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Machine Learning in the Parkinson’s disease smartwatch
(PADS) dataset
Julian Varghese 1,2,4✉, Alexander Brenner 1,4, Michael Fujarski1, Catharina Marie van Alen1, Lucas Plagwitz1 and Tobias Warnecke3

The utilisation of smart devices, such as smartwatches and smartphones, in the field of movement disorders research has gained
significant attention. However, the absence of a comprehensive dataset with movement data and clinical annotations,
encompassing a wide range of movement disorders including Parkinson’s disease (PD) and its differential diagnoses (DD), presents
a significant gap. The availability of such a dataset is crucial for the development of reliable machine learning (ML) models on smart
devices, enabling the detection of diseases and monitoring of treatment efficacy in a home-based setting. We conducted a three-
year cross-sectional study at a large tertiary care hospital. A multi-modal smartphone app integrated electronic questionnaires and
smartwatch measures during an interactive assessment designed by neurologists to provoke subtle changes in movement
pathologies. We captured over 5000 clinical assessment steps from 504 participants, including PD, DD, and healthy controls (HC).
After age-matching, an integrative ML approach combining classical signal processing and advanced deep learning techniques was
implemented and cross-validated. The models achieved an average balanced accuracy of 91.16% in the classification PD vs. HC,
while PD vs. DD scored 72.42%. The numbers suggest promising performance while distinguishing similar disorders remains
challenging. The extensive annotations, including details on demographics, medical history, symptoms, and movement steps,
provide a comprehensive database to ML techniques and encourage further investigations into phenotypical biomarkers related to
movement disorders.
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INTRODUCTION
Parkinson’s disease (PD) is a frequent neurodegenerative disorder
with increasing incidence and worldwide burden1,2. The disease
severely affects patients’ quality of life as the condition progresses.
Similar to other movement disorders, PD is currently primarily
diagnosed by clinical examination, which may be complemented
by nuclear imaging. Typical symptoms of PD affect patients’
movement, such as rigidity, tremor, slowness, and difficulty of
walking. Moreover, non-motor symptoms, such as depression,
apathy, hallucinations, etc., can have severe negative impact on a
patient’s well-being and are often reported as early indicators of
the disease3. Although there is no neuroprotective or regenerative
treatment to date, early diagnosis and treatment are particularly
important to reduce burden and costs4. While PD symptoms are
well known, individual disease appearance and progress is
heterogeneous and hard to predict5,6. Technology-based systems
have the potential to address these problems and aid in early
disease recognition7. In this context, digital biomarkers could be
established as objective measures that could be used in predictive
or prognostic applications, as well as for assessing the disease
severity. In this work, we focus on the diagnostic potential.
With the advancement of multi-sensor technology, previous

works have already demonstrated promising PD classification
based on various measures. A wide range of data modalities have
been analysed, including hand movements, gait and balance, eye
movements, and voice captures8,9. Most of these examples
demonstrated high accuracy in the distinction of PD subjects
from healthy controls (HC), yielding an important step towards
clinical adaptation. The largest study to date provides more than
8000 unique subjects that performed the same task with

comparable sensor recording using a smartphone app in a self-
conducted home-based setting, however only with patient self-
reported diagnosis10. In this context, we found analyses with
reported accuracy of over 90% utilising voice captures or
movement-based tasks11,12. Other studies utilised smartphones
to track movement patterns throughout the day13 or recorded
short self-conducted tasks, such as finger tapping or spiral
drawing14,15. However, reports of high performance should be
treated with caution, as many do not take into account
confounding effects of working with unbalanced data, e.g., in
terms of unbalanced age and gender distribution between
cohorts16,17. Moreover, previous studies often lack control groups
of similar movement disorders that would improve disease-
specificity of the digital biomarkers. A classification model might
perform well on differentiating PD from healthy, but it will
misclassify other movement disorders and neurological condi-
tions, such as Essential Tremor or Multiple Sclerosis, since the
model learned general movement abnormalities, but not PD-
specific features. In clinical reality, this is of high importance, as
neurologists might have no prior knowledge of whether patients
have PD or a similar movement disorder. While a subset of the
researched studies included other movement disorders12,18, the
controls were either restricted to a certain disease or did not have
proper sample size of n > 100. Dataset size is crucial to validate
generalisability and to reduce potential over-fitting. Further, many
of the previous studies have applied rather passive monitoring,
while interactive assessments would have the benefit of
potentially provoking unseen subtle phenomena. For instance,
PD tremor can show up under cognitive action or re-emerge when
lifting and holding arms19–21. Different setups and datasets

1Institute of Medical Informatics, University of Münster, Münster, Germany. 2European Research Centre of Information Systems, University of Münster, Münster, Germany.
3Department of Neurology and Neurorehabilitation, Klinikum Osnabrück - Academic teaching hospital of the University of Münster, Osnabrück, Germany. 4These authors
contributed equally: Julian Varghese, Alexander Brenner. ✉email: julian.varghese@uni-muenster.de

www.nature.com/npjparkd

Published in partnership with the Parkinson’s Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-023-00625-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-023-00625-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-023-00625-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-023-00625-7&domain=pdf
http://orcid.org/0000-0002-7206-3719
http://orcid.org/0000-0002-7206-3719
http://orcid.org/0000-0002-7206-3719
http://orcid.org/0000-0002-7206-3719
http://orcid.org/0000-0002-7206-3719
http://orcid.org/0000-0002-7107-2015
http://orcid.org/0000-0002-7107-2015
http://orcid.org/0000-0002-7107-2015
http://orcid.org/0000-0002-7107-2015
http://orcid.org/0000-0002-7107-2015
https://doi.org/10.1038/s41531-023-00625-7
mailto:julian.varghese@uni-muenster.de
www.nature.com/npjparkd


additionally introduce general comparability problems. In conclu-
sion, a comprehensive public dataset utilising interactive clinical
assessments and including a broad spectrum of PD and similar
movement disorders has still been missing.
To approach these problems, a custom application integrating

smart consumer devices and a centralised database, which we
refer to as the smart device system (SDS), has been developed to
analyse PD and similar movement disorders based on sensor
recordings from an interactive assessment consisting of 11
neurological movement steps22. Smartwatches have demon-
strated high potential as an instrument for precise quantification
of movement in the context of PD analysis23. The validation of our
experiment was conducted in the realm of geophysics, employing
a comparative analysis with a gold-standard seismometer. The
findings showcased a level of high precision of smartwatches in
accurately determining acceleration amplitude and frequency,
surpassing the perceptual capacities of the human visual
perception applied in current clinical documentation24. The
system is used as part of a compact assessment that was
designed by movement disorder experts and takes approximately
15min for each assessment. It includes patient’s self-completion
of electronic questionnaires and a series of different movement-
based assessment steps instructed by an interactive app. Two
smartwatches were used to capture movements from both wrists
simultaneously. Additionally, the records were complemented by
extensive annotations on demographics, medical history, move-
ment steps and PD non-motor symptoms (PDNMS). Data were
collected and maintained by the central app. All assessments were
accompanied by study nurses who checked compliance with the
study protocol. Given this system, we have recorded 5544 clinical
measurement steps of more than 500 participants in a three-year
cross-sectional prospective study (summarised in Fig. 1). To the
best of our knowledge, our resulting database is the largest
collection of interactive movement measures from PD patients,
similar movement disorders, and healthy controls using the
integrated smartwatch and smartphone setup.
With this work, we publish the unique study data in a

comprehensive collection, referred to as the Parkinson’s Disease
Smartwatch (PADS) dataset. The data involves 469 individual cases
after exclusion of erroneous samples and age matching. Informa-
tion about usage and the link to the database can be derived from
the data sharing statement. In addition, we performed an

extensive evaluation of the dataset using state-of-the-art machine
learning (ML) to analyse diagnostic performance. To ensure
reproducibility25, the project scripts and settings are published
in a code repository, see the code availability statement. Here, we
have not only considered the distinction between PD and HC, but
also the distinction between PD and differential diagnoses (DD).
Both our app-based data acquisition system and our ML
application are open source and allow for an integrative analysis
that merges different data modalities. Overall, our work not only
enables further research to boost diagnostic accuracy, but also
provides a foundation that could be used for symptom monitoring
and treatment adjustment, in which both non-motor and motor-
symptoms can be captured more comprehensively by using
patient reported questionnaires and sensors respectively.

RESULTS
Data exploration
Besides the algorithmic analysis, the multi-modal data captures
from our system can be visualised and controlled individually.
Figure 2 compares the smartwatch-recorded acceleration of a
manually selected PD participant with strong side-dominant
tremor during the “Relaxed” task to a person from the HC cohort.
The chosen example indicates clearly visible differences between
the selected samples. In general, however, movement abnormal-
ities are often subtle, especially in early cases of PD. Further, PD
may implicate other movement symptoms besides tremor, such as
gait and balance problems, rigidity and slowness. While ML
analysis is used to automatically learn disease-specific character-
istics, manual viewing of the recorded data can still be helpful for
control reasons.

Classification via machine learning
The study data was used for training and evaluation of Machine
Learning models with nested cross-validation (CV). Based on the
inner folds, a wide range of ML-based algorithms, including time-
sensitive deep learning (DL) and classical signal processing were
tested and a hyperparameter selection was performed using a
grid search. The parameter space included the selection of input
features, ML model and training parameters. Three ML options
were applied to movement data and one for the simple and

b SMART DEVICE SYSTEM

c ACTIVE ASSESSMENT

a STUDY COHORT
with age-matched cases of

clinic visits data capture

THREE YEARS OF PARTICIPANT RECRUITMENT

Parkinson's disease (PD)
different progress stages

Differential Diagnoses (DD)
Healthy Controls (HC)

Guided by
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Symptoms
Questionnaire

11 neurological assessment steps,
including different movement examinations
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Fig. 1 Study overview. The study cohort consists of cases of Parkinson’s disease (PD) in different progress states (according to the age at
diagnosis), differential diagnoses (DD), and age-matched healthy controls (HC) a. Data capture was conducted via a custom application
connecting two smartwatches and the smartphone, which we refer to as the Smart Device System b22. The active assessment was designed
by expert neurologists and performed with two wrist-worn smartwatches c. The PADS (Parkinson’s Disease Smartwatch) dataset contains the
entire sensor data from all assessment steps and details on symptoms, demographics, medical history, and diagnosis.
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structured questionnaire data. Option A involved manually
defined features in combination with classical ML, including
Support-Vector Machines (SVMs) and feed-forward neural net-
works (NNs). Option B used automatic feature extraction based on
the Bag-of-Symbolic-Fourier-Approximation-Symbols (BOSS) algo-
rithm26. Option C applied automatic feature extraction via DL with
XceptionTime27. Option D was applied to the questionnaire data
utilising the decision-tree based classifier CatBoost28. Two
classification tasks were analysed: (1) PD vs. HC and (2) PD vs.
DD. We assume that the classification difficulty for a ML system is
lower for the first task than for the second, since it only needs to
detect non-healthy characteristics. PD vs. HC is presented primarily
for comparative purposes. The second classification task requires
more advanced feature analyses in order to distinguish movement
disorders with very similar phenotypical characteristics.
The nested CV split the data into five (outer) test folds. Using

balanced accuracy as reference metric, we report the scores per

test fold using the best ML option selected from the optimisation
based on the inner folds. Additionally, we report precision, recall,
and the F1 measure. Table 1 summarises the results for the best-
performing individual ML options.
Finally, Table 2 summarises average performance scores across

folds and holds the results for classifier stacking, combining both
questionnaire and movement information with different subsets
of ML models. The movement-based classifiers achieved an
average balanced accuracy of 78.99% for PD vs. HC and 69.18%
for PD vs. DD. The classifiers based on the NMS questionnaires
scored 89.79% for PD vs. HC and 67.77% for PD vs. DD. Our
classifier stacking approach outperformed the respective classifi-
cations from movement and questionnaire data alone. While the
score increased to 91.16% for the task PD vs. HC (1.37% change),
the performance for PD vs. DD increased more significantly to
72.42% (3.24% change). Consequently, the numbers indicate that
both data modalities add informational value to the system,

PD participant during task "Relaxed"

HC participant during task "Relaxed"

Fig. 2 Data visualisation for a manually selected PD and a HC study participant. The top plot shows the acceleration curve of a PD
participant during the “Relaxed” task, which was one of the 11 protocol-based assessment steps (see Table 4). The signal indicates a rhythmic
tremor pattern that is more dominant on the right arm. The power spectral density (PSD) indicates a clear peak at around 4 Hz frequency. The
bottom part shows the equivalent plots for a HC participant. The acceleration is closer to zero indicating that the arm was resting without
tremor-like activity.
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Table 1. Classification results in each outer test fold after using the best setup (=input and classification pipeline) from the internal optimization
fold.

Test fold Input Classification pipeline Balanced accuracy F1 Precision Recall

PD vs. HC

Smartwatch data only

#1 Acceleration + Rotation (B) SVM 69.55% 87.5% 85.96% 89.09%

#2 Acceleration + Rotation (A) NN 76.31% 92.17% 88.33% 96.36%

#3 Rotation (B) CatBoost 75.4% 91.23% 88.14% 94.55%

#4 Rotation (B) SVM 87.9% 94.55% 94.55% 94.55%

#5 Acceleration (B) SVM 85.77% 95.65% 93.22% 98.21%

Questionnaire only

#1 NMS (D) CatBoost 85.57% 89.32% 95.83% 85.57%

#2 NMS (D) CatBoost 88.3% 92.45% 96.08% 88.3%

#3 NMS (D) CatBoost 91.02% 95.41% 96.3% 91.02%

#4 NMS (D) CatBoost 93.64% 93.2% 100.0% 93.64%

#5 NMS (D) CatBoost 90.42% 92.45% 98.0% 90.42%

PD vs. DD

Smartwatch data only

#1 Rotation (B) SVM 77.35% 68.29% 73.68% 63.64%

#2 Acceleration + Rotation (B) SVM 74.98% 65.12% 70.0% 60.87%

#3 Acceleration (A) NN 58.46% 43.14% 39.29% 47.83%

#4 Rotation (B) SVM 68.46% 55.0% 64.71% 47.83%

#5 Rotation (B) SVM 66.64% 52.38% 57.89% 47.83%

Questionnaire only

#1 NMS (D) CatBoost 74.68% 63.64% 63.64% 74.68%

#2 NMS (D) CatBoost 60.47% 42.86% 47.37% 60.47%

#3 NMS (D) CatBoost 68.62% 56.0% 51.85% 68.62%

#4 NMS (D) CatBoost 68.06% 55.56% 48.39% 68.06%

#5 NMS (D) CatBoost 67.0% 53.33% 54.55% 67.0%

Options A, B, and C were applied to smartwatch-data only, option D was applied to questionnaire data only. A: Manually defined features, shallow machine
learning, B: Automatic feature extraction via classical signal processing, C: Automatic feature extraction via deep learning (not listed due to
underperformance), D: Decision-tree based classifier.

Table 2. Average classification performance using cross-validation and classifier stacking (smartwatch + questionnaire).

Input Test folds Balanced accuracy F1 Precision Recall

PD vs. HC

Smartwatch data complete 78.99% (7.66%) 92.22% (3.18%) 90.04% (3.66%) 94.55% (3.41%)

matched 76.39% (13.16%) 81.65% (11.55%) 72.94% (13.68%) 93.26% (7.73%)

Questionnaire complete 89.79% (3.03%) 92.57% (2.18%) 97.24% (1.76%) 88.41% (3.97%)

matched 87.67% (4.87%) 87.8% (4.35%) 90.65% (6.09%) 85.46% (6.16%)

Smartwatch + Questionnaire complete 91.16% (4.92%) 94.62% (2.21%) 96.98% (2.49%) 92.4% (2.64%)

matched 89.25% (5.65%) 89.77% (5.24%) 89.79% (8.99%) 90.11% (3.13%)

PD vs. DD

Smartwatch data complete 69.18% (7.45%) 56.79% (10.13%) 61.11% (13.57%) 53.6% (7.96%)

matched 67.94% (12.68%) 62.11% (13.66%) 77.19% (20.7%) 52.55% (10.98%)

Questionnaire complete 67.77% (5.06%) 54.28% (7.48%) 53.16% (6.51%) 56.21% (10.80%)

matched 67.12% (7.11%) 61.5 (10.82%) 73.97 (12.93%) 53.48% (11.65%)

Smartwatch + Questionnaire complete 72.42% (12.33%) 60.45% (16.7%) 54.92% (15.05%) 67.71% (19.45%)

matched 69.56% (17.34%) 67.93% (19.84%) 70.36% (19.85%) 65.71% (19.93%)

Performance scores are given as mean (SD) across the five test folds. The classifiers used for the respective data modalities were chosen based on the
optimization via internal cross-validation folds (see Table 1).
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allowing more accurate discrimination of PD from other move-
ment disorders. Considering the costs of including both ques-
tionnaires and sensor records, the diagnostic performance gain
may be considered marginal. However, it is worth noting that ML
methods depend on the available data. In general, the prediction
accuracy increases with larger sample sizes, as the training set
becomes more diverse and the models learn to generalise.
Comparable work on physiological signal data shows that this
trend can persist up to a multiple of thousands of subjects29. As
our sample size is by an order of magnitude smaller while having
comparable input complexity, there is potential for further
accuracy increases in future work.
Although our dataset is balanced in terms of age distribution,

there are still demographic differences in our study data. As our
study cohort consists mainly of routine patient visits and
concomitant control subjects, gender distribution is influenced
by prevalence, which in the case of PD is known to be higher in
men. To account for this imbalance, we extracted a subset of the
complete dataset that was additionally matched by gender using
a random under-sampling approach16. The subset consists of 234
samples (50% of the original sample size, more details in the
dataset documents). In addition to the results for the regular test
folds, we reported all performance measures for each test set and
the corresponding matched subset. Table 2 compares the average
scores across the matched test sets to the average scores across
the complete test sets. The results for the matched test subsets
showed a similar trend to the original results, where using multi-
modal data input via classifier stacking increased classification
accuracy. Given the classifier stacking setup, PD vs. HC was
evaluated with a balanced accuracy of 89.25%, and PD vs. DD with
69.56%. These numbers lay within the standard deviation of the
original scores, indicating robustness of the underlying models
towards gender-specific biases.

Feature importance analysis
We analysed information gain via grouped permutation impor-
tance to obtain greater insight into the decision process of our
final model30. The high-dimensional feature vector was dissected
into groups that represent certain attributes of the input. PDNMS
questions were grouped by relevant domains (see dataset
documents) and smartwatch-based features were grouped by
assessment step categories (see Table 4). For each test fold, the
input data, grouped according to the categorisation, were shuffled
repeatedly and the change in (balanced) classification accuracy
was recorded. Per feature group, the results were averaged across
the random repeats and all test folds. That is, the analysis
summarises the information gain resulting from the inclusion of

specific questions on non-motor symptoms and the assessment
steps recorded with the smartwatches. Figure 3 shows the top
feature groups sorted by information gain for the two classifica-
tion tasks. Both, the questionnaire and the movement data,
improved diagnostic accuracy. The “Sexual function” questions
rank highest in the classification task PD vs. HC, while this feature
group did not appear in the top ten for PD vs. DD. This indicates
that the feature group is useful in distinguishing healthy samples
from pathological ones, but may not be PD specific. For PD vs. DD
“Kinetic tasks” achieved the highest information gain.

DISCUSSION
A smart consumer device setup with one smartphone and two
paired smartwatches provides a powerful mobile system for the
analyses of movement disorders. Given this setup, we conducted a
three-year cross-sectional study to investigate phenotypical
characteristics of PD and similar movement disorders. In previous
work, the sensor precision of the utilised smartwatches was
validated in using a high-precision shaker24. Within the scope of
subtle tremor analysis, the deviations from the gold-standard
setting were around 0.01 Hertz in frequency and in the range of
0.001 and 0.005 g in amplitude. Since human vision can hardly
detect frequency changes of 0.1 to 1 Hertz and tremor amplitude
of <0.01 g24, smartwatches can provide higher precision to assess
tremor. In this work, we publish the full de-identified individual
data to the scientific community and applied a combinatory ML
pipeline to evaluate the diagnostic potential of the system.
When considering signal data from the smartwatches, the BOSS

algorithm outperformed the other ML options in most cases. BOSS
was applied at varying scales to extract different substructures of
the signal while being relatively robust against noise and outliers.
The advantage of automatised feature extraction is that it is not
limited to predefined characteristics, such as only viewing tremor
frequencies, but may consider other aspects of abnormality such
as rigidity, or slowed and irregular movements. Although the use
of DL has seen significant performance gains in the medical
context, e.g., in the classification of ECG and EEG data, extensive
amounts of training samples are required to robustly train such a
system31,32. Although the self-reported non-motor symptoms are
a subjective measure, they provide a more general picture of the
patient’s condition that goes beyond the snapshot of the
smartwatch recording. This informational value is also reflected
in the classification scores, where for PD vs. HC the questionnaire-
based classifier outperformed the classifiers applied to signal data.
For PD vs. DD the movement-based classifier was slightly more
accurate on average.

Fig. 3 Grouped permutation feature importance applied to the best classification setup for the tasks PD vs. HC and PD vs. DD. Bar height
corresponds to the average information gain in terms of balanced accuracy. Top feature groups are displayed.

J. Varghese et al.

5

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2024)     9 



Furthermore, we observed that when combined, the two data
modalities—the smartwatch recordings and the PDNMS questions
—were relevant for classification and increased performance
scores. The classifier stacking outperformed classifications using
only smartwatch data or questionnaire answers, in particular for
the task PD vs. DD. These results indicate that the usage of
different data modalities aid in characterising PD more precisely
when comparing it to similar disorders. The influence of the
feature categories was further illustrated by our analysis of feature
importance.
Our presented ML experiments yield promising results in the

classification of PD vs. HC with a balanced accuracy of 91.16% and
were based on a large participant population. While the
classification of PD vs. DD achieved reasonably well performance
with balanced accuracy of 72.42%, the score still lags behind the
aforementioned classification setting. The latter setup, however,
more closely resembles clinical reality. By additionally computing
the classification scores on gender-matched subsets of the test
folds, we have shown that the classification results were not
strongly biased by gender imbalance. Given these subsets, PD vs.
HC was evaluated with 89.25% balanced accuracy and PD vs. DD
with 69.56%. The results show the overall diagnostic potential of
the system. To investigate, whether it could be more accurate
than clinicians, however, would depend on the clinical experience
and infrastructure of the region, and require follow-up work with a
different study design.
Overall, it should be noted that the standard deviation in our

evaluation was relatively high, e.g., up to 12.33% for the balanced
accuracy in the distinction of PD and DD cases, which is also due
to the limited test set sizes. Large feature spaces in some setups
may also have caused overfitting to training data, which should
further be regularised in future work. Another limitation of our
study is that it was conducted at a single site. Therefore, the risk of
potential bias due to specific site population, examination setting,
or target diagnoses cannot be fully ruled out. Still, we believe that
the study data provides a suitable representation, as participants
were recruited from a large tertiary care centre and include
various types and stages of PD and other movement disorders.
This inclusion is highly important for adapting well to clinical
reality. It should be noted that clinical information on progress
states, such as Hoehn and Yahr scales33, are not available in this
dataset, but could be further extracted from discharge letters on
request. Our control cohorts were age-matched to the PD cohort
to best represent the risk group. The PD cohort is the main cohort
of our study and includes more male patients, which corresponds
to the known gender distribution of PD in the world population1.
Although we reduced the bias due to general age-related
changes, the male gender in our data set is still underrepresented
in the control groups compared to the PD cohort. While we have
accounted for this problem by using sample weighting and
evaluating on additional gender-matched test subsets, systematic
causal analysis should be conducted in future studies to rule out
confounding effects17. Another limitation of this study is that our
results are based on a one-time in-clinic assessment. PD
symptoms can exhibit temporal variability, and the clinical
observations on the day of recording may not necessarily reflect
the patient’s condition throughout their daily life. Further, the data
quality achieved in this study was facilitated by the presence of
the study nurse who could oversee and control the recording
process. In e.g., a home-based setting, where such control may be
less feasible, there is a potential for decreased data quality. For
future evaluations, it is therefore advisable to provide for
automatic quality control methods, e.g., checking for unexpected
behaviour that does not conform to the protocol34.
To the best of our knowledge, we contribute the largest

collection of smartwatch recordings from an interactive assess-
ment including PD and DD classes so far. Along with movement
data, the PADS dataset is supplemented with extensive contextual

information, such as disease details from various movement
disorders, patient demographics, medical history, and non-motor
symptoms. While we have shown an exemplary approach to
evaluate the potential for diagnostic biomarkers utilising
advanced ML, it provides a reference dataset to the ML research
community for developing and comparing novel algorithms in the
field of movement disorders. The presented system, its app and
analysis tools, can be re-used (e.g., with simple assessment steps
from the protocol of other observational studies) and fine-tuned
with the existing data. With increasing advances in transfer
learning35, the dataset has the potential to provide an essential
data foundation for the development of future sensor driven
systems for movement disorders. Besides classification, follow-up
work could further address disease progress and symptom
severity prediction, enabling unbiased, objective assessment36.
In this work, we comprehensively evaluated the informational

value of a smart device-based system with interactive neurological
assessment. In conclusion, our findings suggest that a system like
this, combined with advanced ML, has the potential to aid in
clinical routine and advance research related to movement
disorders. Since the entire system is based on consumer-grade
devices, it could potentially be used for upcoming home-based
assessments and the extracted features can serve as a disease
monitoring tool. The app gives step-by-step instructions on how
to perform the assessment so that patients could use it on their
own. While we have proposed a setup with two smartwatches, the
system could be further simplified, e.g., with only one smartwatch,
or extended with other sensor recordings and data captures. In
this context it is noteworthy that the number and availability of
low-cost sensors and consumer devices such as smartwatches that
integrate them is increasing rapidly37. In the future, we will include
new data modalities, such as voice captures, spiral drawings, and
finger-tapping tasks, which have already been pre-tested on a
small sample size38. Lastly, we plan to expand our study cohort
and involve long-term progress monitoring, so that the presented
system and potential biomarkers could not only be evaluated for
diagnostic, but also predictive relevance (e.g., trend biomarker).

METHODS
Study data
The cross-sectional prospective study recruited participants from
the year 2018 until 2021. It has been registered on ClinicalTrials.-
gov with the ID NCT03638479 (registration date 20-08-2018) and
approved by the ethical board of the University of Münster and
the physician’s chamber of Westphalia-Lippe (Reference number:
2018-328-f-S). All participants gave written informed consent to
take part. The study design and the protocol have been published
previously22. All sessions were recorded upon routine visits to the
outpatient clinic of movement disorders at the University Hospital
Münster in Germany, which is one of the largest PD assessment
centres in Germany. Three participant groups were recorded: (1)
PD, including a broad range of ages and onset of diagnoses, (2)
differential diagnoses (DD), including Essential Tremor, atypical
Parkinsonism like Progressive supranuclear palsy (PSP) or multiple
system atrophy (MSA), secondary causes of Parkinsonism, and
Multiple Sclerosis, and (3) healthy controls (HC). The control
groups were age-matched to the PD cohort to allow a fair
comparison.
All diagnoses were established by board-certified neurologists

and additionally reviewed by one senior movement disorder
expert. As a routine standard, advanced DaT (Dopamine
Transporter) scan imaging is ordered in cases of uncertainties.
Currently, there is no 100% accurate diagnostic marker for PD,
only the existence of pathological proteins after brain biopsy.
Thus, we cannot guaranty 100% accuracy of the labels, but at least
the most advanced state-of-the art clinical and technical
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procedure, which provides highest diagnostic accuracy when
compared to neurologist practices. Originally, 504 individual
participants were recorded. Quality, correctness, and complete-
ness of diagnoses and signal data were checked throughout the
study and after completion. Erroneous records and samples with
missing data were removed (two samples dropped out due to
missing data; from the youngest controls 33 were randomly
removed as they did not match the age distribution of PD
patients). At the end of 3-year recruitment, all included cases were
checked via patient record review by a senior PD specialist
resulting in eight subject labels to be corrected). The resulting
participants’ population statistics are listed in Table 3. In addition
to summarising the three aforementioned groups used for ML,
Table 3 also provides differential diagnosis subgroups. Figure 4
gives an overview of the spectrum of PD patients in the dataset.
Further information on differential diagnoses and demographics is
provided for each sample in the dataset documents (see data
availability statement).
Participant examinations consisted of two parts: (1) an

electronic questionnaire and (2) active movement-based assess-
ment, all guided by the central app on the smartphone. Each
recording session started with the questionnaire that was self-
completed by the participants via the smartphone app. This
questionnaire comprised two steps. First, answers about medical
history were captured, including information about age, height,
weight, kinship with PD, effect of alcohol on tremor, and
medication (further details provided in the original study design
by Varghese et al.22). The second component included 30 yes/no
answers about PD specific non-motor symptoms (PDNMS) based
on the PDNMS questionnaire from the International Parkinson and

Movement Disorder Society39. The questions cover a wide
spectrum of domains, ranging from cognitive problems, such as
hallucinations, depression, apathy, and anxiety, to sexual dysfunc-
tion, sleep disorders, bowel problems, and sailorrhea. We
previously evaluated ML-based classification using questionnaire
data only and found high informational value utilising the 30
PDNMS questions40. A feature importance analysis showed that
the classification accuracy did not increase by including additional
personal information, such as age, sex, height, and weight.
Therefore, we used the 30 PDNMS answers in this work and
excluded other personal data. Clearly, the collected medication
data was acquired with the intention of enhancing our dataset for
future research purposes, but it will not be utilised for ML since it
already provides indicative information regarding the diagnosis.
Despite the subjective nature of patient-reported outcomes, they
provide valuable and long-term patient perceived insights. These
complement the sensor-based approach, which only captures a
temporary status during the assessment and therefore might miss
disease characteristics of patients in off-state.
After completing the questionnaire, participants continued with

movement examination steps. These were instructed by the
smartphone app and guided by a study nurse who ensured
adherence to the protocol. The assessment steps were designed
by movement disorder experts with the primary aim to establish a
simple-to-follow examination and to capture the most relevant
movement characteristics. For data capture, each participant wore
two smartwatches (Apple Watch Series 4), one on each wrist, while
seated in an armchair. During each assessment step, the
smartwatches synchronously recorded acceleration and rotation
data on three spatial axes (x, y, z) with a sampling frequency of

Table 3. Participant samples including Parkinson’s disease (PD), healthy controls (HC) and differential diagnosis (DD).

Class Participant group Sample size (male, female) Age, years (std) Age at diagnosis, years (std) Height, cm (std) Weight, kg (std)

PD Parkinson’s disease 276 (195, 81) 65.4 (9.6) 58.26 (10.62) 175.71 (9.77) 83.78 (18.1)

HC Healthy controls 79 (29, 50) 62.9 (12.5) — 170.48 (15.63) 78.75 (16.72)

DD Differential diagnoses 114 (57, 57) 62.4 (11.5) 52.96 (16.52) 173.04 (8.73) 79.54 (17.84)

Atypical Parkinsonism 15 (8, 7) 66.0 (7.96) 62.6 (8.21) 168.47 (8.1) 79.13 (18.64)

Essential Tremor 28 (18, 10) 66.18 (10.84) 46.96 (22.89) 173.36 (9.6) 84.68 (21.88)

Multiple Sclerosis 11 (7, 4) 54.09 (7.92) 43.82 (13.04) 178.36 (10.69) 83.55 (16.18)

Other 60 (24, 36) 61.32 (12.32) 55.02 (13.32) 173.07 (7.64) 76.52 (15.45)

Fig. 4 Overview of the Parkinson’s group. The left histogram shows the sample count by patient’s age at diagnosis. The right shows the
sample count by years since first diagnosis at the time of inclusion in the study.
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100 Hertz. In total, 11 interactive assessment steps were
performed, three of which took 20 s and the rest 10 s, which are
summarised in Table 4. Data capturing were handled by the
central app, which connected all devices and the study database.
For the ML analysis, the 20-second recordings were cut into two
parts, yielding 14 time series of 10 s per participant. With this
setup we achieved 168 channels of time series data for each
participant (14 tasks × 2 arms × 2 sensors × 3 axes = 168). In
preliminary experiments, we assessed the acceleration sensor on
its own and found high informational value. Here, we evaluated
three experimental setups, (1) using acceleration only, (2) using
rotation only, and (3) using data from both sensors to account for
all data. This selection of the input source is treated as an own
hyperparameter in the ML evaluation. Based on previous data
analysis, we removed three assessment steps that gave no
additional value to the classification: step three (“lift and hold”),
step five (“point finger”), and step eight (“touch index”)41. The first
0.5 s of every time series were removed to cut out smartwatch
vibration that notified about the start of each recording. Further,
we pre-processed the acceleration data for ML analysis to account
for the influence of the Earth’s gravitational field. Gravitational
orientation changes were corrected with the help of l1-trend-
filtering, which functions as piece-wise linear smoothing. Similar to
Little et al. we subtracted the estimated low-frequency gravita-
tional trend from the signal data to remove the offset from the
physiological data42.
The dataset holding all records is organised in JSON text files,

readable and editable in any editor. While there is not yet an
established format standard for metadata of medical time series
derived from wearable sensors, we follow the specification by
Claes et al.43, which refers to the similar data as in our study.
Further details on data usage can be derived from the data
availability statement.

Machine learning
We determined a fixed randomisation seed for a 5-fold CV to
increase fairness in the evaluation and to ensure reproducibility.
Scores were reported as mean values over the resulting five test
sets. While CV ensures strict and systematic separation of training
and testing, we further point out that assessment steps of the
same individual are bound to one data sample. As a result, no sub-
time-series of one individual are mixed in training and testing,
which could cause identity confounding44. Moreover, to increase
generalisation and counteract overfitting, hyperparameters,
including the selection of classification models and input signal,

were conducted via an additional inner 5-fold CV per training
iteration using a grid-search. This approach is referred to as nested
CV. Implementation details and tested hyperparameters can be
derived from the code repository. We measure and compare
performance based on balanced accuracy to guarantee more
representative and stable performance scores in case of class
imbalances. In addition, we evaluated precision, recall, and the F1
measure. Three different options were tested on the smartwatch
records (options A, B, and C). These range from the common
approach of using manually defined features in combination with
classical classifiers, such as SVMs, to specialised signal processing,
and DL for time series. Training and testing were performed using
the Python libraries scikit-learn (version 1.1.0)45, pytorch (version
1.11.0)46, and skorch (version 0.11.0)47.
Option A involves manually defined features and shallow ML. In

previous work, we developed a set of relevant features derived
from acceleration data based on an intermediate state of the
study24. Based on the prior experiments, we focused on features
using statistics and frequency measures of the input signal.
Feature computation was based on the following steps: (1) The
power spectral density was computed in discrete 1 Hertz steps
using Welch’s method48. Values for 0 Hertz or above 19 Hertz were
discarded, resulting in 19 frequency features per channel that
were scaled by logarithm afterwards. (2) Each time series was split
into four segments of equal length. For each segment, the
standard deviation, the maximum absolute amplitude and the
sum of absolute energy was computed, resulting in 12 features
per channel. In total, each channel was transformed into a feature
vector with 31 elements. Finally, all channels were concatenated.
The manually derived feature representation was passed into a set
of different ML classifiers to compare their performance. We have
chosen to test three different options, the SVM, CatBoost, and a
fully connected feed-forward NN.
Option B is based on automatic feature extraction via classical

signal processing. Using the Symbolic Fourier Approximation (SFA)
method, the Bag-of-SFA-Symbols (BOSS) algorithm extracts
substructures of the signal26. We used three sliding windows with
a hierarchical sizing of 20, 40, and 80 sample points length to
extract information from different scales of the signal. Per window
length, one BOSS transformer was applied to each individual
channel respectively. Afterwards, the output was concatenated to
one feature vector. The transformer was implemented using pyts
(version 0.12.0)49. The computed features were passed into the
same selection of classifiers as described above (see option A).

Table 4. Smartwatch-based assessment steps.

Steps Durations Description Task category

1a 20 Resting with closed eyes while sitting, positioning standardised to Zhang et al.41. Resting

1b 20 Resting while patient is calculating serial sevens. Resting

2 10 Lift and extend arms according to Zhang et al.41. Postural

3 10 Remain arms lifted. Postural

4 10 Hold one-kilogram weight in each hand for 5 s. Start with the right hand. Then, have the arm rested again as in 1a. Postural

5 10 Point index finger to the examiners lifted hand. Start with right index, then left Repeat the movement. Kinetic

6 10 Drink from glass. Grasp an empty glass as if drinking from it. Start with the right hand. Then repeat with the left
hand

Kinetic

7 10 Cross and extend both arms. Kinetic

8 10 Bring both index fingers to each other.

9 10 Tap own nose with index finger. Start with the right, then with left index. Then extend the arms. Kinetic

10 20 Entrainment. The examiner stomps on the ground, setting the pace. Start stomping with the right foot according to
the pace. Leave the arms extended during the movement. Repeat this with the left foot.

Postural

Durations are reported in seconds (s).
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Option C integrates automatic feature extraction via DL.
XceptionTime was originally developed to classify multichannel
surface electromyography (sEMG) signals27. In this work, we
connected four XceptionTime modules in series to capture
temporal and spatial information of the signal. The model involves
simultaneous analysis of multiple channels and different kernel
sizes to address long- and short-time intervals. In early experi-
ments, we found most stable results when increasing the time
series length and reducing the number of channels. To do so, we
kept the channels distinct by axes, sensor and arm, but
concatenated signals from different assessment steps. The
implementation is based on tsai (version 0.2.24)50. Balanced
cross-entropy loss in combination with the 1-cycle learning rate
policy51 was used for training. Since DL typically requires larger
amounts of training data compared to traditional ML, data
augmentation was applied during training. Similar to Um et. al,
we performed randomised time warping and axes rotations52.
Since the questionnaire data is far simpler due to its tabular

structure, only one classifier was used here. For option D we used
CatBoost that is based on gradient-boosted decision trees and was
developed to efficiently handle categorical variables28. We utilised
the official Python implementation from the catboost package
(version 1.0.3). The learning rate was set to the default adjustment
according to dataset properties and number of iterations.
While our dataset is age-matched between classes, the cohorts

are still imbalanced in terms of gender and class distributions. For
potential confounding variables, it is important to balance their
influence during training, for example by weighted bootstrapping,
to prevent learning potential spurious correlations53. Resampling
techniques, however, may introduce duplicate samples that could
also increase the risk of overfitting, if not regularised with
correction methods. As an alternative approach to this problem,
we use sample weighting in all loss computations. We imple-
mented an approach similar to the balanced class weighting from
scikit-learn, which adjusts weights inversely proportional to class
frequencies. In our case, we considered groups of similar gender
and class for the respective weighting.

Due to the multi-modal nature of the captured data (high-
resolution time series data by smartwatches and tabular data by
symptom questionnaires), additionally a combinatory ML
approach was utilised via classifier stacking54. By doing so,
different ML sub-models are trained and a final meta-classifier
will be systematically trained and tested via CV (Fig. 5). After the
internal optimisation of the individual classifiers per fold, we
combined the strength of these predictors using our ML
ensemble. To effectively utilise the two data modalities, we
performed a modified version of classifier stacking where data
from different sources are passed to different sub-classifiers
respectively. Per test fold, we used the best model setup for
smartwatch data and the best model setup for questionnaire input
from the previous optimisation via the internal CV. A logistic
regression model was applied as final meta-classifier on top of the
individual sub-classifiers to consider all data modalities and
compute the final label. During training, internal CV was used so
that this final classifier was fitted on cross-validated probabilistic
predictions of the sub-classifiers to increase generalisation55. The
final classification is performed by passing the predictions of the
subclassifiers trained on the complete train fold to the meta-
classifier.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data presented in this study—the PADS (Parkinson’s Disease Smartwatch)
dataset will be publicly available with publication of this paper. The dataset includes
all 469 individual assessments and detailed descriptions on how to work with the
data. For all participant samples, we include signal data recorded from the two wrist-
worn smartwatches during 11 assessment steps. Further, we include details on
demographics, medical history, and the self-reported non-motor symptoms. Dataset
link: https://uni-muenster.sciebo.de/s/q69vUfRc9vgBoWX.
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CODE AVAILABILITY
The Python scripts used for the ML analysis are made publicly available. Additionally,
we include hyperparameters and randomisation seeds for the CV that were used in
our presented experiments. Code link: https://imigitlab.uni-muenster.de/published/
pads-project.
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