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Resting-state EEG measures cognitive impairment in
Parkinson’s disease
Md Fahim Anjum 1✉, Arturo I. Espinoza2, Rachel C. Cole 2, Arun Singh 3, Patrick May4, Ergun Y. Uc 2,5, Soura Dasgupta4 and
Nandakumar S. Narayanan 2

Cognitive dysfunction is common in Parkinson’s disease (PD). We developed and evaluated an EEG-based biomarker to index
cognitive functions in PD from a few minutes of resting-state EEG. We hypothesized that synchronous changes in EEG across the
power spectrum can measure cognition. We optimized a data-driven algorithm to efficiently capture these changes and index
cognitive function in 100 PD and 49 control participants. We compared our EEG-based cognitive index with the Montreal cognitive
assessment (MoCA) and cognitive tests across different domains from National Institutes of Health (NIH) Toolbox using cross-
validations, regression models, and randomization tests. Finally, we externally validated our approach on 32 PD participants. We
observed cognition-related changes in EEG over multiple spectral rhythms. Utilizing only 8 best-performing electrodes, our
proposed index strongly correlated with cognition (MoCA: rho= 0.68, p value < 0.001; NIH-Toolbox cognitive tests: rho ≥ 0.56, p
value < 0.001) outperforming traditional spectral markers (rho=−0.30–0.37). The index showed a strong fit in regression models
(R2= 0.46) with MoCA, yielded 80% accuracy in detecting cognitive impairment, and was effective in both PD and control
participants. Notably, our approach was equally effective (rho= 0.68, p value < 0.001; MoCA) in out-of-sample testing. In summary,
we introduced a computationally efficient data-driven approach for cross-domain cognition indexing using fewer than 10 EEG
electrodes, potentially compatible with dynamic therapies like closed-loop neurostimulation. These results will inform next-
generation neurophysiological biomarkers for monitoring cognition in PD and other neurological diseases.
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INTRODUCTION
Cognitive dysfunction is a major non-motor symptom of
Parkinson’s disease (PD), affecting ~20% of the individuals with
PD at initial diagnosis and leading to dementia in >80% of the
individuals with disease progression and aging1–4. Because PD-
related cognitive symptoms can predict morbidity and mortality,
early diagnosis may help counsel families and guide crucial
treatment decisions. Detailed neuropsychological testing5 is the
gold standard for determining cognitive function. However,
neuropsychological testing requires several hours and trained
examiners and is subject to learning effects, especially with
frequent testing5,6. Therefore, it is not readily compatible with
repeated measurements throughout the day or even within short
time intervals such as days or weeks. These features limit its role in
capturing cognitive fluctuations in PD or real-time feedback for
neuromodulation therapies where cognition can be negatively
affected while improving motor function7–9. Short screening tests
such as Montreal Cognitive Assessment (MoCA)10 or computerized
batteries such as National Institutes of Health Toolbox Cognitive
Battery11 (NIH-Toolbox) have similar limitations. MoCA is a high-
performing screening tool for detecting PD-related cognitive
impairment12–15. Computer-based cognitive tests provided by the
NIH-Toolbox are also commonly used as standardized measures of
cognition for insights into different cognitive domains16. While
these cognitive measures can be readily measured, they depend
on paper or digital text input formats limited by the patient’s
motor and language proficiency, as well as by trained examiners
during data collection and scoring17.

EEG provides a widely available, low-cost measure of cortical
neurophysiology which can provide predictive electrophysiologi-
cal markers for monitoring instantaneous and long-term cognitive
functioning18,19. EEG-based indexing of PD-related cognitive
functions can generate objective, rapid, and robust measures of
cognition with continuous measurements in complex environ-
ments. More importantly, it can contribute to PD treatments such
as closed-loop neurostimulation for avoiding cognitive side effects
and improving cognitive symptoms9,20. In previous studies, EEG-
based analysis has facilitated a more accurate characterization of
granular fluctuations and it is sensitive to the abnormalities in
cortical function that precede the occurrence of overt disease
manifestations21,22. EEG recording procedures are generally well-
tolerated by individuals with cognitive impairments21. Thus, EEG-
based cognitive assessment that does not require expert
administration and is compatible with repeated or continuous
measurement would be of great benefit. Changes in EEG activities
correlate with cognitive measures such as MoCA and cognitive
tests from NIH-Toolbox in various medical conditions18,19,23.
However, to date, few EEG-based biomarkers have been found
in PD patients that correlate strongly with cognitive performances
measured by these tests even though such EEG-based measures
can achieve superior assessment of cognitive fluctuations21,23–25.
While changes in EEG over multiple spectral rhythms, power

ratios, and phase-couplings can correlate with cognition and
achieve moderate correlation with several psychometric
tests22,26–30, most prior EEG-based approaches have focused on
specific spectral ranges leading to a limited capturing of EEG
activities related to cognition. We recently developed a data-driven
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approach termed Linear predictive coding EEG Algorithm for
Parkinson’s Disease (LEAPD) that can efficiently capture spectral
EEG profiles over a broad frequency range using a few parameters
and reliably detect PD and PD-related depression7,31,32. This
technique harnesses the compression power of linear predictive
coding (LPC) to capture the shape of EEG power spectra by
holistically encapsulating distinctive spectral features and can
separate one neurological condition from another. In this study,
instead of just binary classifications we utilized and modified
LEAPD to develop an EEG-based biomarker that correlates well
with several well-established cognitive indices by capturing EEG
spectral changes related to cognition. We hypothesized that
cognition-related changes in EEG activities occur in multiple
spectral rhythms across the power spectrum in PD and efficient
capturing of these changes can index cognitive functions. Our goal
was to develop a cognitive assessment tool based on neurophy-
siological changes in cortical activities as observed by EEG. This
tool would be rapid, independent of any specific language, and
trained expertize while leading to a better understanding of the
neurophysiology of cognitive impairment in PD.
In this study, we collected resting-state EEG from 149

participants, conducted traditional spectral analyses, and opti-
mized LEAPD to estimate general cognitive function as measured
by the MoCA and cognitive tests from NIH-Toolbox. Our spectral
analyses revealed synchronous changes related to cognitive
measures over a broad spectrum in EEG. We externally validated
the performance of our approach on a separate out-of-sample
dataset. Our results will contribute to EEG-based diagnostic

technologies for detecting cognitive outcomes quickly and
accurately, real-time feedback on the cognitive effects of medical
and surgical interventions, and long-term monitoring of cognitive
function in PD and other neurodegenerative diseases.

RESULTS
We recruited 100 PD participants from the Movement Disorders
Clinic at the University of Iowa and 49 demographically-matched
controls from the general Iowa City community (Table 1). To
further assess our findings, we added 32 PD participants from the
Aerobic Exercise in Parkinson’s Disease study (NCT03808675) as an
out-of-sample test group (Table 1). Resting-state EEG was
collected for a few minutes during ON dopaminergic medications
(Fig. 1a). To measure cognitive function, we employed a modified
LEAPD index (Fig. 1b–d; for details, see Methods) and utilized
several cross-validation schemes, randomization tests, and exter-
nal out-of-sample assessments to evaluate the performance (Fig.
1e).

Correlation of EEG spectral features and LEAPD with cognitive
measures
First, using the EEG data of 149 participants (Table 1), we
correlated LEAPD and traditional EEG spectral power features with
MoCA score, a screening tool for cognition5,33. Spectral analyses of
EEG revealed moderate correlations with MoCA scores (Fig. 2a, b).
In particular, MoCA score showed statistically significant correla-
tions with increased beta (13–30 Hz) power in central-parietal

Table 1. Participant demographics.

Dataset of 149 participants Out-of-sample test dataset of 32 PD

PD-based population group MoCA-based Classification of cognitive
impairment for LEAPD

PD-based group MoCA-based classification of cognitive
impairment for LEAPD

Condition PD Control Cognitively
impaired

Cognitively normal PD Cognitively
impaired

Cognitively normal

Total 100 49 64 85 32 18 14

Sex 68M 32 F 26M 23 F 48M 16 F 46M 39 F 21M 11 F 16M 2 F 5M 9 F

PD 100 PD
-

-
49 Controls

53 PD
11 Controls

47 PD
38 Controls

32 PD 18 PD 14 PD

Age 68.53 ± 8.06* 70.91 ± 7.62* 71.68 ± 7.8*** 67.53 ± 7.66*** 67.67 ± 7.91 69.67 ± 7.28 65.07 ± 8.20

MoCA 24.31 ± 4.02*** 26.67 ± 1.86*** 22 ± 3.49*** 27.41 ± 1.18*** 25.28 ± 2.45 23.44 ± 1.15*** 27.64 ± 1.39***

UPDRS 12.47 ± 7.17 - 13.57 ± 7.463 11.23 ± 6.693 13.16 ± 8.22 15 ± 7.84 10.79 ± 8.36

Dx 4.64 ± 3.79 - 4.53 ± 3.563 4.77 ± 4.083 3.84 ± 3.50 4.12 ± 3.47 3.48 ± 2.44

EEG rec.
(min)

2.60 ± 0.75 2.83 ± 0.78 2.7 ± 0.86 2.65 ± 0.69 2.32 ± 0.39 2.15 ± 0.21* 2.54 ± 0.45*

Year of Ed. 15.61 ± 3.00* 16.53 ± 2.12* 15.52 ± 2.68 16.21 ± 2.8 16.56 ± 2.91 16.9 ± 3.25 16.14 ± 2.44

LEDD (mg) 822.47 ± 446.22 - 863.40 ± 507.673 775.33 ± 362.703 543 ± 370.42 593.67 ± 406.84 477.86 ± 320.36

NIH PVT1 52.88 ± 07.13** 57.02 ± 07.48** 51.24 ± 07.42*** 56.63 ± 06.65*** - - -

NIH PCPST1 36.45 ± 14.35*** 52.67 ± 12.82*** 35.03 ± 15.76*** 47.14 ± 13.70*** - - -

NIH DCCST2 50.70 ± 11.91** 57.83 ± 12.66** 50.10 ± 13.00** 55.37 ± 11.81** - - -

NIH FICAT2 40.91 ± 09.95*** 50.41 ± 09.22*** 40.16 ± 09.86*** 47.10 ± 10.34*** - - -

NIH PSMT2 46.62 ± 10.93*** 56.52 ± 10.99*** 45.97 ± 10.89*** 52.97 ± 11.75*** - - -

Participant demographics (mean ± standard deviation) for Iowa dataset with a total of 149 participants and the out-of-sample test dataset of 32 PD
participants. Wilcoxon non-parametric rank-sum test was used for group-level comparisons. PD Parkinson’s disease, UPDRS United Parkinson’s Disease Rating
Scale (motor), Dx years since PD diagnosis, MoCA Montreal Cognitive Assessment, LEDD L-Dopa equivalent daily dose in mg, EEG rec. length of EEG, Year of Ed.
years of education, NIH National Institutes of Health, PVT picture vocabulary test, FICAT Flanker inhibitory control and attention test, DCCST dimensional change
card sorting test, PCPST pattern comparison processing speed test, PSMT picture sequence memory test. Group-level rank-sum test p values: <0.001***,
<0.01**, and <0.05*.
1Data available for 94 PD subjects and 46 controls.
2Data available for 93 PD subjects and 46 controls. Participants were classified into cognitively impaired and cognitively normal groups based on MoCA scores.
3No available data for controls for UPDRS, LEDD, and years since PD diagnosis and only PD values were used for statistical measures.
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region (highest at P4: rho= 0.37, p value < 0.001, Fig. 2a),
increased alpha (8–13 Hz) power in parietal region (highest at
P2: rho= 0.29, p value < 0.001), increased gamma (31–100 Hz)
power in central-parietal region (highest at C4: rho= 0.25, p
value= 0.002), increased delta (1–4 Hz) power in central-parietal
region (highest at P2: rho= 0.25, p value= 0.002) and reduced
theta (4–8 Hz) power in left frontal region (F5: rho=−0.17, p

value= 0.04). For investigating the correlation between spectral
ratios and MoCA scores, we chose the alpha/theta log-spectral
ratio30 which simultaneously captures reduced theta and
increased alpha power. The alpha/theta ratio showed a statistically
significant correlation in almost all regions with MoCA (highest at
P4: rho= 0.36 p value < 0.001, Fig. 2b). Furthermore, the highest
correlation in beta power and alpha/theta ratio were both in the
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Fig. 1 Methodology of the study. a Example of EEG time series comparison between a PD participant with normal cognition (blue) and a
participant with cognitive impairment (red) from a representative electrode P8. b Example illustration of single-electrode LEAPD index: EEG
data (x1; x2; ¼ ; xn; ¼ ) are encoded by linear predictive coding (LPC) which fits the data into a 3rd order autoregressive model where each
sample (xn) is modeled by the weighted sum of 3 past consecutive samples (middle). These weights (a1; a2; a3) are LPC coefficients that
represent the EEG data and become a single point in a high-dimensional LPC coefficient space (bottom; LPC coefficients as axes). After finding
separate affine subspaces for cognitively impaired (red) and cognitively normal (blue) participants, LEAPD is calculated for new data by
encoding it in that space and finding the relative distances from these affine subspaces. D1 and D2 are the distances from the new data point
to the cognitively normal and cognitively impaired affine subspace respectively. c Illustration of spectral profiling via LPC: true spectral power
(top) of representative EEG data (P8) from a cognitively normal (blue) and cognitively impaired participant (red). These power spectra show
changes in theta, alpha, and beta rhythms related to cognition which are captured by LPC shown by the reconstruction of spectral power
from LPC coefficients (bottom). EEG data were bandpass filtered (2–29 Hz). d Steps for combined LEAPD index generation from EEG data from
multiple electrodes. e Schematic and data analysis outline of the study for LEAPD and traditional EEG spectral analysis with randomization test
and cross-validations for MoCA (left) using 149 participants (Table 1) and outline of out-of-sample validation test (right) using a separate test
dataset of 32 PD participants (Table 1). PD Parkinson’s disease. LOOCV leave-one-out cross-validation. MoCA Montreal Cognitive Assessment.
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parietal region (P4) implicating the possibility of achieving high
correlations with holistic approaches that can capture changes in
EEG activities over a broad spectrum.
Next, we tested the hypothesis that LEAPD, which captures the

spectral profile of EEG over a broad range, can measure cognitive

function in PD. Individual electrode performances on the data of
149 participants (Table 1) demonstrated that LEAPD indices from
single electrodes strongly correlated with MoCA score (Fig. 2c;
Spearman’s rho > 0.41 noted for P8, PO7, CP1, CP2, P6, O2, P4, and
F4). This information was useful in determining which electrodes

delta (1-4 Hz) theta (4-8 Hz) alpha (8-13 Hz)

beta (13-30 Hz) gamma (31-100 Hz)

Spectral profile captured by LEAPD (P8)

Spearman’s rho correlation with MoCA
Cognitively normal
Cognitive impairment
Cognitively normal
Cognitive impairment

True Spectral density (P8)

Spearman’s rho correlation with MoCA

Shift of theta-alpha oscillation

Shift of beta oscillation

p value = 0.005p value = 0.000009

beta
frequency (Hz)

theta-alpha
frequency (Hz)

beta
amplitude (a.u.)

theta-alpha
amplitude (a.u.) theta-alpha frequency (Hz) beta amplitude (a.u.)

M
oC

A
score

delta theta alpha beta gammadelta theta alpha beta gamma

Spearman’s rho correlation with MoCASpearman’s rho correlation with MoCA
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might be most informative for indexing cognition in PD. We
selected these eight top-performing electrodes to calculate a
combined LEAPD index across all participants. We also used the
same eight electrodes during the out-of-sample test. The best-
performing LEAPD frequency ranges for the central-parietal
electrodes (P6, CP1, CP2, and P8) were broad while PO7, O2, P4,
and F4 were focused on lower frequencies (Fig. 2d). Differences in
EEG spectral densities on a broad spectrum were evident in the
data-driven central-parietal electrodes between cognitively
impaired and cognitively normal participants, regardless of
whether they had PD which was consistent with our spectral
power analyses (Fig. 2e). These differences were captured by the
EEG spectral profiles of LPC models through the shift of
oscillations in theta-alpha (7–13 Hz) and beta oscillations
(13–25 Hz; Fig. 2e, f). The frequency and amplitude of oscillatory
modes captured by LPC showed statistical significance in
explaining MoCA scores in linear regression models where
theta-alpha oscillation frequency and beta oscillation amplitude
increased with MoCA scores (Fig. 2f, MoCA vs theta-alpha
oscillation frequency: β= 0.9, p value= 0.000009, MoCA vs beta
oscillation amplitude: β= 10.64, p value= 0.005). These were
consistent with the findings in our spectral power analyses where
we observed high MoCA correlations with increased beta power
and alpha/theta ratio (Fig. 2a, b). Thus, the LPC spectral profiling
illustrated the effectiveness of LEAPD for capturing spectral
changes in canonical brain rhythms.
Correlations between MoCA score and the combined LEAPD

index were remarkably high (rho= 0.68, p value < 0.001) across all
cross-validation schemes (±0.016; Table 2; Supplementary Table 1).
MoCA score correlations with LEAPD indices were two times
higher and significantly stronger than those from spectral analyses
(LEAPD vs. beta power from P4: z=−4.4, p value= <0.001;
rho= 0.68 vs. 0.37). MOCA and LEAPD index correlations were also
twice as high as the highest previously reported MoCA correlation
achieved by EEG features in PD24. Correlations with MoCA scores
were similar (rho= 0.66 ± 0.024) for participants with PD alone,
but lower in control participants (rho= 0.46 ± 0.006; Table 2;
Supplementary Table 1). For both PD patients and control
participants, the relationship between LEAPD index and MoCA
score remained reliable when accounting for sex, UPDRS III,
disease duration, LEDD, age, and GDS with linear models (PD:
F(1,91)= 63.9, p value < 4 × 10−12, partial η2= 0.28, n= 100;
Control (sex, age, and GDS only): F(1,44)= 25.3, p value < 9 × 10−6,
partial η2= 0.34, n= 49) or with Spearman partial correlations (PD:
rho ≥ 0.69, p value < 3 × 10−15 for all factors; Control: rho ≥ 0.47, p
value < 9 × 10−4 for sex, age and GDS). During the randomization
test where we shuffled MoCA scores among all participants, MoCA
correlations obtained by LEAPD were very low and not statistically
significant (rho= 0.02, p value= 0.77; Supplementary Table 2). In

the out-of-sample test dataset (32 PD, Table 1), combined LEAPD
index achieved a high correlation with MoCA score (rho= 0.68, p
value < 0.001, Table 2) providing strong external validation of
LEAPD performance. While we presented correlation results using
Spearman’s rho, we observed similar results with Pearson
correlation. However, the bounded non-gaussian feature of LEAPD
scores made Spearman’s rho a more robust measure of
correlations compared to Pearson’s34,35.
To further explore the relationship between the combined

LEAPD indices and MoCA scores, we used regression analyses.
Both linear and quadratic regression models for the combined
LEAPD index and MoCA scores were statistically significant (linear
and quadratic p values < 0.001; Fig. 3a; Table 2; Supplementary
Table 1). In the cross-validation schemes conducted with 149
participants, R2 increased by 7% from linear to quadratic
regression (quadratic: 0.46 ± 0.018; linear: 0.39 ± 0.016; Table 2,
Supplementary Table 1), and the quadratic model provided
significantly stronger fit compared to the linear model (likelihood
ratio test with leave-one-out cross-validation; p value < 0.001).
Regression models achieved higher R2 for PD participants
compared to control participants (Table 2). No statistically
significant effect of PD was observed after including it in the
linear model as a random effect (mixed-effect vs. no-effect: p
value= 0.35; Fig. 3a). The same conclusion was obtained for
quadratic regression (mixed-effect vs. no-effect: p value= 0.98).
Regression models for MoCA-shuffled data were not statistically
significant (Supplementary Table 2). In the out-of-sample dataset
(32 PD participants) both linear and quadratic regression were also
statistically significant (linear and quadratic p values < 0.001; Fig.
3a; Table 2). However, quadratic regression did not show any
improvement over linear regression (likelihood ratio test; p
value < 0.86). No additional assumptions were made during the
regression analyses. These data suggest a relationship between
the combined LEAPD index and MoCA scores that is statistically
independent of PD, and that the algorithm might be triggered by
aspects of the EEG signals related to cognitive status, irrespective
of PD.
We also correlated EEG spectral power in canonical bands with

cognitive scores from the NIH-Toolbox (Supplementary Fig. 1).
Alpha and beta power correlated with PVT scores in the parietal
region with the highest correlation of 0.24 (beta power at CP3, p
value < 0.005). PCPST, PSMT, and DCCST scores correlated with
decreased theta and increased beta power with the highest
correlation of −0.29 (theta power at C6, p value < 0.001), −0.30
(theta power at T8, p value < 0.001), and 0.23 (beta power at PO8,
p value < 0.001) respectively. Alpha, beta, and gamma power
showed significant correlations with FICAT scores with the highest
correlation of 0.36 (beta power at P4, p value < 0.001). There were
variations in the EEG spectral power dynamics and their locations

Fig. 2 EEG feature analysis and parameter choice. Topographic plots of age-adjusted Spearman’s rho correlation between MoCA scores and
a traditional frequency bands, b Log-spectral ratio of alpha (8–13 Hz) and theta (4–8 Hz) rhythm. Electrodes marked as white signifies a
statistically significant correlation (p value < 0.05). c Topographic plot of correlations between single-electrode LEAPD indices and MoCA
scores during parameter selection for combined LEAPD index using 10-fold single-round cross-validation with the 149 participants (Table 1).
Selected electrodes are marked as white. These were utilized across all participants in performance evaluations and analyses except the
robustness performance of LEAPD. d Optimal frequency ranges that resulted in the maximum correlation between MoCA and LEAPD in a
single-round 10-fold cross-validation during the parameter optimization of LEAPD at selected EEG electrodes. Vertical color blocks represent
canonical frequency bands. e Comparison of spectral densities between cognitively impaired (red) and cognitively normal (blue) groups from
single-electrode (P8) raw EEG data (top) and EEG-encoded linear predictive coding (LPC) models (bottom) capturing unique spectral profiles
with dominant oscillations in theta-alpha (7–13 Hz) and beta rhythms. EEG data were bandpass filtered (2–29 Hz) before the encoding and LPC
order was 7. Thick lines show mean spectral densities; lighter lines are individual spectral densities, and shaded areas show the standard error
of the mean. The arrows mark the directions of the shifts of the spectral peaks from cognitive impairment to normal cognition. f Frequencies
and amplitudes of the oscillatory modes captured by LPC in panel e vary with MoCA scores in a statistically significant manner: 3D scatter
plots (left) of theta-alpha (7−13 Hz) and beta oscillations (13–25 Hz) captured by LPC with MoCA scores (z axes) in oscillation frequency (Hz)
and amplitude (a.u.). Each dot represents data from one participant and is colored according to MoCA (color bar; right). The 2D scatter plots
(right) show linear regression models where theta-alpha oscillation frequency and beta oscillation amplitude increase with MoCA scores. Data
in all panels are from 149 participants (Table 1).
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for these cognitive tests which could be due to the specific
aspects of cognition measured by these tests (Flanker: measure of
inhibitory control, DCCST: cognitive flexibility, PSMT: episodic
memory, etc.) as dynamic changes in EEG power spectral during
these cognitive tests can be different23. In contrast to canonical
spectral powers, the combined LEAPD index showed high
correlations with the cognitive scores across all cross-validations
(rho in PVT: 0.64 ± 0.01, PCPST: 0.58 ± 0.004, DCCST: 0.68 ± 0.02,
FICAT: 0.61 ± 0.01, PSMT: 0.56 ± 0.007; Table 2, Supplementary
Table 1, Supplementary Fig. 2). No statistically significant
correlation was found between LEAPD and NIH-Toolbox cognitive
scores in the randomization test for all participants (Supplemen-
tary Table 2). Taken together, these data demonstrate that LEAPD
index could strongly correlate with cognition in PD.

Detection of cognitive impairment
For all 149 participants during cross-validations, LEAPD classified
cognitive impairment and normal cognition with 0.90 ± 0.01 AUC
(area under the receiver operating curve), 80.44 ± 0.55% classifier
accuracy, 79.52 ± 0.65% sensitivity, and 81.14 ± 0.99% specificity
across all cross-validation schemes (Fig. 3b–d; Table 2; rank-sum
test on LEAPD scores for cognitive impairment vs. cognitively
normal group: p value < 0.001) while the top-performing tradi-
tional spectral features yielded moderate AUC (alpha-theta ratio:
0.68; beta power: 0.63; electrode P4; Fig. 3c). In PD participants
only, LEAPD performance was similar to the case of all participants
(0.90 ± 0.01 AUC, 78.90 ± 0.09% classifier accuracy, 82.62 ± 0.55%
sensitivity, and 74.70 ± 0.58% specificity). This classification of PD-

related cognitive impairment was stronger than previous studies
(AUC was 17.6% higher)36. For control participants only, LEAPD
demonstrated higher classifier accuracy and specificity
(83.59 ± 1.87% classifier accuracy, 89.11 ± 2.03% specificity), but
lower AUC and sensitivity (0.85 ± 0.02 AUC, 64.55 ± 1.82%
sensitivity). In the randomization test with MOCA-shuffled data,
the results were close to chance (50.34% classifier accuracy, 0.49
AUC, p value= 0.86; Supplementary Table 2). Finally, we checked
the potential effects of the group sizes by subsampling the
dataset of 149 participants (Table 1) with equal numbers of
cognitively impaired and cognitively normal participants in leave-
one-out cross-validation which provided similar performances
(0.91 ± 0.02 AUC, 79.70 ± 2.79% classifier accuracy, 79.60 ± 3.50%
sensitivity, and 79.80 ± 2.90% specificity; Supplementary Fig. 3) to
the cross-validation performance for all 149 participants (Table 2).
Finally, in the external validation test with 32 PD participants,
LEAPD achieved similar performances in AUC and accuracy (0.92
AUC, 71.88% classifier accuracy; Table 2, Fig. 3b–d) but showed
lower sensitivity and higher specificity (50% sensitivity, 100%
specificity) compared to the performance in the data of 149
participants. This indicates that potentially a ROC-based classifica-
tion threshold in LEAPD could perform better in larger datasets.

LEAPD robustness
To investigate the robustness of LEAPD, we examined how
correlation and classification performances vary with the number
of electrodes (1–60, Supplementary Video 1; see Methods). The
correlation of the combined LEAPD index with MoCA score and

Table 2. Performance summary of LEAPD.

Leave-one-out cross-validation1 (n= 149) Out-of-sample test2 (n= 32)

All 149 participants 100 PD only 49 Controls only All participants (32 PD)

Spearman’s-rho correlation with cognitive
measures

MoCA 0.70*** 0.69*** 0.47*** 0.68***

NIH PVT 0.66*** 0.71*** 0.55*** -

NIH PCPST 0.59*** 0.57*** 0.15 -

NIH DCCST 0.70*** 0.72*** 0.68*** -

NIH FICAT 0.62*** 0.61*** 0.48*** -

NIH PSMT 0.57*** 0.55*** 0.02 -

Linear regression model for MoCA R2 0.40 0.37 0.34 0.46

RMSE 0.12 0.12 0.11 0.09

F-statistic 99.07*** 58.79*** 24.60*** 25.79***

AIC −209.14 −135.38 −77.79 −57.29

Quadratic regression model for MoCA R2 0.48 0.47 0.38 0.46

RMSE 0.11 0.11 0.10 0.09

F-statistic 66.06*** 42.49*** 14.23*** 12.49***

AIC −226.40 −149.31 −78.76 −55.32

Detection of MoCA-based cognitive impairment Accuracy % 79.87 79.00 81.63 71.88

AUC % 0.91 0.91 0.88 0.92

Sensitivity % 79.69 83.02 63.64 50

Specificity % 80.00 74.47 86.84 100

PPV % 75.00 78.57 58.33 100

NPV % 83.95 79.55 89.19 60.87

Odds ratio 15.30 13.77 10.73 -

PD Parkinson’s disease, RMSE root-mean squared error, AUC Area under the receiver operating characteristic curve, AIC Akaike information criterion, PPV
positive predictive value, NPV negative predictive value, MoCA Montreal Cognitive Assessment, NIH National Institutes of Health, PVT Picture vocabulary test,
FICAT Flanker inhibitory control and attention test, DCCST dimensional change card sorting test, PCPST pattern comparison processing speed test, PSMT picture
sequence memory test. For the regression models, p values show the statistical significance of the predictor variable (combined LEAPD index). In all cases, p
value < 0.001***.
1using data from 149 participants (Table 1).
2using external validation data from 32 Parkinson’s disease participants (Table 1).
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the AUC of cognitive classification both reached their respective
maximums with 51 electrodes while the maximum classifier
accuracy was achieved with 16 electrodes (Fig. 3e). However, with
more than 10 electrodes, improvements in correlation, AUC, and
classifier accuracy were marginal. In addition, we investigated the

robustness of the LEAPD approach by using truncation analysis to
quantify the effect of EEG signal length (i.e., duration of EEG data)
on performance. During data truncation with 10% of the data,
LEAPD achieved an AUC of 0.65 (Avg. EEG length= 16 seconds;
rho= 0.33, 65.77% classifier accuracy; Fig. 3e). With 40% of the
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Fig. 3 Performance evaluation of LEAPD. a Scatter plot for linear regression models between MoCA and combined LEAPD indices for all 149
participants (top left; Table 1), Parkinson’s disease-only (top right; n= 100), and controls (bottom left; n= 49) during LOOCV and for 32 out-of-
sample PD participants (bottom right; Table 1). All models were statistically significant (Table 2). b Violin plots of combined LEAPD indices (y
axis) for cognitively impaired (red) and cognitively normal (blue) participants during LOOCV with 149 participants (Table 1) before (left) and
after MoCA score shuffling among participants (middle) and during out-of-sample test with 32 PD (right). The green dotted line represents the
detection cutoff (value= 0.5). In all cases, *** indicates group-level rank-sum test p value < 0.001. c Receiver operative characteristic (ROC)
curve for LEAPD in various cross-validations as well as in shuffled MoCA data (solid black), and for the top-performing traditional spectral
features (dashed lines; beta power and alpha/theta log ratio at P4) in data from 149 participants. In addition, ROC performance in out-of-
sample test with 32 PD was compared (red). d Classification performances of LEAPD with confusion matrices for 149 participants during
LOOCV (top) and 32 PD participants (bottom) during out-of-sample test. e Robustness of LEAPD performance: Spearman’s rho correlation with
MoCA scores (blue), classifier accuracy (yellow), and AUC (red) performance of LEAPD while varying the number of EEG electrodes utilized for
the combined LEAPD index (top). The x axis is the number of EEG electrodes utilized, and the y axis is the metric (AUC, classifier accuracy, or
Spearman’s rho value). LEAPD performance in terms of correlation with MoCA (blue), classifier accuracy (yellow), and AUC (red) while
truncating the dataset (bottom). The x axis is the size of the dataset after truncation compared to the original size in percentage. Data in panel
e from 149 participants (Table 1). PD Parkinson’s disease, LOOCV leave-one-out cross-validation, CV cross-validation.
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data, it achieved 0.75 AUC (Avg. EEG length= 1minute; rho= 0.5,
and 72.48% classifier accuracy). The results during data truncation
show a gradual increase in performance indicating that the
algorithm might benefit from longer EEG recordings. Perfor-
mances of LEAPD in MoCA-shuffled data (randomization test)
during data truncation were not statistically significant
(45.57 ± 3.22% classifier accuracy, 0.44 ± 0.03 AUC,
rho=−0.07 ± 0.06). Taken together, these results indicate that
LEAPD can powerfully identify PD-related cognitive impairment
from a limited electrode montage and a few minutes of resting-
state EEG.

DISCUSSION
In this study, we hypothesized that broad-spectrum EEG activity
changes with cognition and capturing these changes can lead to
EEG-based cognitive measures. Our spectral analyses indicated
that EEG activities over multiple spectral rhythms correlate with
cognitive measures. We found that LEAPD, a data-driven machine
learning algorithm32, can efficiently capture EEG spectral profiles
for cognition and detect cognitive dysfunction both in PD and
control participants. Our data showed that by rapidly encoding
resting-state EEG data from eight electrodes, LEAPD can accurately
index cognitive function as measured by MoCA or by the cognitive
tests from the NIH toolbox. It also detected cognitive impairment
in control participants, performed consistently across multiple
cross-validation schemes, provided reliable performance during
data truncations, and showed no indication of overfitting in the
randomization tests. The lack of significant correlation between
LEAPD and cognitive tests with randomly shuffled cognitive scores
showed the dependency of LEAPD’s performance on capturing
the neurophysiological changes related to cognition. Finally, we
validated the performance of LEAPD on a separate out-of-sample
dataset of 32 PD participants. Thus, LEAPD can be useful for
finding efficient EEG-based biomarkers for cognitive impairment
in humans including individuals with PD.
Strong correlations of LEAPD-based cognitive indices with PVT,

DCCST, PCPST, PSMT, and FICAT scores in addition to MoCA
suggest that cognitive impairment involves dysfunction in cortical
networks that manifest in scalp EEG21,37 and that our approach is
sensitive to cognitive function across different domains. Although
various other measures have been used to assess cognitive
impairment via EEG37–39, to the best of our knowledge no other
technique has this level of accuracy, correlation in PD patients,
and computational efficiency. While LEAPD was useful in both PD
and demographically similar control participants, its lower
performance with control participants might be due to the limited
range of performance in this group with a small number of
cognitively impaired participants. At its core, LEAPD is a data-
driven method originally designed for detecting PD that captures
characteristic spectral EEG changes and has shown strong
performances in binary classification between data population
groups such as PD vs control, PD with vs without depression, and
depression with vs without PD with high accuracy7,32. This study is
an advance because we were able to modify LEAPD by changing
its training sub-groups and parameter selection metric for
designing EEG-based indexing of cognition which was highly
predictive of cognitive impairment as measured by MoCA and by
the NIH-Toolbox. LEAPD was able to provide cognitive markers in
both PD and control participants by rapidly capturing the EEG
spectral profiles while showing no significant effects of PD in the
detection of cognitive impairment. Furthermore, we rigorously
validated the performance of our approach using a separate
dataset in out-of-sample testing along with randomization and
robustness tests. Thus our findings represent highly validated
results. The effectiveness of LEAPD indices might lead to early
diagnosis of cognitive impairment in not only PD but also other

brain diseases that impair cognition that manifests through EEG
such as Dementia with Lewy bodies (DLB)21.
Although purely data-driven, the best-performing frequency

bands revealed by LEAPD showed neurophysiological significance
and correlation with cognitive measurements in previous studies.
Indeed, LEAPD may identify neurophysiological signatures of
cortical function that are linked to cognitive dysfunction. For
example, LEAPD spectral bands for MoCA correlation include theta
and delta rhythms which are predictive of MoCA scores, have
strong correlations with several cognitive measures, and reflect
high-level cognitive processes and mechanisms for cognitive
control24,26,29,40. Furthermore, changes in EEG activities related to
cognitive function can occur synchronously over multiple spectral
rhythms. In PD, delta-alpha coupling correlates with cognitive
measures26, and cue-related medial frontal delta-theta powers
correlate with cognitive function24,25,41. Abnormal delta and alpha
rhythms in the posterior brain regions can index the decline of
cognitive visuo-spatial function37. Furthermore, delta, theta, alpha,
and beta activities in EEG and their ratios reflect cognitive function
in PD22,36,41,42. While these changes in multiple EEG rhythms are
traditionally captured with spectral ratios which can correlate with
cognitive measures in PD27,28,30, these ratios are limited by the
predefined frequency ranges of the spectral bands. In contrast,
LEAPD is not strictly confined to the canonical rhythms and
captures simultaneous changes in multiple EEG frequencies by
extracting the spectral profile in a holistic fashion, which leads to
an efficient estimation of cognitive dysfunction. Furthermore,
LEAPD can reveal changes in the underlying oscillatory modes of
the EEG signal by utilizing LPC. Thus, unlike other machine
learning approaches where the mechanisms and features are not
well understood, LEAPD can provide insight into how markers for
cognition are detected and identified. In our study, the dominant
oscillations captured by LEAPD at central-parietal electrodes
indicated gradual shifts in theta-alpha (7–13 Hz) oscillation
frequency and beta oscillation amplitude with cognitive function
(Fig. 2e, f). Interestingly, spectral peak shifts of theta-alpha EEG
rhythms in posterior cortical regions can also predict dementia
development in PD38,43. Shifts of theta-alpha peak frequency with
cognition, as discovered by LEAPD (Fig. 2f), have also been
observed previously in PD20. This also explains the high correlation
achieved by alpha/theta log-spectral ratio in our study (rho= 0.36,
Fig. 2b) as well as in previous studies30. Theta rhythms can vary
with activity in the default mode network while alpha rhythms can
be higher during low arousal resting states and beta synchroniza-
tion occurs during the execution of cognitive tests23. These
demonstrated that in addition to spectral power, oscillations
represented by LPC and LEAPD can be utilized as a tool for
investigating cortical neurophysiology. Future studies will further
investigate the oscillatory modes captured by LEAPD over a wider
variety of participants with cognitive impairments (due to PD,
Alzheimer’s, DLB, etc.) for a better understanding of the under-
lying neurophysiological mechanisms. Finally, unlike prior stu-
dies23, we analyzed resting-state EEG activities that were not
influenced by the cognitive measurement procedures.
Neuropsychological testing has a key role in cognitive

neurology and can provide evidence-based diagnostic and
therapeutic guidance5,44. However, EEG-based cognitive markers
provided by LEAPD might be a useful complement to classical
neuropsychological tests in clinical scenarios where such detailed
testings are not feasible45, and by choosing candidates as a large-
scale screening and follow-up tool for further detailed testing
leading to a more feasible utilization of such valuable resources
and trained health professionals that are sometimes not
immediately available. Because LEAPD uses LPC to compress key
features of EEG spectra, it is computationally efficient and suitable
for real-time applications31,32. Indeed, after initialization and
LEAPD configuration, LPC vectors can be computed from any
new EEG data within seconds31. Applying a full montage of EEG
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electrodes and collecting high-quality resting-state data can take
~20minutes. However, in our study, LEAPD required eight
electrodes and performed reliably on EEG data which were
~3minutes long on average without any manual artifact cleaning.
In our out-of-sample test, these eight EEG electrodes showed
robust predictions of cognition on a separate dataset of 32 PD.
Thus, our findings may minimize the need for high-density scalp
EEG and suggest that LEAPD can be implemented in wearable EEG
devices46 which can facilitate EEG data acquisition time making it
suitable for broader implementations. LEAPD can capture EEG-
based cognitive markers within a few minutes and thus could
effectively identify the characteristic cognitive fluctuations of DLB
or PD dementia21,38. LEAPD can complement neuropsychological
testing because it is fast, repeatable, and independent from
patient-related factors such as fatigue and challenges such as
severe motor symptoms or dementia. Despite these data, EEG is
not without limitations, and future longitudinal studies are needed
to explore these practical aspects in detail. Furthermore,
combined with advanced therapies such as adaptive neurostimu-
lation with long-term wireless streaming of neural recordings47,
EEG-based assessment of cognitive function by LEAPD might help
design better feedback signals or select appropriate neurostimu-
lation settings. In addition, LEAPD might mitigate treatment-
related or stimulation-related cognitive side effects9.
Our study has several limitations. First, scalp EEG has poor

spatial resolution whereas MEG, fMRI, or intraoperative recording
studies might provide detailed spatial information about brain
activity, which could contribute to more accurate cognitive
measurements of LEAPD. Techniques such as MRI are also better
suited to capture cortical atrophy, which may affect EEG signals
contributing to LEAPD’s prediction of cognitive function. Despite
the poor spatial resolution, we chose EEG as it is widely available,
low-cost, and has shown promising results as a neurophysiological
marker compared to others including fMRI, SPECT, PET, and
neurophysiological tests in neurological conditions such as DLB21.
Second, MoCA-based classification (cutoff 26/30) for cognitive
impairment may not be as accurate as classification using Level II
testing for cognitive impairment in PD5. However, our primary
goal of this study was to index cognition using EEG that strongly
correlates with standard measures of cognition. Third, our study is
cross-sectional and represents a moderately sized convenience
sample and did not follow patients over time. Longitudinal studies
with larger cohorts with repeated measurements are needed to
determine the stability of LEAPD over time, the predictive value of
our EEG-based markers on cognitive outcomes, and their
usefulness in monitoring cognition in PD in clinical practice.
Fourth, our study was ON levodopa as usual, although our past
work indicates that levodopa does not change EEG spectra, and
our previous work showing levodopa differences was in rodent
striatal field potentials, which are vastly different than scalp
EEG31,48. We also did not collect data on the laterality of motor
symptoms, as this may play a role in cognition in PD49,50.
Furthermore, our control participants may not reflect the general
population. Lastly, we had a moderate-sized dataset and thus
evaluated the performance of LEAPD scores using cross-validation
schemes, commonly utilized in measuring diagnostic perfor-
mances51,52. Furthermore, we performed extensive k-fold cross-
validations for various k values with repetitions using independent
shuffling of the folds at subject-level for proper estimation of
model’s performance in a diagnostic scenario51,52. Performance
variations of LEAPD indices across these cross-validation schemes
were ≤2% (Table 2; Supplementary Table 1) and robustness
analyses showed stable performance. In addition, we trained
LEAPD on data with randomly shuffled cognitive scores and did
not find consistent results, suggesting that the correlations with
cognitive measures were not achieved through fitting noise or
data artifacts. Most importantly, we conducted external validation
with an out-of-sample dataset of 32 PD participants which showed

robust performance even on an independent and separately
acquired out-of-sample test. Despite these points, it is possible
that our LEAPD analyses overestimate the sensitivity and
specificity from routine EEG, and future studies will scale this
work to additional centers and conditions. However, to the best of
our knowledge, this is the only study to date where an external
dataset was utilized to validate the performance of a
cognitive index.
In summary, we found that LEAPD derived from resting-state

EEG can capture cognitive changes in PD. This could be useful as a
potential marker to infer cognitive impairment in PD as well as
other neurodegenerative diseases. Because LEAPD is scalable and
amenable to real-time applications, it also might inspire novel
feedback-based interventions or advanced neuromodulation
therapies targeted at cognition.

METHODS
Participants and cognitive measures
We recruited 100 PD participants from the Movement Disorders
Clinic at the University of Iowa, Iowa City between 2017 and 2022
(Table 1). A movement disorders physician diagnosed each
individual with PD according to the United Kingdom Brain Bank
criteria. All procedures were performed while participants were
taking their usual medications. Additionally, 49 demographically
matched controls without known neurological disease were
recruited from the general Iowa City community between 2017
and 2022 through the Seniors Together in Aging Research registry
(https://icts.uiowa.edu/star). We reported some of these data in
our previous studies but focused primarily on motor control,
cognitive control, or neuropsychiatric symptoms24,25,45. We also
recruited 32 new and independent PD participants from the
Aerobic Exercise in Parkinson’s Disease (NCT03808675) for our
prospective out-of-sample test (Table 1). The motor component of
the United Parkinson’s Disease Rating Scale and the MoCA scores
were administered by trained raters. Participants also completed
other clinical assessments of cognition, mood, and gait. The study
was approved by the University of Iowa Institutional Review Board
(protocol # 201707828). Written informed consent was provided
by all participants. We used MoCA to quantify cognitive condition
among participants as it is more sensitive to cognitive deteriora-
tion in PD12–14. We defined cognitive impairment as MoCA
scores < 26 and cognitively normal as MoCA scores 26–3010,15,33,53.
Among the 149 participants, 53 PD and 11 control participants
had MoCA-defined cognitive impairment (MoCA score <26). The
control participants with cognitive impairment had no pre-existing
neurological or psychiatric disease. The median MoCA score
among the 149 participants was 26, and the range for controls was
22–30 while the range for PD participants was 9–30. To assess
specific aspects of cognitive functioning, we used NIH-Toolbox, a
standardized computer-based neuropsychological screening bat-
tery11. Five tests from the NIH-Toolbox were administered to the
participants: Picture vocabulary test (PVT), Pattern comparison
processing speed test (PCPST), Dimensional change card sorting
test (DCCST), Flanker inhibitory control and attention test (FICAT),
and Picture sequence memory test (PSMT). The tests were
administered through iPads and extensive user directions were
provided by the examiner. In the out-of-sample dataset, 18 PD
participants had MoCA-defined cognitive impairment (range:
22–25), 14 participants had normal cognition (range: 26−30)
and the MoCA score (25.3 ± 2.5, n= 32) range among all 32 PD
participants was 22–30 (Table 1).
The goal of this study was to investigate LEAPD as an index for

PD-related cognitive impairment. To modify and optimize LEAPD
for MoCA, EEG recordings from the 149 participants were divided
into two groups: cognitively impaired participants (MoCA score
<26; n= 64; 53 PD, 11 control) and cognitively normal participants
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(MoCA score ≥ 26; n= 85; 47 PD; 38 control; Table 1). To optimize
training models for each of the cognitive tests from NIH-Toolbox,
all participants were similarly divided into two respective training
groups based on their scores (median as cutoff) while the
classification of normal cognition and cognitive impairment was
based on only MoCA scores. We chose medians as cut-offs for
constructing two balanced training groups for optimizing LEAPD.

EEG recordings
Resting-state EEG was collected from participants while they sat in
a quiet room with their eyes open to avoid drowsiness and the
posterior dominant rhythm. EEG data was recorded for a few
minutes ON dopaminergic medications, as usual, using a 64-
channel actiCAP and Brain Vision system (Brain Products GmbH)
with a 0.1-Hz high pass filter and a sampling frequency of 500 Hz
(Fig. 1a). Data from 60 electrodes were used for each participant
(Pz was the online reference; Iz, I1, and I2 were inconsistent
among the participants and were excluded). EEG time series data
from each electrode were normalized to maintain uniform
amplitude scaling across all electrodes. This was accomplished
by dividing each time series data by the square root of its total
energy. Additionally, line noise artifacts at 60 Hz, 180 Hz, and
200 Hz were eliminated in the frequency domain through the
application of FFT (Fast Fourier Transform). No further manual
inspection, cleaning, or artifact removal was conducted. On
average, EEG electrodes could be applied in ~20minutes, and
resting-state data can be acquired in ~10minutes.

LEAPD: EEG-based feature for cognition
LEAPD is a data-driven approach originally developed as an
efficient EEG-based marker that can reliably detect PD-related
changes in preclinical animal models as well as in humans. This
approach strongly outperformed prior methods for the detection
of PD and could detect depression in PD7,31,32. The key advance of
LEAPD is its encoding of EEG time series through LPC which has a
long history of compression, encoding, and modeling applications
in myoelectric signals, configurations of vocal tract, and speech
analysis54,55. Fundamentally, LPC fits EEG time series data into an
autoregressive model where each data sample can be estimated
by the weighted sum of the previous samples. These weights are
known as LPC coefficients55 (Fig. 1b). This results in the
compression of the power spectrum of EEG into a few LPC
coefficients and provides a highly efficient representation of the
EEG signal. Our previous studies showed that EEG data
represented in the high-dimensional space of these LPC
coefficients manifest clear geometric separation for PD and
control populations in the form of separate affine subspaces (a
generalization of high-dimensional planes)7,32. An important
advantage of LEAPD over other EEG analysis techniques is that
it efficiently captures the unique spectral profile by compressing
EEG oscillations into a few LPC parameters31,32,56 (Fig. 1c). To
navigate LEAPD for capturing spectral profiles in a certain
frequency band, EEG data are bandpass filtered before the
calculation of LPC coefficients (Fig. 1d).
In this study, we utilized LEAPD to capture cognitive function by

encoding EEG data using LPC and representing the encoded data
in the LPC coefficient space. Although LEAPD was developed for
binary classification, in this study our goal was to find an EEG-
based marker that correlates with continuous cognitive scores. For
this purpose, we utilized the geometric property of LPC coefficient
space to compute our LEAPD index, where we correlate with
clinical characteristics of PD by finding separate affine subspaces
in the LPC coefficient space for cognitively impaired and
cognitively normal participants (Fig. 1b). We hypothesized that
after encoding EEG into vectors of LPC coefficients, there are two
distinct affine subspaces—one for cognitive impairment and
another for normal cognition and the relative distance from these

affine subspaces (defined as the LEAPD index; Fig. 1b) highly
correlates with cognitive function and can detect cognitive
impairment. In summary, our goal was to generate an EEG-
based cognitive index by capturing spectral changes in EEG with
LPC (Fig. 1c) and then utilizing the geometric property of LPC
coefficient space through LEAPD (Fig. 1b). Single channel LEAPD
indices were calculated from individual electrodes and their
geometric means provided a combined LEAPD index (Fig. 1d).
LEAPD was originally designed to optimize its model parameters
for binary classification by maximizing classifier accuracy as a cost
function7,32. For this study, however, our main goal was to find an
EEG-based cognitive index. Accordingly, we utilized Spearman’s
rho correlation between LEAPD index and cognitive scores as the
new cost function. This modification along with our sub-grouping
of training data based on cognitive scores enabled us to utilize
and direct LEAPD to identify specific spectral changes in EEG
related primarily to cognitive function (as opposed to depression
or PD diagnosis7,32) in a data-driven manner. We utilized EEG data
from 149 participants (Table 1) and a single-round of 10-fold cross-
validation for optimizing LEAPD using our new cost function. Once
optimized, these parameters were kept unchanged for all analyses
and performance evaluations across all participants except in
robustness evaluation, where we varied the total number of
electrodes. After optimizing the LEAPD parameters, we utilized the
data from 149 participants (Table 1), applied several cross-
validation schemes, and performed randomization tests by
randomly shuffling cognitive scores among participants before
using leave-one-out cross-validation to evaluate performance (Fig.
1e). Finally, we conducted a prospective out-of-sample test by
calculating the LEAPD index for a separate dataset of 32 PD
participants and compared its performance in terms of MoCA
score correlation and detection of MoCA-based cognitive impair-
ment (Fig. 1e, Table 1).

LEAPD: theoretical framework for indexing cognition
The core aspect of LEAPD is encoding EEG data using LPC which
rapidly encodes EEG time series by modeling each EEG data using
preceding samples. The number of preceding samples used to
model EEG data (the LPC order) dictates the level of detail
captured for spectral profiles (total number of oscillations used for
profiling spectral power). Fundamentally, LPC fits an autoregres-
sive model to a time series. Suppose one has a time series with N
samples: x 0ð Þ; x 1ð Þ; ¼ :x N � 1ð Þ. Then, in K-th order LPC model,
xðnÞ is approximated by n preceding data samples

x nð Þ ¼ ϵ nð Þ �
XK
i¼1

aix n� ið Þ (1)

where aiði ¼ 1; 2; ¼ KÞ are the K model parameters which are
also known as LPC coefficients and ϵðnÞ is the LPC model’s
prediction error. Thus, given an EEG time series
x 0ð Þ; x 1ð Þ; ¼ :x N � 1ð Þ with N samples, LPC of order K generates
K number of LPC coefficients, (a1; a2; ::; aK Þ. These LPC coefficients
(model parameters) represent a compressed encoding of the EEG
time series. The LPC vectors were created using the LPC
coefficients ða ¼ a1; a2 ¼ aK½ �T Þ in the LEAPD approach. After
representing EEG data in the multidimensional space of these
model parameters (LPC coefficient space with K dimensions),
separate distinct affine subspaces (with < K dimensions) are
formed by data from cognitively impaired and cognitively normal
participants. In our study, LEAPD is defined by the ratio of the
distances from these affine subspaces such that it highly
correlates with cognitive function and can detect cognitive
impairment.
Principal component analysis (PCA) was used to identify these

affine subspaces for each EEG electrode, and each single-
electrode LEAPD index was calculated by taking the normalized
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ratio of distances from these affine subspaces. The number of
principal components dictates the dimension of the affine
subspaces. In particular, suppose the LPC order is K (K-dimen-
sional LPC coefficient space) and the number of desired principal
components is n (affine subspaces are n-dimensional; n< K).
Assuming that there is a total S number of participants with
normal cognition (high cognitive scores) and with cognitive
impairment (low cognitive scores) in the training dataset, the set
for the vectors of LPC coefficients from S cognitively impaired
subjects is V1 with a dimension of S ´ K . The ith row of V1 is the
LPC vector a1;i ;i 2 f1; 2; ::; Sg for ith subject with cognitive
impairment. Similarly, let V2 be the set for the vectors of LPC
coefficients from S subjects with normal cognition where the ith

row of V2 is the feature vector a2;i ;i 2 f1; 2; ::; Sg for the ith

subject. Let m1 2 R1 ´ K and m2 2 R1 ´ K be the bias vectors of V1
and V2 respectively where each element mc;i is the mean of the ith

column of Vc where c 2 f1; 2g. Now, let W1 and W2 be the scaled
and unbiased form of V1 and V2. Therefore,

Wc ¼ Vc � Dc Qð ÞTffiffiffiffiffiffiffiffiffiffiffi
S� 1

p ; c 2 f1; 2g (2)

Dc ¼
mc;1 � � � 0

..

. . .
. ..

.

0 � � � mc;K

2
664

3
775; c 2 1; 2f g (3)

and Q 2 RK ´ S with Qij ¼ 18i; j. Finally, by performing singular
value decomposition on W1 and W2 we get,

Wc ¼ UcΣcP
T
c ; c 2 1; 2f g (4)

where the matrices Uc; Pc; c 2 f1; 2g are left and right matrices
with orthonormal basis vectors and Σ1 and Σ2 are diagonal
matrices containing the singular values of W1 and W2. Thus, the
basis vectors forming n-dimensional affine subspace for cognitive
impairment are the first n columns of P1 corresponding to the n
most significant singular values. We denote these orthonormal
vectors by p1;1; p1;2; � � � ; p1;n. Similarly, from P2 we can obtain the
n orthonormal basis vectors for the affine subspace for normal
cognition which are denoted by p2;1; ; p2;2; � � � ; p2;n. Now, suppose
the vector of LPC coefficients from a new participant is a. Then,
LEAPD determines the normalized distance D1 and D2 from point
a to the respective affine subspaces for cognitive impairment and
normal cognition. These distances are calculated by:

Dc ¼
����ða�mcÞ �

Xn
i¼1

pTc;iða�mcÞ
pTc;ipc;i

pc;i

����
2

; c 2 1; 2f g: (5)

Finally, the LEAPD index (ρ) was calculated by taking the ratio of
these normalized distances:

ρ ¼ D2

D2 þ D1
: (6)

LEAPD indices (ρ) ranged between 0 and 1, with high values
corresponding to high cognitive scores. In particular, if ρ<0:5, then
the vector a is closer to the subspace with cognitive impairment,
and when ρ>0:5, it is closer to the subspace for normal cognition.
We specified a LEAPD index value threshold of <0.5 to represent
cognitive impairment which was determined principally by the
relative distances from the affine subspaces of normal cognition
and cognitive impairment. Before calculating the index, a zero
phase, 6th order, Butterworth bandpass filter was applied to
control the frequency region of the spectral profiling. After
independently obtaining the single-electrode LEAPD index from
multiple EEG electrodes, the indices were combined using their
geometric mean to obtain a combined LEAPD index. In particular,
after obtaining single-electrode LEAPD indices from L electrodes
ρi; i 2 f1; 2; ¼ ; Lg, they were combined into a combined LEAPD

index using geometric mean:

ρcombined ¼
YL
i¼1

ρi

 !1
L

: (7)

To optimize cognitively impaired and cognitively normal
affine subspaces for achieving maximum correlation between
LEAPD index and cognitive measures, we explored four key
parameters of LEAPD: (1) frequency range of the bandpass filter
between 2 and 34 Hz, (2) order of LPC between 2 and 10, (3)
affine subspace dimensions, and (4) optimal EEG electrodes for
the combined LEAPD index. The first three parameters were
optimized for each EEG electrode by conducting an exhaustive
search and maximizing Spearman’s rho correlation of the
single-electrode LEAPD indices with cognitive scores using a
single round of 10-fold cross-validation. After optimizing these
three parameters for all EEG electrodes, we selected the optimal
EEG electrodes based on their best individual performance
during the exhaustive search. We utilized EEG data from 149
participants (Table 1) for these optimizations. Once these
parameters were determined, we kept them unchanged for all
analyses and performance evaluations across all participants
except the robustness performance, where we varied the total
number of electrodes.
Similarly to the MoCA score, utilizing LEAPD for cognitive tests

from NIH-Toolbox was achieved by identifying affine subspaces
for high cognitive scores and low cognitive scores. For each of the
cognitive tests from NIH-Toolbox, the median of the cognitive
scores across all participants was used as a cutoff to divide
participants into high and low-score cognitive groups.

Performance evaluation
We calculated spectral power in the delta (1−4 Hz), theta
(4−8 Hz), alpha (8−13 Hz), beta (13−30 Hz), and gamma
(31−100 Hz) bands for our traditional EEG spectral analyses using
the EEG data from 149 participants (Table 1). The spectral powers
were calculated for each participant using all individual EEG
electrodes. There were 300 spectral features for each participant
and 44,700 measurements from the whole dataset, with the
dimensions of 5 bands × 149 participants × 60 electrodes. We also
calculated the log-spectral ratio of alpha and theta band power.
We calculated age-adjusted partial Spearman’s rho correlations
between cognitive scores and these spectral features which we
compared with the correlation between the cognitive score and
the combined LEAPD index.
LEAPD performance was quantified using non-parametric

Age-adjusted Spearman’s rho partial correlation. To further
explore LEAPD’s relationship with MoCA, we used regression
analysis, in which we considered linear and quadratic models.
We inspected 4 metrics during regression: R2; root-mean-square
error of the combined LEAPD index (RMSE); F-test on the
regression model (F-statistic) and Akaike information criterion
(AIC). To quantify classification results, we used sensitivity,
specificity, classifier accuracy rate, area under the receiver
operating characteristic curve (AUC), positive predictive value
(PPV), negative predictive value (NPV), and odds ratio. To
validate our results, we utilized EEG data from 149 participants
(Table 1) and performed leave-one-out cross-validations using
all participants with 1) their true cognitive scores and 2) after
randomly shuffling cognitive scores among participants (rando-
mization test). We also performed 5-fold and 10-fold cross-
validations in 100 independent rounds of data shuffling. Finally,
we conducted an external validation of the LEAPD performance
for MoCA score with a prospective out-of-sample test dataset of
32 PD patients (Table 1). LEAPD parameters derived from our
dataset of 149 participants in Table 1 were kept unchanged. In
the testing phase, we calculated the LEAPD index for the 32 new
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and separately collected test PD participants and evaluated the
performance in correlation with MoCA scores and MoCA-based
cognitive impairment classification.
To investigate how the total number of selected EEG

electrodes for the combined LEAPD index influenced perfor-
mance, we utilized EEG data from 149 participants (Table 1),
performed the leave-one-out cross-validation, and calculated
Spearman’s rho correlation coefficient, classifier accuracy rate,
and AUC. The electrodes were selected based on the order (high
to low) of their individual single-electrode LEAPD performances
of MoCA correlations (Fig. 2c). For investigating the robustness
of the LEAPD approach in truncation analysis, we started with
the full EEG dataset of 149 participants (average EEG length:
2.7 min; n= 149; Table 1), gradually truncated the dataset up to
10% with 5% increments, and quantified performance for each
case using leave-one-out cross-validation. Truncation was
applied to the EEG data from all 149 participants (Table 1)
starting from the end of the EEG recordings. We repeated the
same procedure to the MoCA-shuffled dataset and compared
the performance.

Statistical analysis
As the distribution of the bounded LEAPD index is non-gaussian,
we utilized the Spearman (rank) partial correlation method
(‘partialcorr’ function in Matlab and ‘pcor’ command in R)
controlling for the participants’ age to measure correlation while
accounting for group-level age differences (Table 1)34,35. Two-
sided non-parametric Wilcoxon rank-sum tests were performed to
measure group-level differences. We included potentially con-
founding factors such as sex, L-dopa equivalent daily dose
(LEDD), age, disease duration, Unified Parkinson’s Disease Rating
Scale part III (UPDRS III), and patients’ geriatric depression scale
(GDS) by incorporating these variables in a linear model (lm in R)
along with MoCA scores and LEAPD indices obtained through
leave-one-out cross-validation. We reported F-statistics from
Analyses of variance (ANOVA; anova in R) and the effect sizes
were calculated via partial eta squared (etaSquared in R).
Sensitivity analyses were further conducted using Spearman
partial correlation (pcor.test in R) between LEAPD and MoCA,
controlling for sex, age, and GDS in all participants, as well as
LEDD, UPDRS III, and disease duration in PD patients. We also
tested whether PD had any statistically significant impact on the
correlation between the combined LEAPD index and MoCA score
using linear mixed-effect models. To compare regression models,
we used the likelihood ratio test. All statistical procedures were
performed using MATLAB 2021b and R (version 4.1.2). All data
and statistical analyses were reviewed by the Biostatistics and
Research Design Core in the Institute for Clinical and Translational
Science at the University of Iowa.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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