 0.043) when comparing patients in the highest
quartile for cognitive dysfunction (low MoCA) to those in the
lowest quartile (Fig. 5b). We also identified an association between
Bmem proportions and scores on STAI (β̂Z = 0.0063, p= 0.017)
and GDS (β̂Z = 0.048, p= 0.017) (Supplementary Fig. 4), but no
other associations were found at baseline (Supplementary Fig. 4,
Supplementary Fig. 5).
We performed k-means clustering on the clinical variable data

at baseline and at the year 2 timepoint which cluster the patients
into two groups (Fig. 5c, d). Group 2 exhibited worse clinical scores

Fig. 1 Data analysis and sample exclusion pipeline. All available DNAm data files were downloaded from PPMI, but after our quality control
analyses, we included 2184 samples in the study. Using the DNAm data, we estimated the proportions of immune cells in each blood sample
and performed different epidemiological analyses, denoted by the figure number in the abbreviated causal diagram.

Table 2. Prod group inclusion criteria.

Healthy
Controls (HC)

Prodromal
(Prod)

Parkinson’s
Disease (PD)

n 83 175 298

Prodromal Inclusion Criterion

Any 1st Degree
Family with PD (%)

6 (7.2) 7 (4.0) 52 (17.4)

Hyposmia (%)

Not Available — 2 (1.1) —

No — 122 (69.7) —

Yes — 51 (29.1) —

REM Sleep
Behavior Disorder
(%)

— 28 (16.0) —

Genotype

LRRK2 Risk Allele
Carriers (%)

0 (0.0) 127 (72.6) 84 (28.2)

GBA Risk Allele
Carriers (%)

0 (0.0) 11 (6.3) 12 (4.0)

SNCA Risk Allele
Carriers (%)

0 (0.0) 0 (0.0) 0 (0.0)

Converted to PD (%)

Not Available — 2 (1.1) —

No — 153 (87.4) —

Yes — 20 (11.4) —

Participants were included in the Prod group based on the presence of
symptoms or high-risk genetic alleles.
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across all variables; thus, we interpreted that the clustering split
patients into “more symptomatic” (Group 2) and “less sympto-
matic” (Group 1). We compared the immune cell proportions of
Group 2 to Group 1 at baseline (Fig. 5e) and at the year 2 time
point (Fig. 5f). Although these findings were not statistically
significant, we observed that more symptomatic patients had
higher proportions of Bmem at baseline (β̂Z = 0.18, p= 0.11),
increased proportions of Neu at year 2 (β̂Z = 1.27, p= 0.32), and
decreased proportions of Mono at year 2 (β̂Z = -0.55, p= 0.072).
We tested for a potential interaction between cluster group and
time to determine if the rate of change of immune cells in each
group was unique to each cluster. For all 11 cell types, the test was
significant: Bas (p= 6.9E-04), Eos (p= 0.0035), Neu (p= 0.022),
Mono (p= 0.0048), Bmem (p= 0.0016), Bnv (p= 0.0042), NK
(p= 0.0043), CD4nv (p= 0.0040), CD8nv (p= 9.9E-04), CD8mem
(p= 0.022) and CD4mem (p= 0.010).

Comparing the DNAm profiles of PD and Prod groups to HC
We performed cross-sectional and longitudinal epigenome-wide
association studies (EWAS) to identify which CpGs were differen-
tially methylated between PD and HC and between Prod and HC
(Fig. 6). These models were adjusted for age at the baseline visit,
sex, batch effects, and Neu, Mono, Bnv, CD4mem, and Eos
proportions. A differentially methylated CpG (DMC) is defined
when the average difference in methylation level (Δβ) is greater
than |0.1| and the adjusted p-value to maintain a false discovery
rate of 5% is still significant.
We did not identify any DMCs between PD and HC in the cross-

sectional models; however, we found 1 DMC in the longitudinal
model (cg13102742, Fig. 6a). Considering only the number of
statistically significant CpGs, regardless of the Δβ, we still observe

no DMCs in the cross-sectional models but many DMCs in the
longitudinal model (Fig. 6c).
Surprisingly, we observed much more epigenetic dysregulation

in the Prod group. Our longitudinal model identified 13
hypermethylated and 15 hypomethylated DMCs between Prod
and HC (Fig. 6b, Supplementary Figs. 6-8). Hypermethylated DMCs
were associated with PLEKHA1, VASN, CORO7, DENND4C, NUP93,
PYROXD2, L3HYPDH, ACOT1, HEATR4, STK4. Hypomethylated DMCs
were associated with SPATA4, LENG8-AS1, LENG8, BHLHE40, GLIPR2,
EPB41L5, PKD1L2, KIRREL3, ERICH1, RAD51B, LSG1, SHANK2, and
PCNX1. We identified DMCs in each cross-sectional model but
vastly more in the longitudinal model (Fig. 6d). Most of the
identified DMCs lie within 50 base-pairs of previously identified
lowly-penentrant SNPs (Supplementary Table 2).
Lastly, we performed similar EWAS analyses comparing the PD

group to the Prod group (Supplementary Fig. 9). We identified that
two CpGs (cg18845950 and a CpG near SHANK2) were hyper-
methylated in the PD patients. These two CpGs were hypomethy-
lated when comparing Prod to HC suggesting that these
molecular alterations are indeed specific to the Prod group
samples.

PD risk factors have varying effects on the immune cell
proportions present in the blood
Previous findings have shown a genetic influence on the
peripheral immune cell proportions in PD patients23,59. Using
the baseline sample data, we compared the immune cell
composition of LRRK2 risk allele positive (LRRK2+) PD patients
with the major allele of LRRK2 (LRRK2-) (Fig. 7a). We identified
higher proportions of Bmem (β̂Z = 0.29, p= 0.021) but lower
proportions of Bnv (β̂Z = -0.40, p= 0.043) in LRRK2+ PD patients.

Fig. 2 Comparing the DNAm derived immune cell profile of PD patients to age and sex-matched healthy controls. Plotted is the effect size
and 95% confidence interval for having PD compared to HC in our regression models for each cell type. a–c plot the effect size as derived from
the models, whereas (d–f) plot the variance normalize mean difference. a, b, d, e were derived using linear models, whereas (c, f) were derived
using mixed effect regression models. Models were adjusted for age, sex, and batch variables. Only
p values <0.05 are denoted (regression model t test; df = 375 for (a, d); df = 342 for (b, e); df = 385.3 for (c, f)). HC healthy control group,
PD Parkinson’s disease group, Bas basophils, Eos eosinophils, Neu neutrophils, Bnv B-cells naïve, Bmem B-cells memory, CD4nv helper CD4+

T-cells naïve, CD4mem helper CD4+ T-cells memory, Treg CD4+ T regulatory cells, CD8nv cytotoxic CD8+ T-cells naïve, CD8mem cytotoxic
CD8+ T-cells memory, Mono monocytes, NK natural killer cells, df degrees of freedom.
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Similarly, we repeated this analysis with LRRK2+ and LRRK2- Prod
patients but did not identify these differences (Fig. 7b). We also
performed this analysis for GBA risk allele patients. However, as
anticipated we were underpowered to test for this, given the low
number of GBA+ patients (Supplementary Fig. 10).
We also assessed how environmental risk factors, such as viral

infections, contributed to changes in the immune cell composition of
the blood60. We utilized a DNAm-based prediction model to predict
cytomegalovirus (CMV) seropositivity. We did not identify an
association between CMV seropositivity and having PD (Fig. 7c).
However, we observed very large differences in immune cell
composition between individuals who were predicted to be CMV
seropositive (CMV+ ) and those who were predicted to be
seronegative (CMV-) (Fig. 7d–f). Across all three patient groups, we
find CMV+ subjects to have elevated CD8mem (HC β̂Z = 6.1,
p= 4.2E-9; Prod β̂Z = 6.7, p= 1.5E-21; PD β̂Z = 7.6, p= 5.8E-41) and
decreased CD4nv (HC β̂Z = -2.3, p= 4.5E-4; Prod β̂Z = -1.5, p= 0.013;
PD β̂Z = -1.5, p= 6.8E-5). We identified a decrease in Neu in
CMV+ PD (β̂Z = -4.3, p= 2.5E-5) and Prod (β̂Z = 0.29, p= 0.021)
subjects that is not observed in CMV+HC. Similarly, we saw only
changes in Bnv (β̂Z = -0.60, p= 1.8E-4) and Bmem (β̂Z = 0.25,
p= 0.048) proportions in the CMV+ PD subjects but not the other
groups. Lastly, a decrease in NK cells in CMV+HC (β̂Z = -1.3,
p= 0.058) was not observed in CMV+ PD or CMV+ Prod subjects.
Together these data support that both genetic and environmental
risk factors of PD also disrupt the proportions of peripheral immune
cells in the blood of PD and Prod patients.
For our final analysis, we wanted to assess if there were changes

in immune cell composition in the Prod subjects that converted to
PD. For a small subset of patients, the PPMI collected DNAm data

on patients before and after their PD diagnosis (n= 20,
Supplementary Fig. 11). We compared their pre and post-
conversion samples and identified an increase in CD4nv post-
conversion (Fig. 8a). We also performed an EWAS analysis to
identify possible DMCs associated with conversion to PD (Fig. 8b).
Although no DMC surpassed our Δβ threshold, the model
identified three statistically significant DMCs (cg13892688,
SLC6A15, KATNAL1).

DISCUSSION
From longitudinally collected blood DNAm data in the PPMI
database, we performed an immune profiling study on clinically
defined PD patients, prodromal PD patients and matched
neurologically healthy participants. We sought to validate others’
findings about the relative quantities of peripheral immune cells in
PD and determine at which point along the disease course these
immunological perturbations occur.
We identified significant perturbations to the proportions of

innate immune cells in well-established PD. Comparing PD to HC,
we found an increase in neutrophils and a decrease in monocytes
and eosinophils. In PD patients, there is an increase in neutrophils
and monocytes over time, with a consistent trend in the Prod
group as well. We observed a slight decrease in monocytes in
more symptomatic PD patients. Lastly, although we observed
changes in the innate immune cells at the baseline PD timepoint,
there is not a strong change in the innate immune cell
compartment as patients transition from prodromal PD to PD,
except for a slight increase in NK cells.

Fig. 3 Comparing the DNAm derived immune cell profile of Prod patients to age and sex matched healthy controls. Plotted is the effect
size and 95% confidence interval for having Prod compared to HC in our regression models for each cell type. a–c plot the effect size as
derived from the models, (d–f) plot the variance normalized mean difference. a, b, d, e were derived using linear models, whereas (c, f) were
derived using mixed effect regression models. Models were adjusted for age, sex, and batch variables. Only p values <0.05 are denoted
(regression model t test; df = 252 for (a, d); df = 197 for (b, e); df = 262.6 for (c, f)). HC healthy control group, Prod prodromal Parkinson’s
disease group, Bas basophils, Eos eosinophils, Neu neutrophils, Bnv B-cells naïve, Bmem B-cells memory, CD4nv helper CD4+ T-cells naïve,
CD4mem helper CD4+ T-cells memory, Treg CD4+ T regulatory cells, CD8nv cytotoxic CD8+ T-cells naïve, CD8mem cytotoxic CD8+ T-cells
memory, Mono monocytes, NK natural killer cells, df degrees of freedom.
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There are conflicting results on whether the proportions of
neutrophils change in the blood of PD patients, with some papers
stating no changes to healthy controls, while others report higher
neutrophil proportions or a higher neutrophil to lymphocyte ratio
(NLR)23,50,61–63. Neutrophils are notoriously fragile and can easily be
underrepresented in single-cell RNA sequencing or flow cytometry
if the sample processing is not correct, which may explain why this
result is mixed across studies64–67. Here, we leverage DNAm cell
deconvolution strategies to analyze neutrophils in which we
identified increases in the proportions of neutrophils in PD
patients. In Alzheimer’s disease (AD), it is well established that
the release of neutrophil extracellular traps (NET) in the vasculature
of the brain can increase the permeability of the blood-brain
barrier which facilitates chronic inflammation68. Our results support
the notion that these cells may be involved in similar pathogenic
mechanisms across chronic neuroinflammatory diseases
including PD.
In concordance with others’ findings, we also reproduced a

decrease in monocytes in PD patients22–24. It was interesting as
well that we found this effect to be stronger and more correlated
to symptom severity at later rather than earlier time points, which
is supported in the literature by known trends in activity and
phenotype as PD progresses69. Pigment-laden macrophages are
observed in the degenerating mesencephalon in PD but it remains
unclear to what degree peripheral monocytes contribute to this
population typically thought to arise from CNS resident microglia.
A decrease in circulating monocytes may result from increases in
monocyte diapedesis into the CNS in response to tissue damage.
The analysis described here provides an important starting point

for studies designed to further subset peripheral immune cells like
monocytes to contextualize their states concerning CNS damage.
Taking these findings together, we conclude that perturbations

to the innate cell compartment manifest when PD is highly
symptomatic and developed, whereas at very early stages of the
disease, such as during the prodromal stage or very close to
diagnosis, we see smaller changes in the relative proportions of
innate immune cells.
We found that perturbations to the adaptive immune landscape

occur at slightly different periods compared to innate immune
perturbations. We identified a strong decrease in CD4+ memory
T cells and naive B cells in clinically defined and prodromal PD. In
PD patients, we see a significant decrease in many adaptive
immune cell populations over time, including all naive lympho-
cytes and memory T cells. In the prodromal group, there is a
significant decrease in the naïve lymphocytes but not a significant
trend in the memory compartments. Symptomology changes
correlated more with proportions of adaptive immune cells than
innate cells. For instance, proportions of all memory lymphocyte
populations were associated with REM sleep disturbances, which
matches previous findings about the relationships of peripheral T
cell phenotypes associated with this phenotype70. In addition,
higher proportions of CD4+ naive cells were identified in patients
with less cognitive decline and we found a slight increase in B
memory cells in those who were more symptomatic at baseline. B
memory cells were also higher in PD patients with more
symptoms of depression and anxiety. Strikingly, when we
compared samples of prodromal PD patients before and after

Fig. 4 Rate of change of change in DNAm derived cell composition in each cohort. Plotted is the effect size and 95% confidence interval for
the effect of time on the level of each cell type in the mixed effect longitudinal models. We stratified the data and ran a model for each patient
group to identify a potential interaction. Each model was adjusted for age, sex, and batch variables. Only p values <0.05 are denoted
(regression model t test; df = 243.7 for HC; df = 867.7 for PD; df = 507.0 for Prod). HC healthy control group, PD Parkinson’s disease group,
Prod prodromal Parkinson’s disease group, Bas basophils, Eos eosinophils, Neu neutrophils, Bnv B-cells naïve, Bmem B-cells memory, CD4nv
helper CD4+ T-cells naïve, CD4mem helper CD4+ T-cells memory, Treg CD4+ T regulatory cells, CD8nv cytotoxic CD8+ T-cells naïve, CD8mem
cytotoxic CD8+ T-cells memory, Mono monocytes, NK natural killer cells, df degrees of freedom.
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their transition to clinically defined PD, we see a significant
increase in CD4+ naive cells after diagnosis.
Across multiple studies, there is a decrease in T cells in the

periphery, primarily naive T cell and CD4+ T cell popula-
tions23,50,54,71,72. Some studies also report a decrease in naive B
cells and an increase in memory B cells within the peripheral
blood, which matches the results of our analysis as well54,73. One
single-cell RNA sequencing study identified an increase in isotype-
switched (IgG and IgA) proportions in PD blood further supporting
our results that the B cell compartment in PD patients is more
antigen-experienced and shifted to more mature B cell
phenotypes74.
Together, these data suggest that the perturbations to the

peripheral adaptive immune profile are linked with early or acute
disease events in PD. We believe that in “preclinical” PD, an
adaptive immune response may be initiated against a range of
antigens, possibly emanating from the gut, stress related to
environmental insult, to CNS antigens related to early-stage
neurodegenerative processes. Our findings are consistent with
“systemic” PD, demonstrating that levels of various T and B cell
populations correlated with non-motor symptoms such as sleep
disturbances and cognitive ability. We observe another increase in
the CD4+ naive T cell levels in patients right after they transition to
a clinical diagnosis of PD. We hypothesize that the initial
presentation of motor symptoms is associated with increases in
neurodegenerative antigens and possibly the dissemination of
protienopathic stressors such as seeding competent alpha
synuclein modulating T cell state and leading to more naive
T cells responding to or being recruited to the CNS34.
However, as degeneration progresses and there is sustained

CNS inflammation, we observe larger changes to the innate
immune system. In clinically defined PD patients, there is a
significant decrease in monocyte and increase in neutrophil
proportions compared to healthy controls. However, over time the
proportions of both are increasing. For monocytes, we suspect
that the decreased level in the periphery compared to controls
may be due to an increased infiltration into the CNS, consistent
with work done in rodents75,76. The levels of monocytes may be
increasing over time as more CNS damage takes place and recruits
more innate immune cells. The increase in neutrophils we suspect
are involved in opening of the BBB to recruit more immune cells
to the CNS, as others have described BBB instability in PD
patients77. Similarly, BBB instability has been associated with
neutrophil activity in multiple sclerosis (MS) and Alzheimer’s
disease78,79. As the levels of monocytes and neutrophils are
increasing in PD patients over time, we see a decrease in many
lymphocyte population levels over time. Compared to healthy
controls, PD patients exhibit a decrease in CD4+ memory cells and
naive B cells. Because the levels of these cells are lower and they
are decreasing over time, it can be interpreted in two different
manners: either (1) that there is migration of these cells to the
CNS, causing a decrease of their levels in the periphery or (2) there
is a dampening of the adaptive immune response as a protective
mechanism to mitigate the risk of CNS autoimmunity. Current
hypotheses pose that chronic inflammatory signaling can cause a
shift from adaptive to innate immunity as the predominating
inflammatory mechanism during the progression of CNS dis-
orders80–87. Further functional studies of these cell types from
early PD patients are required to test these hypotheses.
We performed longitudinal EWAS analyses using (1) a cross-

sectional EWAS analysis at each major study timepoint or (2) a
longitudinal EWAS analysis by adding a random effect into the
model, which will account for the longitudinally in the dataset. We
found that in all of our comparisons (PD vs. HC, Prod vs. HC, and
PD vs. Prod), more DMCs were called in our longitudinal models
compared to the cross-sectional models. We believe that in the
longitudinal modeling approach, within-patient variation is betterTa
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accounted for via the random effect, and thus this increases the
power of hypothesis testing.
When comparing PD vs. HC, we found a single differentially

methylated CpG, cg13102742, previously associated with schizo-
phrenia88. We saw much more of an epigenetic shift when
comparing Prod vs. HC. When visualizing the distribution of DNAm
values at these positions, we noticed methylation patterns that
may be indicative of underlying genetic variation, since we
observe a trimodal distribution centered at 0, 0.5, and 1 for many
of these DMCs and that these DMCs lie close to lowly-penetrant
SNPs. Our findings show that the DNA methylome seems to be
more deviated from HC in the Prod group compared to the PD
group. This may suggest that the DNAm perturbations are more
associated with earlier disease events, in other words, the initial
immune responses to alpha-synuclein.
There has been a strong body of research investigating the

genetic and inheritable risk factors for developing PD identifying
risk variants to glucocerebrosidase (GBA) and leucine-rich repeat
kinase 2 (LRRK2) among others89,90. LRRK2 variants with patho-
genic associations with PD account for 5–13% of familial PD cases
and 1–5% of sporadic PD91. Variation in this protein function is
thought to disrupt kinase cascades and alpha-synuclein clearance
in the brain91. Interestingly, LRRK2 may also act on the neuro-
immune axis in PD and other chronic inflammatory diseases92–94.
Others have shown a potential interaction between that the LRRK2
genotype and PD case status when looking at the proportions of
immune cells23. We show that LRRK2+ PD patients had lower

proportions of naive B cells and higher proportions of memory B
cells. It has been shown that LRRK2 is expressed in B cells and mice
lacking LRRK2 have a more naive B cell repertoire95. Because this B
cell trend was not observed in the Prod cohort, we hypothesize
that the inflammatory-mediated genetic risk of LRRK2 variants may
affect the chronic immune responses in defined PD, rather than
the first presence of neuronal debris or alpha-synuclein. We
repeated this analysis comparing GBA positive and negative PD
patients, however, in this dataset only 20 patients were GBA allele
positive, which greatly limited our statistical power. Although the
trends were not significant, we did observe many of the trends to
be in the same direction as the LRRK2+ vs. LRRK2- comparison.
Similarly, others have stated an effect of PD-related GBA
mutations on B cell biology96, thus, more research is needed to
further understand how this peripheral immune activity mediates
the effect of these genetic alleles on PD risk.
Many PD risk factors are related to environmental exposures

such as infections. Since there may be an association between PD
and viral infections, including herpes viruses97,98, we wished to
test this association in the PPMI data by predicting cytomegalo-
virus (CMV) seroprevalence from the DNAm data99. Although the
relationship between seroprevalence for CMV and PD risk is not
entirely clear60,100, recent literature has shown there may be
disrupted T cell and myeloid populations in CMV seropositive PD
patients101,102. Firstly, we did not identify a significant association
between CMV seroprevalence and having PD. However, CMV
infection has been tied to various diseases; thus, this our estimate

Fig. 5 DNAm derived immune cell proportions correlate with PD clinical scores. All radar plots represent variance normalized mean
difference in cell proportion with 95% confidence intervals. a, b show relationships between specific clinical variables and the proportions of
each cell type in which PD patients in the most symptomatic quartile are compared to PD patients in the least symptomatic quartile. c, e are
heatmaps of the mean value of each clinical score in each cluster identified by the clustering approach. All scores were mean scaled and
centered before clustering, color scale shows scaled Z-score. d, f show the comparison of group 2 to group 1 immune cell profiles. Models
were adjusted for age, sex and batch variables. Only p values <0.05 are denoted (regression model t test; df = 271 for (a); df = 268 for (b); df =
269 for (d); df = 230 for (f)). Bas basophils, Eos eosinophils, Neu neutrophils, Bnv B-cells naïve, Bmem B-cells memory, CD4nv helper CD4+

T-cells naïve, CD4mem helper CD4+ T-cells memory, Treg CD4+ T regulatory cells, CD8nv cytotoxic CD8+ T-cells naïve, CD8mem cytotoxic
CD8+ T-cells memory, Mono monocytes, NK natural killer cells, AI asymmetry index, NP1PTOT Movement Disorder Society Unified Parkinson’s
Disease Rating Scale Part 1 (total score), NP2PTOT Movement Disorder Society Unified Parkinson’s Disease Rating Scale Part 2 (total score),
ESS_tot Epworth Sleepiness Scale (total score), MCATOT Montreal Cognitive Assessment (total score), STAI_tot State-Trait Anxiety Inventory
(total score), REM_tot REM Sleep Behavior Questionnaire (total score), GDS_tot Geriatric Depression Scale (total score), df degrees of freedom.
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is susceptible to selection bias by over-selecting HC who did not
contract CMV or are resilient to CMV-related conditions. In our HC
population, we found CMV positive participants had higher
proportions of CD8+ memory T cells, with decreases in NK cells,
CD8+, and CD4+ naive T cells. We found these perturbations in the
other groups; however, the effect was weakest in the HC group
and stronger in PD patients. However, CMV positive PD and Prod
patients have lower proportions of neutrophils compared to CMV
negative patients and this was not observed in the HC group.
Furthermore, the PD CMV positive patients exhibited a decrease in
naive B cells and an increase in B memory cells. These alterations
were in the same direction as what was observed with the effect
LRRK2 genotype on the peripheral immune cell proportions.
Together these data suggest that the way the genetic and
environmental PD risk factors affect the peripheral immune
system may follow overlapping mechanisms and that combina-
tions of genetic and environmental risk may be synergistic
concerning the effects on inflammation. Our findings that B cell
perturbations are found in the Prod population and are associated
with genetic and infectious risk factors of PD provide a rationale
for the further study of B cells in early PD.
Although this study is in line with previous literature, there are

certain limitations. Firstly, we anticipate residual confounding in
our results due to medication use and the presence of other
comorbidities. Although all patients were medication naive at
baseline, some patients did go on to receive treatment during
follow-up. Secondly, our analyses consider proportions of cell
types rather than actual counts. Third, we are limited by the

availability of deconvolution libraries to resolve certain subsets of
leukocytes, such as immature from mature neutrophils or helper
T-cell subtypes. As reference libraries for these cell types are
developed, these analyses can be repeated to gain said resolution.
Fourth, in our longitudinal analyses, we used the patient visit ID
coding system to determine the number of months away from
baseline the sample was taken place. This “binning” of the data
will introduce a slight nondifferential misclassification bias in the
data concerning the true timing of the sample. Fifth, we observed
a batch effect that could not be explained by known technical or
biological variables. Although we adjust for this in our analysis and
performed sensitivity analyses, it remains unclear as to what is the
source of this variation. Lastly, the direction of our hypothesis
testing was to test if there was an effect of having PD on the
proportion of a particular immune cell. Thus, we are assuming that
having PD is causal to the change in immune cell proportion.
There is potential for reverse causality, in which the change in
immune cell proportion is casual to having PD. Until we
understand more about the underlying biology of inflammation
and neuroinflammation in PD, the direction of this hypothesis
testing is left up to debate.
By utilizing blood DNAm from the PPMI cohort, we were able to

employ cellular deconvolution to predict the proportions of
immune cells and conduct a longitudinal immune profiling study.
We established that in prodromal PD, the immune landscape is
significantly different in age and sex-matched healthy individuals.
This suggests that the peripheral immune system is responding to
the earliest presence of CNS antigens (alpha-synuclein and/or CNS

Fig. 6 Cross-sectional and longitudinal EWAS analyses in the PPMI DNAm data. In (a, c), PD patients are compared to HC while in (b, d),
prodromal PD patients are compared to HC. a, b show volcano plots highlighting differentially methylated CpGs (DMCs). False discovery rate
was controlled at 5% using the BH procedure to generate adjusted p values (p values generated from empirical Bayes moderated regression
model t test). c, d show bar plots comparing the DMCs identified in each cross-sectional model compared to the longitudinal model. The input
to each EWAS analyses was the top 100,000 CpGs with the largest Δβ.
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Fig. 8 Analyzing the DNAm data from Prod patients that converted to PD during study follow-up. a compares the samples from patients
after their clinical diagnosis of PD to those before their diagnosis of PD. The values represented are variance normalized mean differences in
cell proportion with 95% confidence intervals. P values were generated from regression model t tests; df = 71.5). b shows the EWAS
comparing the same set of samples. (p values generated from empirical Bayes moderated regression model t test) and the false discovery rate
was controlled at 5%. The input to each EWAS analyses was the top 100,000 CpGs with the largest Δβ. Bas basophils, Eos eosinophils, Neu
neutrophils, Bnv B-cells naïve, Bmem B-cells memory, CD4nv helper CD4+ T-cells naïve, CD4mem helper CD4+ T-cells memory, Treg CD4+ T
regulatory cells, CD8nv cytotoxic CD8+ T-cells naïve, CD8mem cytotoxic CD8+ T-cells memory, Mono monocytes, NK natural killer cells, df
degrees of freedom.

Fig. 7 Genetic and infectious risk factors of PD are associated with perturbations to the DNAm derived immune profile. All radar plots
represent variance normalized mean difference in cell proportion with 95% confidence intervals. a, b compare the immune cell proportions
between LRRK2 risk allele positive patients to LRRK2 risk allele negative patients, within the PD group (a) or Prod group (b). c–f Is in reference
to DNAm derived CMV serostatus. c shows the number of predicted seropositive and seronegative patients in each group. d–f compare the
immune cell proportions in CMV seropositive to CMV seronegative participants in each group. Models were adjusted for age, sex, and batch
variables. Only p values <0.05 are denoted (regression model t test; df = 291 for (a); df = 169 for (b); df = 292 for (d); df = 169 for (e); df = 78
for (f)). HC healthy control group, PD Parkinson’s disease group, Prod prodromal Parkinson’s disease group, Bas basophils, Eos eosinophils, Neu
neutrophils, Bnv B-cells naïve, Bmem B-cells memory, CD4nv helper CD4+ T-cells naïve, CD4mem helper CD4+ T-cells memory, Treg CD4+ T
regulatory cells, CD8nv cytotoxic CD8+ T-cells naïve, CD8mem cytotoxic CD8+ T-cells memory, Mono monocytes, NK natural killer cells, df
degrees of freedom.
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debris). Our findings suggest that the change in the peripheral
adaptive immune profile is altered with earlier disease events.
However, as the patients accrue more clinical burden and
neurodegeneration accelerates, we observe dynamic shifts of
innate and memory populations, which may be representative of a
shift toward a chronic inflammatory state.

METHODS
PPMI patient selection and data collection
For detailed patient recruitment and study protocols, please
visit the PPMI consortium publications56,57, the PPMI website
(https://www.ppmi-info.org/study-design/research-documents-
and-sops), and ClinicalTrials.gov (NCT01141023, registered June
10, 2010). In brief, all participants gave informed consent before
enrollment. Participants were organized into one of three
groups (Table 1): Parkinson’s disease (PD), healthy control (HC),
or prodromal PD (Prod). The PD group consists of people with
clinically defined PD4. Individuals were excluded if they had
received their diagnosis more than two years before screening
or received, or expected to receive, treatment for PD (levodopa,
dopamine agonists, MAO-B inhibitors, or amantadine) in the
initial six months of follow-up. The HC group comprises age-
and sex-matched individuals without significant neurological
disorders and naive to PD-related medications. Lastly, the Prod
group includes people with an elevated risk of progressing to
PD. Individuals were excluded from this group if they met the
criteria of clinically defined PD. However, a combination of
symptomology (hyposmia or REM sleep behavior disorder) or
genetic background (first-degree biological relative or specific
gene variants) excluded these individuals from being in the HC
group (Table 2). The consensus committee determined the
assignment of each patient to a group through PPMI. All three
groups of patients had a baseline sample (BL) in which basic
demographic information and medical history were recorded.
These patients were followed longitudinally with 1-4 visits per
year for clinical evaluation and biospecimen collection. The
following data were included in our analyses:

Whole blood DNAm data. Genomic DNA from blood collected at
study visits was isolated (AutoGen Flex DNA extraction),
quantified (Qubit 2.0 Fluorometer), bisulfite converted (Zymo
EZ-96 DNA Methylation Kit), and loaded onto Infinium
MethylationEPIC BeadChip arrays (Illumina, v1.0). The arrays
were read with the Illumina iScan System to develop raw .idat
files which contain DNAm data for over 850,000 CpG sites in the
human genome.

Dopamine Transporter (DaTSCAN) Single-photon emission compu-
terized tomography (SPECT). The DaTScan SPECT imaging103 was
done according to the PPMI imaging protocol. This imaging
modality allows for visualizing DA presynaptic neuron loss in the
striatum. At least two nuclear medicine experts analyzed all
images for interpretation. Raw data were reconstructed and
processed according to the stated methods for calculating the
striatal binding ratio (SBR). In brief, regions of interest were placed
on 9-slice averaged images to select the left and right putamen
and caudate. The occipital cortex was used as a reference. The SBR
was calculated as the ratio of the signal intensity of the target
region to the reference region minus one. The asymmetry index
(AsI) is calculated as [(R-L)/(R+ L)]*100 where R and L represent
the SBR of the left and right putamen or caudate (Table 3).

Clinical evaluations. For this analysis, we used data on seven
clinical exams (MDS-UPDRS1, MDS-UPDRS2, ESS, MoCA, STAI, REM,
and GDS) to assess possible relationships with different sets of
PD-related symptoms (Table 3).

DNAm data preprocessing
Data preprocessing and analysis were done in R Studio (v4.2). All
available DNAm data as of July 2022 were downloaded from the
PPMI web interface in raw .idat format. Patient data were matched
to available DNAm data. Patient visits annotated to multiple arrays
was excluded. Additionally, if any sample had missing sex or age
information, it was also excluded. The remaining data were
analyzed using a combination of functions from various R
packages, including minfi [v1.42.0]104,105, sesame [v1.14.2]106,
ENmix [v1.32.0]107,108, and ewastools [v1.7]109. We utilized
normal-exponential out-of-band correction with linear dye-bias
normalization to derive a beta value for every array position for
every sample110.

DNAm data quality control and filtering
We first employed a sample-wise filtering approach to determine
each array’s quality and remove data that fails quality control
assessments. Each sample had to pass three criteria to be included
in the analysis: (1) the median beta value of the sample had to lie
within three inter-quartile ranges of the set of all median beta
values in the study, (2) the predicted sex, as estimated by theminfi
package, matches the reported sex, (3) all quality control probe
signals are within the appropriate regions as identified by the
ENmix and ewastools software. The number of samples and their
reason for exclusion are listed in Supplementary Table 1.
Next, we employed a probe-wise filtering approach to remove

poor-quality probe data within each sample. Detection p-values
were used to determine if the intensity signal for each probe was
significantly above the background control probes (p < 0.05). If the
probe fails, its beta value was masked as missing. In addition,
probes located on the X or Y chromosome, near single nucleotide
polymorphisms (SNPs), or in regions of known array cross-
reactivity were masked, allowing for a final set of 743,840 CpGs
of data to remain in the study for analysis. For each CpG, a β value
was calculated, representing the methylation level at that position.

Calculation of DNAm-derived variables
Blood immune cell proportions. The blood immune cell fractions
were calculated using the FlowSorted.BloodExtended.EPIC soft-
ware42. These values were then adjusted for their limit of
detection (LoD) values as previously described111. Any value
below the cell type-specific LoD was replaced by the LoD/p2.
After replacing the LoD, the remaining cell types were scaled, so
the sum of all cell proportions was constrained to 1.

Cytomegalovirus (CMV) seropositivity prediction. CMV seropositiv-
ity was calculated with a previously published elastic net
prediction model with the output delivered as a binary
seropositive or seronegative for CMV99.

Statistical analysis: comparing immune cell compositions
We utilized linear regression models to test the effect of a binary
variable, XZ , on the composition of immune cells at a single cross-
sectional timepoint. Let yi represent the proportion of cell type i.
For every cell type, the cross-sectional regression model at a given
timepoint is represented as Eq. I where α is the intercept term, ε is
the error term, and X is the covariate matrix, consisting of a binary
variable for sex, a continuous variable for the age of the patient at
their baseline visit, and two binary batch effect variables. An
estimate for β̂Zi and 95% confidence intervals were calculated for
each cell type and plotted on the radar plots. P-values were
generated for each estimate by performing a regression model
t-test to determine if estimate was significantly nonzero. For the
variance-normalized radar plots, the estimate and confidence
intervals for β̂Zi was divided by the standard deviation of yi in the
reference group (Eq. II). We adapted this approach for longitudinal
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data by introducing a random effects term to Eq. I by adding a
random effect for each patient (usubject ) and time as a continuous
fixed effect (Eq. III). To identify if there was an interaction between
time and XZ for each cell type, we performed likelihood ratio tests
using the lmtest and lmerTest software, comparing the models
generated by Eq. III and Eq. IV to test the hypothesis that adding
the interaction better fits the data112,113.

yi ¼ αi þ β̂Zi
Xz þ β̂sexi Xsex þ β̂agei Xage þ β̂batch1i Xbatch1 þ β̂batch2i Xbatch2 þ ε

(I)

4yi ¼ β̂Zi
=yi (II)

yi ¼ αi þ β̂Zi
Xz þ β̂sexi Xsex þ β̂agei Xage þ β̂batch1i Xbatch1

þ β̂batch2i Xbatch2 þ β̂timei Xtime þ usubject;i þ ε
(III)

yi ¼ αi þ β̂Zi
Xz þ β̂sexi Xsex þ β̂agei Xage þ β̂batch1i Xbatch1 þ β̂batch2i Xbatch2

þ β̂timei Xtime þ β̂interactioni XZXtime þ usubject;i þ ε

(IV)

Statistical Analysis: K-means clustering of clinical data
We performed k-means clustering using the cluster software114,
including the following clinical variables: MDS-UPDRS1, MDS-
UPDRS2, ESS, MoCA, GDS, STAI, REM, putamen AsI, and caudate
AsI. Values were mean-centered and scaled before clustering.
Decisions about the optimal number of clusters to divide the data
were determined using the fviz_nbclust and clusGap visualizations.

Statistical analysis: longitudinal epigenome-wide association
studies (EWAS)
EWAS analysis was done using the minfi and limma software115. To
identify differentially methylated CpGs (DMCs) between two
groups, we utilized the same regression approach as in Eq. I, but
instead yi represents the DNAm level at CpG i. DNAm proportions
(β values) were converted to M-values by computing the logit of
the β values in base 2. We subset the EWAS analyses to the top
100,000 CpGs with the largest mean difference in β values (Δβ)
between the two groups. An empirical Bayes method was used to
normalize CpG-wise residual variance. P-values for each CpG were
generated using regression model t-tests to determine if the
coefficient is nonzero. P-values were adjusted for multiple
hypothesis testing using the Benjamini-Hochberg procedure to
maintain a false discovery rate of 5%. To perform a longitudinal
EWAS analysis, we utilize the duplicateCorrelation functionality in
the limma software to produce models equivalent to Eq. II for
differential methylation testing, including the random effect to
adjust for repeated measurements.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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