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Expanding causal genes for Parkinson’s disease via
multi-omics analysis
Xiao-Jing Gu1,6, Wei-Ming Su2,6, Meng Dou3, Zheng Jiang2, Qing-Qing Duan2, Kang-Fu Yin2, Bei Cao2, Yi Wang4, Guo-Bo Li5 and
Yong-Ping Chen 2✉

Genome‑wide association studies (GWASs) have revealed numerous loci associated with Parkinson’s disease (PD). However, some
potential causal/risk genes were still not revealed and no etiological therapies are available. To find potential causal genes and
explore genetically supported drug targets for PD is urgent. By integrating the expression quantitative trait loci (eQTL) and protein
quantitative trait loci (pQTL) datasets from multiple tissues (blood, cerebrospinal fluid (CSF) and brain) and PD GWAS summary
statistics, a pipeline combing Mendelian randomization (MR), Steiger filtering analysis, Bayesian colocalization, fine mapping,
Protein-protein network and enrichment analysis were applied to identify potential causal genes for PD. As a result, GPNMB
displayed a robust causal role for PD at the protein level in the blood, CSF and brain, and transcriptional level in the brain, while the
protective role of CD38 (in brain pQTL and eQTL) was also identified. We also found inconsistent roles of DGKQ on PD between
protein and mRNA levels. Another 9 proteins (CTSB, ARSA, SEC23IP, CD84, ENTPD1, FCGR2B, BAG3, SNCA, FCGR2A) were associated
with the risk for PD based on only a single pQTL after multiple corrections. We also identified some proteins’ interactions with
known PD causative genes and therapeutic targets. In conclusion, this study suggested GPNMB, CD38, and DGKQ may act in the
pathogenesis of PD, but whether the other proteins involved in PD needs more evidence. These findings would help to uncover the
genes underlying PD and prioritize targets for future therapeutic interventions.
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INTRODUCTION
Parkinson’s disease (PD) is the second most common progressive
neurodegenerative disease, and a large proportion of the global
health burden worldwide with aging, which is pathologically
characterized by early prominent death of dopaminergic neurons
in the substantia nigra pars compacta1. Although tremendous
efforts, including understanding the nature of and relieving the
symptoms, have been made, knowledge of disease mechanisms is
still limited and no etiological therapies are available2,3.
The combination of genetic factors, environmental factors, and

aging has contributed to the complex etiology of PD4. Among
them, genetic factors have been proven to play a prominent role
in the pathogenesis of PD. On the one hand, from the perspective
of causative genes, rare variants in more than 20 genes have been
reported to cause PD5–7. On the other, over 90 common variants
identified are associated with PD risk, or modified phenotypes,
such as age at onset, or progression via genome-wide association
studies (GWASs)8. In the current study, we proposed to identify
causal genes driving the genetic risk of PD with GWAS summary
statistics.
Recent research has proposed gene expression quantitative

trait loci (eQTL) or protein quantitative trait loci (pQTL) as
functional intermediates to investigate the underlying biological
mechanisms of genetics on neurodegenerative disorders9–11.
eQTL and pQTL are the important multiple omics integration
data to uncover genetic variants that explain variations in gene
and protein expression levels. The measurement of these markers
could reflect an individual’s health status and potentially provide
novel insights into the effects of diseases. Monitoring expression

changes of downstream genes and proteins is also critical for
developing potential drug targets. Mendelian randomization (MR)
is a genetic method that utilizes genetic variants to address causal
questions about how modifiable exposures influence different
outcomes12. It has been widely used in exploring the etiologies of
complex diseases. Likewise, suppose we choose the single
nucleotide polymorphisms (SNPs) associated with eQTL or pQTL
as instrumental variables (IVs), in that case, we can infer the direct
causal effect of the gene expression or protein level on PD, which
will help discover the novel risk genes and the pathogenesis, and
develop therapeutics based on gene targets since drugs with
genetic support are more likely to succeed in clinical trials13,14.
Recent two studies analyzed the druggable genome in PD,

mainly based on eQTL in blood and brain tissue15, or pQTL in
blood16. Another study performed MR analysis of a genomic atlas
based on pQTL in the brain, cerebrospinal fluid (CSF), and plasma
to identify risk genes for PD17. Although genetic data from brain
samples is optimal for research into neurodegenerative diseases,
peripheral blood is deemed as a reasonable surrogate that avoids
several limitations related to postmortem brain tissue18. Mean-
while, integrated analysis for multi-omics from multi-tissues would
reduce the effect of false-positive or false-negative genetic data
from single-omics or single tissues. Hence, in the current study, we
applied a pipeline combing MR design, Steiger filtering analysis,
Bayesian colocalization analysis, fine mapping and enrichment
analysis to explore the novel causal genes for PD with eQTL and
pQTL datasets from the human brain, CSF and blood; moreover,
we also evaluated the safety of potential therapeutic targets,
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which could further provide the genetically-supported drug
targets for managing PD.

RESULTS
Proteins causally associated with PD in the brain
MR analysis of brain dorsolateral prefrontal cortex (dlPFC) pQTLs
identified six genetically determined significant proteins on PD
after multiple testing corrections (P < 8.55E-05 (0.05/585)). Speci-
fically, the increased abundance of 3 proteins was significantly
associated with an increased risk of PD, including GPNMB
(OR:1.464, 95%CI: 1.280–1.675, P= 2.48E-08), SEC23IP (OR:7.880,
95%CI: 3.020–20.559, P= 2.45E-05) and ARSA (OR: 1.938,95%
CI:1.394–2.696, P= 8.37E-05), while the increased protein abun-
dance of the other 3 genes was significantly associated with a
decreased risk of PD, namely CD38 (OR:0.319, 95%CI:0.237–0.431,
P= 6.99E-14), DGKQ (OR:0.136 95%CI:0.071–0.261, P= 1.97E-09),
and CTSB (OR:0.300, 95%CI: 0.092–0.433, P= 4.39E-05). Moreover,
Steiger filtering analysis indicated the true causality (Table 1). After
colocalization analysis, all five proteins, except for CTSB, shared a
single variant with PD with PPH4 > 80% (Table 1). In addition,
another 48 proteins met the suggestive differential expression by
MR analysis (P < 0.05; Supplementary Table 1). Moreover, ARSA
(OR:1.865, 95%CI:1.332–2.611, P= 2.86E-04) and CTSB (OR:0.279,
95%CI:0.145–0.460, P= 1.44E-04) were also validated to be causal
genes for PD using Banner’s pQTL dataset.
To provide an additional layer of insight into our identified

genes at the protein level, we wondered whether the mRNA levels
of those significant genes were also relevant to the risk for PD
using the eQTL from human brain tissue (Supplementary Table 2).
Notably, the causal effect of 2 genes, namely GPNMB and CD38,
were replicated in the MR analysis and displayed the same
direction of causal effect as in the pQTL (GPNMB: OR:1.465,
P= 2.48E-08; CD38: OR:0.499, P= 1.20E-13), and also passed both
the colocalization and Steiger filtering analysis (Table 1).
Furthermore, at the brain eQTL level, 25 additional protein-
coding genes, showed robust evidence for association with the
risk for PD ((P < 0.05/8033, Supplementary Table 2). Interestingly,
among them, 2 well-known genes, MAPT (OR:1.76, P= 6.89E-21)
and LRRK2 (OR:6.62, P= 3.16E-08) were identified to increase PD
risk19,20. However, eQTL of the other 3 genes (ARSA, DGKQ and
CTSB) only showed supportive evidence for their causal role in PD
(0.05/8033 <P < 0.05). Moreover, GPNMB (OR:0.898, 95% CI:
0.864–0.932, P= 1.16E-08) and CD38 (OR:1.256, 95%
CI:1.182–1.335, P= 1.50E-13) were also validated to be causal
genes for PD using another eQTL dataset.

Proteins causally associated with PD in CSF
After multiple testing corrections (P < 0.05/585), the MR analysis
identified 5 proteins in the CSF which had causal effects on PD
(Table 1). Specifically, the increased abundance of 3 proteins was
significantly associated with an increased risk of PD, namely
ENTPD1 (OR:26.240, 95%CI:8.246–83.500, P= 3.16E-08), GPNMB
(OR:2.368, 95%CI:1.167–3.305, P= 3.95E-07) and FCGR2B
(OR:1.346, 95%CI:1.163–1.557, P= 6.63E-05), while the increased
abundance of 3 proteins was significantly associated with a
decreased risk of PD, namely CTSB (OR:0.191, 95%CI:0.089–0.410,
P= 2.19E-05) and CD84 (OR:0.053,95%CI:0.014–0.207, P= 2.23E-
05). Moreover, Steiger filtering analysis indicated direct causal
associations from changes in protein to the development of PD.
And in colocalization analysis, all these 5 significant proteins were
found to share a single variant with PD with PPH4 > 80% (Table 1).
Furthermore, an additional 13 proteins in the CSF showed a
suggestive causal role for PD (0.05/585 < P < 0.05), with the
increased abundance of eight proteins decreasing the risk for
PD, and 5 proteins, including ARSA, increasing the risk for PD
(Supplementary Table 3).

Proteins causally associated with PD in the blood
After multiple testing corrections (P < 0.05/2051), the MR analysis
identified 4 proteins in the blood which had causal effects on PD
(Table 1). Specifically, 3 increased protein abundance was
significantly associated with an increased risk of PD, namely
BAG3 (OR:1.588, 95% CI: 1.282–1.969, P= 2.37E-05), GPNMB
(OR:1.642, 95% CI:1.368–1.972, P= 1.76E-05) and FCGR2A
(OR:1.061, 95% CI:1.033–1.090, P= 1.76E-05), while the increased
SNCA abundance significantly decreased PD risk (OR:0.418, 95%
CI:0.354–0.494, P= 6.26E-25). In addition, Steiger filtering showed
that all MR-identified proteins indicated direct causal associations
from changes in protein to the development of PD. However, only
SNCA and BAG3 shared a single variant with PD with PPH4 > 80%
in the colocalization analysis, (Table 1). Moreover, an additional 68
proteins in the blood showed a suggestive causal role for PD
(P < 0.05), with the abundance of 32 proteins, including CTSB,
decreasing the risk for PD, and 32 proteins increasing the risk for
PD (Supplementary Table 4).
Notably, in the transcriptional level of blood genes, we failed to

replicate the above 4 significant proteins on PD after multiple tests
(P < 0.05/13514, Supplementary Table 5). However, GPNMB and
SNCA showed supportive evidence (P < 0.05). Moreover, at the
transcriptional level, 18 protein-coding genes were found to be
associated with the risk for PD after multiple tests, with 8 genes
decreasing the risk for PD, and 10 genes increasing the risk for PD
(Supplementary Table 5).

Results of the fine mapping
With the FOCUS method, CD38 (P= 5.83E-12, TWAS-Z=−7.06),
DGKQ (P= 1.86E-22, TWAS-Z= 0.46) and GPNMB (P= 1.40E-12,
TWAS-Z= 5.61) in the brain were validated to be causal genes for
PD regardless of the linkage disequilibrium (LD) and pleiotropy.

Summary findings
Comparing the genes identified in pQTL and eQTL analysis (Fig. 1),
we found that GPNMB displayed a robust causal role for PD at the
transcriptional and protein level from blood, CSF, and brain, as
well as validated by fine mapping. Likewise, the increased
expression of CD38 shows a protective role towards PD was
confirmed by brain pQTL and eQTL, which was also validated by
fine mapping. Interestingly, although validated by fine mapping,
pQTL and eQTL MR analyses of DGKQ showed inconsistent effects
on PD, where the increased protein level of DGKQ in the brain was
shown to be protective towards PD, while the increased mRNA
level of DGKQ was leading to a higher risk of PD. Moreover,
although not validated by fine mapping, the causal role of ARSA
and SEC23IP were revealed by brain pQTL and suggested by other
subsets, and the increased expression of CTSB shows a protective
role towards PD was confirmed by the brain and CSF pQTL, and
suggested by brain eQTL. Additionally, another 6 proteins (CD84,
ENTPD1, FCGR2B, BAG3, SNCA, FCGR2A) were associated with the
risk for PD based on a single pQTL subset, but are still worthy of
note (Table 1, Fig. 1).

Consistency comparison by correlation analysis
To further understand the correlation between brain-based, CSF-
based and blood-based proteins and genes, we compared the MR
effect estimates of the commonly identified proteins and genes.
At the protein level, the MR effects between brain proteins and
CSF proteins showed a robust positive correlation, and the
correlation was strengthened when the limited p-value threshold
to 0.05 (Supplementary Fig. 1a, b). The MR effects between blood
and CSF proteins showed a robust positive correlation at no p-
value threshold while increasing the p-value threshold to p < 0.05
led to no correlation (Supplementary Fig. 1c, d). Moreover, the MR
effects between blood and brain proteins showed no correlation

X. Gu et al.

2

npj Parkinson’s Disease (2023)   146 Published in partnership with the Parkinson’s Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;



at either a p-value threshold or 0.05 threshold (Supplementary Fig.
1e, f). It can be seen that the brain and CSF have a stronger
correlation than blood. The differential expression between those
tissues and the presence of the blood–brain barrier may
contribute to this phenomenon21.
At the transcriptional level, we found a robust positive

correlation between the brain and blood MR effects. Increasing
the p-value threshold resulted in a still robust and higher
correlation between brain and blood eQTL (Supplementary
Fig. 1g–j), which were consistent with the previous results22, and
suggested that whole blood could be a proxy for gene
identifications in brain-related traits22.

Protein-protein interaction network and enrichment analysis
Using MR-identified suggestive proteins (p < 0.05) from the brain,
CSF and blood via the STRING database, respectively, three
Protein-protein interaction (PPI) networks were obtained. The
statistical enrichment analysis incorporated in STRING revealed
that the whole network was significantly enriched (PBrain = 3.43E-
05, PCSF= 4.48E-05 and Pblood= 1.44E-15, respectively) (Supple-
mentary Fig. 2–4). When comparing the three networks, we found
some proteins could actively participate in the interaction
network. Thus, we further conducted another PPI network using
MR-identified proteins that passed multiple corrections based on
all three pQTLs. We found the brain-based protein CD38 was
interacted with by the CSF-based protein FCGR2B and ENTPD1, as
well as the blood-based protein FCGR2A; brain-based DGKQ and
CTSB both have interaction with blood-based protein SNCA
(Supplementary figure 5). Moreover, by performing PPI with
known PD-causative genes, we found that the top significant
genes could interact with several known PD-causative genes, such
as GPNMB with LRRK2, SEC23IP with DNAJC13, ARSA with GBA and
CD38 with UCHL1 (Fig. 2a). On the other hand, by performing PPI
with putative PD therapeutic targets, we found PPI network exists
between significant risk genes and anti-parkinsonism drug targets,
such as CTSB and DGKQ can interact with the dopamine network
with SNCA, and CD38, CD84, FCGR2A, FCGR2B, and ENTPID could
interact with the dopamine network ADORA2A (Fig. 2b). In the
pathway enrichment analysis, we found that suggestive causal
genes in the brain were enriched in the “protein dephosphoryla-
tion” pathway. Furthermore, in the cell-type-specific expression
analysis, CD38 was mostly expressed in astrocytes, CTSB was
enriched in microglia, while SEC23IP and DGKQ were most
expressed in the glutamatergic neuron (Supplementary Fig. 6).

Safety evaluation of the potential therapeutic target
Because MR, colocalization and fine mapping analysis all
supported CD38, GPNMB and DGKQ in the brain to be possible
causal proteins for PD, we evaluated their safety as possible
therapeutic targets. Overall, no significant side effects were
identified (P < 0.05/782) by performing a broader MR screening
of 782 non-PD traits (Supplementary Fig. 7, Supplementary Table
6–8). However, here we observed some trends. Higher CD38 levels
may potentially contribute to some ischemic heart diseases and
other disorders (Supplementary Table 6). In addition, higher levels
of DKGQ may benefit dysmenorrhea (OR:0.118, P= 0.0014,
Supplementary Table 7). Brain GPNMB levels were most likely
associated with stricture of the artery (OR:2.112, p= 0.0001,
Supplementary Table 8).

DISCUSSION
Although advances have been made in sequencing methods and
bioinformatics tools, only a small proportion of PD patients can be
identified with genetic causes. The current study applied a
systematic pipeline via multi-omics analysis expanding causal
proteins for PD. In summary, evidence from MR, colocalization andTa
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fine mapping supported that GPNMB showed a genetically causal
role for PD, and DGKQ and CD38 may have a protective function.
However, another eight proteins were associated with the risk for
PD only in one subset after multiple corrections (ARSA, SEC23IP,
CD84, ENTPD1, FCGR2B, BAG3, SNCA, FCGR2A), except ARSA and
SEC23IP also passed the suggestive p-value (0.05) in other subsets.
Additionally, phenome-wide MR indicated that lowering the level
of GPNMB in the brain and increasing the level of CD38 and DGKQ
in the brain might be potential therapeutic targets for PD without
significant side effects.
Despite the developments of new therapies over recent years,

etiological or disease-modifying treatments for PD are still
unavailable. Till now, some studies have been performed to find
novel risk/causal genes and genetically supported drug targets for
PD via MR of the druggable genome15,23, but linkage disequili-
brium (LD) may confound the accurate identification of causal
SNPs in both GWAS and QTL studies, and single QTL may result in
exaggerated effect24. Compared with those previous stu-
dies15–17,23,25–28, our study has more additional value with more
comprehensive and robust approaches (MR, colocalization, fine
mapping, pathway enrichment, cell type expression analysis and
druggable safety analysis), as well as more datasets to validate our
findings (2 brain pQTLs, 2 brain eQTLs, 1 CSF pQTLs, 1 blood
pQTLs, and 1 blood eQTLs). Therefore, there were consistent
results between our and their results, while we also had novel
findings. For example, Storm et al. applied MR of the blood- and
brain-eQTL and found that the expression level of CD38, CTSB,
GPNMB and MAP3K12 have the most robust MR evidence for PD
risk15, while only CD38, CTSB and GPNMB were replicated in our
study. Png et al. applied the same blood pQTL and PD GWAS in
our current study, and also found that blood GPNMB level was
associated with an increased risk for PD16. Besides, Yang et al.
found that plasma IDUA protein level was associated with an
increased risk for PD17. While we did not identify IDUA protein as a
risk factor for PD in any QTL after multiple testing. These
inconsistencies might be caused by the different exposure and
outcome datasets, and methods (Supplementary Table 9).

Of note, these findings may help to elucidate novel pathogen-
esis and biomarkers of PD. GPNMB, in concordance with previous
researches15,16,23,27,29, showed robust evidence for PD risk in this
study, which was detected in all tissues at both eQTL and pQTL
levels. GPNMB is a transmembrane glycoprotein that releases a
soluble signaling peptide when cleaved by ADAM10 or other
extracellular proteases and was first identified as a risk locus for PD
by a 2-stage meta-analysis30. Functional studies found that
GPNMB protein is selectively elevated in the substantia nigra of
PD patients and increased after lysosomal stress31. A recent study
applied sing-cell sequencing for microglia of idiopathic PD
patients and revealed a pro-inflammatory trajectory characterized
by elevated levels of GPNMB32. Consistent with these studies, our
data further suggest that an increased level of GPNMB could serve
as a druggable target for PD.
Notably, we found a novel protein, ARSA in the brain, was causal

for PD. Initially, homozygous or compound heterozygous muta-
tions in ARSA can lead to metachromatic leukodystrophy, an
autosomal recessive lysosomal storage disease33. ARSA can be
detected in neurons, glial cells and blood cells within the blood
vessels, but there were no significant differences between controls
and PD patients’ neurons34. In plasma, the authors found that PD
patients exhibited higher plasma ARSA levels than controls. ARSA
depletion induces accumulation, secretion and propagation of
a-synuclein aggregates by acting as an a-synuclein chaperone
in vitro and vivo experiments34. However, after multiple testing,
we detected no causal effect of it in the brain eQTL and CSF pQTL.
It is largely unknown whether plasma ARSA levels or activity
correlate with the respective ARSA levels or activity in the brain or
CSF of PD patients and healthy controls35. The effect of intracranial
ARSA may be inconsistent with its mechanism of it in plasma.
Besides, plasma ARSA levels gradually decrease with PD progres-
sion36, while its changes in the brain and CSF need to be further
studied. Together with our results, an increased level of ARSA in
the brain but the deceased level in plasma might be a biomarker
for PD progression, but, importantly, which effect on PD in
different tissues needs further studies. In addition, another novel

Fig. 1 Heatmap of MR results. Heatmap showing the P values of the shared genes identified by PD GWAS, brain pQTL MR analysis, and eQTL
MR analysis and blood eQTL MR analysis. This figure shows the specific pipline and the data set involved in this study.
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protein, SEC23IP in the brain was also found to be a risk protein for
PD. SEC23IP, also known as p12537, is associated with spastic
paraplegia 28 and nodular malignant melanoma38,39. However,
previous studies have not suggested that it affects PD. An earlier
meta-analysis of whole-exome sequencing data found mutation
enrichment in SEC23IP has trends to act a role on PD, but failed to
survive after multiple testing correction40, so did Nalls et al.41. Our
study, from a big data, multi-method and multi-omics perspective,
may be more useful in identifying novel potential PD-associated
genes. Additionally, this protein encoded by SEC23IP is localized to
endoplasmic reticulum exit sites and plays a critical role in ER-
Golgi transport as part of the multimeric coat protein II complex,
and is involved in cholesterol trafficking from the plasma
membrane to mitochondria42. In PD, it is believed to be the
consequence of an ER-Golgi transport imbalance and/or cytoske-
leton alterations43. Therefore, it might contribute to the risk for PD
via the vesicle trafficking pathway, and the more in-depth basic
research is promising.
Moreover, our study, importantly, also detected that some

genes might play a protective role in PD. We strongly
recommended CTSB, consistent with previous studies finding that
brain expression of CTSB likely decreased the risk for PD15,27,44. In
addition, CTSB reduced the penetrance of PD patients with GBA
variants45. What’s more, CTSB belongs to the cathepsin family,
which is important in the lysosomal degradation of α-synuclein46.
In addition, as for CD38, consistent with the results from the
previous eQTL MR and TWAS study15,27,47, it was further found in
pQTL in our study. It was reported that CD38 expression increases
with aging, which is otherwise the primary risk associated with
neurodegenerative diseases48. Several experimental data demon-
strated that CD38 knockout mice are protected from neurode-
generative and neuroinflammatory insults49,50. Overall, these
results indicate that increasing the level of CTSB and CD38 in
the brain might be a promising therapeutic target for PD.
However, we found inconsistent roles of DGKQ on PD, where

the increased protein level of DGKQ in the brain was shown to be
protective towards PD, while the increased mRNA level of DGKQ

was leading to a higher risk of PD. DGKQ has been found to be a
risk locus for PD by the previous GWAS51. It belongs to the
diacylglycerol kinases family, which contain enzymes that catalyze
the ATP-dependent phosphorylation of diacylglycerol (DAG) to
phosphatidic acid (PtdOH)52. The function of DGKQ has been
rarely studied, while it is localized to excitatory synapses where its
kinase activity promotes retrieval of synaptic vesicles following
neuronal activity52, which supports our findings that DGKQ
protein level was protective in the brain. But for the inconsistent
results between protein and mRNA levels, several reasons might
account for this. Firstly, differences in equipment, reagents and
statistical methods might contribute to inaccuracies in the QTL
data. Secondly, the variance of sample sizes and the number of
genes in the pQTL and eQTL datasets may also play a role.
Moreover, these inconsistent roles between mRNA and protein
levels might be caused by post-transcriptional modifications such
as mRNA splicing and protein degradation53. Last but not least,
the mRNA abundance in the eQTL dataset might be a specific
DGKQ mRNA isoform that is targeted for degradation prior to
translation. However, function studies were needed to ascertain
DGKQ’s role in PD.
Our study would help to find novel drug targets for PD. In the

PPI network analysis, we found that the identified proteins in our
study can interact with the known PD causative genes, such as
GPNMB with LRRK2 and CD38 with UCHL1. This evidence
suggested that the top significant genes could involve in the
pathogenesis of PD through known PD pathways. Furthermore,
we found that although some top significant proteins (CTSB,
DGKQ, SNCA, CD38, CD84, FCGR2A, FCGR2B, and ENTPID) could
interact with the dopamine network and ADORA2A could interact
with the known PD drug targets, while other proteins (GPNMB,
ARSA, and BAG3) were unable to participate in the network. These
findings shed new light on potential drug targets by linking
genetic factors to disease and known targets. Moreover, in the
pathway enrichment analysis, we found that PD causal proteins in
the brain were enriched in the “protein dephosphorylation”
pathway. PD is a neurodegenerative disease characterized by

Fig. 2 The Protein-protein interaction network using MR-identified proteins passed multiple corrections and PD causative/risk genes, or
PD drug targets. a The Protein–protein interaction network using MR-identified proteins passed multiple correction and PD causative/risk
genes. The black arrow means MR-identified proteins passed multiple corrections. b The Protein–protein interaction network using MR-
identified proteins passed multiple correction and PD drug targets. The red arrow means Drug targets that interact with MR-identified
proteins passed multiple corrections.
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aberrant accumulation of misfolding a-synuclein in the brain.
Phosphorylation at some residues such as Ser129 has been
suggested to have a close relationship with a-synuclein degrada-
tion and aggregation, while it is still unclear whether phosphor-
ylation promotes or prevents aggregation and toxicity54. Together
with our results, the protein dephosphorylation pathway might be
a therapeutic target for PD, while further studies were needed.
Furthermore, in the cell-type-specific expression analysis, besides
neurons, we found that PD-causal proteins were also expressed in
astrocytes and microglia. These results supported previous
findings that astrocytes and microglia play important roles in
maintaining the microenvironment in the brain, and dysfunction
of these glial cells has been implicated in the pathogenesis of
PD55. Therefore, the cross-talk between neurons and glial cells in
PD pathogenesis should get more attention.
With MR and fine mapping method, we found that an increased

level of GPNMB in the brain was leading to a higher risk for PD,
while increased levels of CD38 and DGKQ in the brain were
leading to a lower risk of PD. These results indicated that lowering
the level of GPNMB in the brain and increasing the level of CD38
and DGKQ in the brain might be potential therapeutic targets for
PD. Therefore, we explored the potential side effects of lowering
the level of GPNMB in the brain and increasing the level of CD38
and DGKQ in the brain. And no significant side effect was noted.
These results suggested that CD38, DGKQ, and GPNMB might be
promising therapeutic targets for PD, while further studies were
needed.
The study also has some limitations. First, the brain tissue used

in our study was limited to the human parietal lobes, while some
other brain regions were found to be more relevant to PD, such as
basal ganglia, basal ganglia work closely in concert with the cortex
and cerebellum56. But the sample size of eQTL in basal ganglia
was small47. Therefore, datasets from these regions of the brain
would be needed. Second, there was no validation cohort to
confirm the results, which might leverage false-positive findings.
However, we applied the systematic multiple pipelines, including
MR, Steiger filtering analysis, Bayesian colocalization analysis and
fine mapping to confirm the results, and our results also replicate
findings from some previous studies. Thirdly, the different sample
sizes of the QTL datasets might result in variable statistical power
for each study, leading to errors when comparing the results in
different tissues. Last but not least, the current study focused on
the genes conferring PD risk. However, attention also should be
paid to genes responsible for PD progression, which might be
targeted for disease-modifying therapies. Therefore, MR studies
using gene profiles as exposures and PD progression57 as
outcomes were needed in further studies.
In conclusion, with multi-omics from multiple tissues, our study

identified 3 brain-based proteins (GPNMB, CD38, and DGKQ) to be
associated with the risk for PD at the protein or transcriptional
levels. These findings would help uncover the genes underlying
PD and prioritize targets for future therapeutic interventions.
However, further studies are needed to repeat this finding and
explore the underlying biological mechanisms associated with the
identified genes.

METHODS
Datasets
The information about the datasets used in the current study is
listed in Supplementary Table 10. The detailed flowchart of this
study is illustrated in Fig. 3.
Human brain-tissue derived pQTL data (brain pQTL1) was

obtained from a previous study58, which performed a proteome-
wide association study (PWAS) by generating human brain
proteomes from the dorsolateral prefrontal cortex (dlPFC) of
postmortem brain samples donated by 400 participants of

European ancestry of the Religious Orders Study/Memory and
Aging Project (ROS/MAP) cohorts58,59. After quality control, 376
subjects and 1475 proteins were eligible for the PWAS analysis,
and 607 proteins have significantly associated SNPs (p < 5E-08)58.
Moreover, to strengthen our findings, we also validated the
significant proteins in another dataset with 152 participants (brain
pQTL2)60. The detailed information for the proteomic sequencing,
genotyping and analyses were described in the original study58.
The brain eQTL data was obtained from the PsychENCODE

Consortium (brain eQTL1), which collected data from the human
brain of European ancestry (n= 1866) and covered 10,489 genes
that have significantly associated SNPs with p < 5E-0861. Moreover,
we also validated the significant genes in another dataset with
1433 participants (brain eQTL2)62.
The available CSF pQTL dataset measured the abundance of

1305 proteins using a multiplexed aptamer-based platform17 in
CSF samples (n= 971), after quality control, 835 CSF samples and
713 proteins were eligible for subsequent analysis. The details on
recruitment and quality control are available in the original
publication17. Using this pQTL dataset, we found 217 CSF proteins
which have significantly independent local pQTLs with p < 5E-08.
The plasma proteome was obtained from the INTERVAL study63,

which performed genome-wide testing of 10.6 million imputed
autosomal variants against levels of 2994 plasma proteins in 3301
individuals of European descent.
The whole blood eQTL data was from the eQTLGen consortium,

consisting of 31,684 blood and peripheral blood mononuclear cell
(PBMC) samples from 37 eQTLGen Consortium cohorts, and
covering 19,942 genes64.
The PD dataset was obtained from the publicly available

summary statistics from the latest and largest case-control
genome-wide association meta-analysis of PD published in 2019
by the International Parkinson’s Disease Genomics Consortium
(IPDGC) (excluding 23andMe data), which included 15056 PD
cases, 18618 UK Biobank proxy-cases (i.e., subjects with a first
degree relative with PD) and 449056 controls of European
ancestry26.

Two-sample mendelian randomization
MR analysis utilizes genome-wide significant SNPs as IVs to
explore the causal effects of defined exposure on an outcome. It
has been widely applied in identifying the genetic etiology of
complex illnesses through integrating the quantitative trait loci
data21,65. In this study, we used the QTL datasets as the exposure
and PD GWAS as the outcome to identify novel causal genes and
proteins for PD.
Three key assumptions must be met in selecting eligible IVs,

which is the first and most important step to perform MR66.
Assumption 1 (relevance assumption) requires the SNPs to be
strongly associated with the exposure. Therefore, we adopted the
genome-wide significance threshold p < 5E-08 to filter the SNPs in
eQTLs and pQTLs. Assumption 2 (independence assumption)
requires the IVs to not be associated with confounding factors,
which can be calculated as pleiotropy in the post-MR analysis.
Assumption 3 (exclusion assumption) requires the IVs to not be
directly associated with the outcome. Therefore, to meet
assumption 3, we searched the phenoscanner database to remove
IVs that were directly associated with PD67.
Once the eligible IVs were selected, they were linkage

disequilibrium (LD) clumped with r2 < 0.001 in a 10 megabase
distance. And then the IVs were harmonized with the outcome.
After clump and harmonization, there were usually 1 or 2 IVs for
each exposure. Then, MR effects can be estimated. Wald ratio
method was applied if only a single IV was available, inverse
variance weighted (IVW) method was performed if 2 IVs were
available66. The suggested threshold of P-value < 0.05 and
Bonferroni correction thresholds (P < 0.05/number of genes or
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proteins analyzed) were used to prioritize genes for further follow-
up. And because of the limited IV numbers, sensitivity analyses
(including MR-Egger, weighted median mode and simple
weighted median mode) and post-MR analysis (including pleio-
tropy test, outlier test and heterogeneity test) were unable to be
performed. Moreover, the Steiger filtering analysis was applied to
ensure that the effect of direction was from exposure to outcome,
but not reverse68. The steps mentioned above were implemented
using the “TwoSampleMR” R package (github.com/MRCIEU/
TwoSampleMR)6.

Bayesian colocalization analysis
To avoid LD and pleiotropy and ensure the two independent
GWAS association signals (pQTL/eQTL and PD) are consistent with
a shared causal variant, Bayesian colocalization analysis was
further applied69. Briefly, the colocalization analysis was per-
formed with R package “coloc”, which provides the posterior
probability for five hypotheses regarding whether a single variant
is shared between two traits: (1) PPH0, no association with either
trait; PPH1, a genetic variant only associated with the trait 1 (eQTL
or pQTL), but not with the trait 2 (PD); PPH2, a genetic variant
associated with the trait 2 (PD), but not with the trait 1 (eQTL or
pQTL); PPH3, association with the trait 1 (eQTL or pQTL) and the
trait 2 (PD), with different causal variants; PPH4, association with
the trait 1 (eQTL or pQTL) and the trait 2 (PD), with a shared causal
variant69. pQTL/eQTL and PD are considered to share the same
variant if the posterior probability for PPH4 > 80%21,70.

Probabilistic fine-mapping of causal gene sets
To disambiguate the potential of pleiotropy underlying genetic
variants associated with the expression of multiple gene products
in a given locus, and disambiguate which gene is most likely
causal (e.g., looking at genes with high posterior inclusion
probabilities), we applied fine-mapping of causal gene sets
(FOCUS) to validate the genes in the brain discovered by MR.
FOCUS takes as input GWAS summary data, expression prediction
weights (as estimated from eQTL reference panels), and LD among
all SNPs in the risk region, and estimates the probability for any
given set of genes to explain the transcriptome-wide association
study (TWAS) signal. We used the FOCUS weights and executed
the code according to the manual provided by the original study
(https://github.com/bogdanlab/focus)71.

Pearson Correlation, protein-protein network, pathway
enrichment and cell-type specific expression analysis
As previous study21, we wondered whether there would be
correlations between the brain, CSF and blood-identified QTLs.
Hence, we investigated the correlation between the shared QTLs
identified in the brain, CSF and blood using effect estimates from
the MR analysis by Pearson correlation analysis. In consideration
that the number of pQTLs was much smaller than that of eQTLs,
and no genes were shared between the brain, CSF, and blood
pQTL at a threshold of p < 0.05, we set only no threshold for pQTLs
and three for eQTLs (P < 0.05, 0.01 and 0.005) to ensure enough
number of shared QTLs in the Pearson correlation analysis.
To investigate the interactions between the PD risk genes

identified in this study and the known PD causative genes, we

Fig. 3 The design flow of the study.
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explored the protein-protein interaction (PPI) network for these
proteins abundance (from pQTLs) was associated with PD risk in
MR analysis (p-value passed the Bonferroni correction) and
published PD known causative/risk genes (Supplementary Table
11)5, which was investigated by using the Search Tool for the
Retrieval of Interacting Genes (STRING) database version 11.5
(https://string-db.org/)72. Moreover, to explore whether the PD-
causal genes were enriched in certain pathways, we performed
pathway enrichment of the suggestive PD causal proteins
(p < 0.05) with the Metascape online software73. In addition, to
investigate whether interactions exist between these identified
risk genes and current PD therapeutic targets, we obtained 18
available PD medications from a previous review74 and corre-
sponding drug targets based on the Drugbank database (https://
www.drugbank.ca) (Supplementary Table 12)75. Moreover, we also
explored the cell-type-specific expression of the causal genes in
the brain. The cell-type-specific expression profile of the causal
genes in the brain was downloaded from the human single-cell
RNA-seq data from the cell types database (https://portal.brain-
map.org/atlases-and-data/rnaseq). Cell-type expression specificity
(CELLEX), a tool for computing cell-type expression specificity (ES)
profiles, was applied to capture multiple aspects of ES76.

Safety evaluation of the potential therapeutic targets by
phenome-wide MR
As our previous study77, in order to assess the potential side
effects of therapeutic targets, we utilized therapeutic target gene
expression in the brain as the exposure factor and summary
statistics of diseases in the UK Biobank cohort (n ≤ 408 961) as the
outcomes for conducting phenome-wide MR. Disease GWASs
from the UK Biobank were conducted using the Scalable and
Accurate Implementation of Generalised Mixed Model (SAIGE
V.0.29) approach in order to account for imbalanced case/control
ratios78. Given the statistical power limitations, we selected 782
non-Parkinson’s disease traits (diseases) with over 500 cases for
phenome-MR analyses (Supplementary Table 13). The summary
statistics of disease-associated SNPs were obtained from the SAIGE
GWAS (https://www.leelabsg.org/resources). More detailed infor-
mation can be found in the publication78. Causal effects are
considered statistically significant when p < 0.05/782 (after apply-
ing Bonferroni correction).

Reporting Summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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