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Two distinct trajectories of clinical and neurodegeneration
events in Parkinson’s disease
Cheng Zhou 1,8, Linbo Wang2,3,4,5,8, Wei Cheng2,3,4,5,6✉, JinChao Lv2, Xiaojun Guan 1, Tao Guo1, Jingjing Wu1, Wei Zhang2,3,4,5,
Ting Gao7, Xiaocao Liu1, Xueqin Bai 1, Haoting Wu1, Zhengye Cao1, Luyan Gu7, Jingwen Chen1, Jiaqi Wen1, Peiyu Huang1,
Xiaojun Xu 1, Baorong Zhang 7, Jianfeng Feng2,3,4,5,6✉ and Minming Zhang 1✉

Increasing evidence suggests that Parkinson’s disease (PD) exhibits disparate spatial and temporal patterns of progression. Here we
used a machine-learning technique—Subtype and Stage Inference (SuStaIn) — to uncover PD subtypes with distinct trajectories of
clinical and neurodegeneration events. We enrolled 228 PD patients and 119 healthy controls with comprehensive assessments of
olfactory, autonomic, cognitive, sleep, and emotional function. The integrity of substantia nigra (SN), locus coeruleus (LC), amygdala,
hippocampus, entorhinal cortex, and basal forebrain were assessed using diffusion and neuromelanin-sensitive MRI. SuStaIn model
with above clinical and neuroimaging variables as input was conducted to identify PD subtypes. An independent dataset consisting
of 153 PD patients and 67 healthy controls was utilized to validate our findings. We identified two distinct PD subtypes: subtype 1
with rapid eye movement sleep behavior disorder (RBD), autonomic dysfunction, and degeneration of the SN and LC as early
manifestations, and cognitive impairment and limbic degeneration as advanced manifestations, while subtype 2 with hyposmia,
cognitive impairment, and limbic degeneration as early manifestations, followed later by RBD and degeneration of the LC in
advanced disease. Similar subtypes were shown in the validation dataset. Moreover, we found that subtype 1 had weaker levodopa
response, more GBA mutations, and poorer prognosis than subtype 2. These findings provide new insights into the underlying
disease biology and might be useful for personalized treatment for patients based on their subtype.
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INTRODUCTION
Parkinson’s disease (PD) is the second most common neurode-
generative disease, and is characterized by loss of dopaminergic
neurons in the substantia nigra (SN) and progressive and
irreversible aggregation of misfolded α-synuclein in multiple brain
regions1. PD varies dramatically in its manifestations, response to
therapy, and long-term prognosis, suggesting the existence of PD
subtypes2. Identification of these subtypes is crucial for better
understanding the mechanisms of the disease, better prognosis,
and ultimately, for delivering personalized medicine3.
Great efforts to identify subtypes of PD have been made, from

the initial classification based on a single motor symptom, to
classification based on multidomain phenotypes including motor
and non-motor symptoms, neuroimaging data, and biochemical
markers3–8. Owing to the poor reliability and difficulty in
characterizing disease heterogeneity, empirical classification meth-
ods have lost favor and have been replaced by data-driven
methods without a priori hypotheses9–14. These data-driven studies
provide invaluable information toward the understanding of
complex mechanisms, but have limitations. Typical data-driven
subtyping methods are limited by the confound of disease stage,
as the samples included in such studies are often at different
timepoints in the course of the disease12,15. Restricted by feasibility
issues such as sample size, it is difficult to stratify patients by
disease duration or stage. Therefore, patients can be misclassified
by data-driven subtyping methods if individuals at different

timepoints or stages are included. In addition, a typical clustering
analysis might not work well if the patients have different
progression trajectories16. We speculate that this is also one of
the reasons why many of these data-driven PD subtype classifica-
tion systems lack reproducibility17. Recently, “brain-first” and
“body-first” subtypes of PD have been proposed, which suggest
two contrasting spatiotemporal propagation routes of α-synuclein
pathology17–19. In the body-first subtype, the initial pathology may
first appear in the enteric or peripheral autonomic nervous system.
It then propagates to the medulla oblongata via the vagus nerve.
Ascending pathology affects pons giving rise to Rapid Eye
Movement (REM) sleep behavior disorder (RBD) before the SN is
involved19. In the brain-first subtype, the pathology may appear in
the amygdala or olfactory bulb, and then spreads to the brainstem
and cortex19,20. In this sense, uncovering both temporal and
phenotype heterogeneity when conducting a data-driven cluster-
ing analysis is somewhat meaningful.
An emerging model called Subtype and Stage Inference

(SuStaIn) has been successfully used to reveal the heterogeneity
and temporal complexity of neurodegenerative diseases, includ-
ing Alzheimer’s disease, multiple sclerosis, and frontotemporal
dementia15,16,21–23. The SuStaIn model is a machine-learning
method that disentangles temporal and phenotypic heterogeneity
to identify subtypes with distinct progression trajectories from
readily accessible cross-sectional patients. Meanwhile, the model
assigns each patient with the most appropriate subtype and
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calculates each patient’s stage within that subtype. In this model,
progression trajectory refers to the sequence of abnormalities in
clinical or imaging features, and stage refers to the cumulative
degree of abnormalities in clinical or imaging features. If all
patients of a certain type have atrophy in subcortical nuclei, but
only some have atrophy in the neocortex, the SuStaIn model
would infer with high confidence that subcortical atrophy occurs
before neocortical atrophy in this type of patient24. A patient with
both subcortical and neocortical atrophy would therefore have an
advanced disease stage compared with those with pure
subcortical atrophy.
Here, we aimed to identify PD subtypes with distinct trajectories

based on the above-mentioned data-driven method with multi-
dimensional data, including comprehensive clinical evaluations
and MRI features (diffusion tensor imaging and neuromelanin-
sensitive MRI). These MRI measures are considered as sensitive
imaging biomarkers for evaluating neurodegeneration of PD
patients6. Furthermore, we fitted analogous multidimensional data
from the Parkinson’s Progression Markers Initiative (PPMI) dataset
into the SuStaIn model to test the repeatability of PD subtypes.

Finally, we investigated the differences in clinical characteristics,
imaging features, response to levodopa treatment, and long-
itudinal prognosis between these PD subtypes (Fig. 1).

RESULTS
Healthy controls and PD patients were not significantly different in
terms of gender, age and education level. PD patients showed
significant hyposmia, autonomic dysfunction, RBD symptoms,
cognitive decline, and depression compared to the healthy control
group. Additionally, PD patients showed significant decreased
contrast-to-noise ratio (CNR) of substantia nigra (SN) and locus
coeruleus (LC), and increased free-water of hippocampus and
entorhinal cortex. Detailed demographics, clinical and imaging
characteristics were shown in Table 1.

Clinical and neurodegeneration trajectories of subtypes
Of the 228 PD patients, 114 were assigned to subtype 1 and 102
to subtype 2. Only 12 patients were categorized as stage 0, and
not assigned to any subtype. Each subtype was defined by a

Fig. 1 A flowchart of characterization of clinical and imaging heterogeneity in Parkinson’s disease. a A total of 567 individuals (347 in
discovery dataset and 220 in validation dataset) were enrolled in this study; five clinical variables and 6 imaging variables were used for model
construction; these imaging variables were extracted from 6 brain structures including substantia nigra, locus coeruleus, amygdala,
hippocampus, entorhinal cortex, and basal forebrain by using neuromelanin-sensitive imaging and diffusion tensor imaging. b These variables
were normalized relative to healthy control subjects using z-score; the SuStaIn model was conducted to identify distinct patterns of
progression (progression trajectories of clinical and neurodegenerative events) using these variables and to cluster patients into distinct
patterns (subtypes) and stages. c The differences of clinical/imaging variables, levodopa response, and longitudinal progression were assessed
between subtypes; the consistency between the inferred SuStaIn stage and the disease severity measured by the UPDRS, PDQ-39, and other
measures was evaluated. The box plot and line chart were used for visualization purposes only. Box plots with center line indicating median,
bounds of boxes showing upper and lower quartile, whiskers illustrating 1.5 * interquartile range, and dots representing the distribution of
raw data (minima and maxima are included). MRI magnetic resonance imaging, SuStaIn Subtype and Stage Inference, REM rapid eye
movement. UPDRS Unified Parkinson’s Disease Rating Scale, PDQ-39 Parkinson’s Disease Questionnaire-39 items.
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different sequence of abnormalities in clinical symptoms and
brain degeneration (Fig. 2a). Distribution of two subtypes across
SuStaIn stages were shown in Fig. 2b. Boxplots of probability of
maximum likelihood subtype suggested that all patients have
high probability (>50%, Fig. 2c). Figure 2d, e showed the Log
Likelihood across Markov Chain Monte Carlo (MCMC) iterations
and 10-fold cross-validation, respectively. Figure 2f showed the
cross-validation information criterion (CVIC) under different
number of subtypes. A decreased CVIC illustrated an improved
model fit. The CVIC showed clear decrease from one to two, but
less obvious decrease from two to three subtypes. In case of
very little improvement in model fit, a simpler model should be
favored. Thus, the SuStaIn model with two subtypes was
selected.
The SuStaIn model estimated that progression starts with

classic prodromal features of PD, such as RBD, hyposmia,
autonomic dysfunction, and depression, which precede cogni-
tive impairment later in the disease course. Degeneration of the
SN and LC were the earliest manifestations of the disease
captured by imaging in subtype 1. These were followed by
degeneration of the entorhinal cortex. Consistent with the
sequence of cognitive decline, the degeneration of limbic
systems such as hippocampus, amygdala, and basal forebrain

occurred in the advanced stages. The first symptoms occurred in
subtype 2 patients were olfaction, autonomic function, and
cognition. In contrast to subtype 1, RBD and depression were
confined to the latter stages of the disease. SN degeneration
was the earliest sign of the disease to be imaged. Early
degeneration of hippocampus and amygdala were also char-
acteristic of this subtype. These were followed by degeneration
of entorhinal cortex and basal forebrain. LC degeneration were
confined to the latter stages of the disease.
Additionally, we constructed a new SuStaIn model using

diffusion MRI data only (specifically measuring the free-water of
substantia nigra, locus coeruleus, basal forebrain, entorhinal
cortex, amygdala, and hippocampus) in the discovery dataset.
The resulting progress patterns of two subtypes were consistent
with above results (Supplementary Fig. 1).

Differences of demographics, clinical variables, imaging
parameters, and response to levodopa treatment between
subtypes
The two subtypes were not significantly different in their gender,
age, disease duration, and levodopa equivalent daily dose (LEDD).
Subtype 1 patients had lower education level (p= 0.005) and
higher SuStaIn stage than subtype 2 (p < 0.001). Therefore,
education and SuStaIn stage were regressed as covariates when
comparing the difference of clinical variables, imaging parameters,
and levodopa response between subtypes. General linear model
suggested that no significant difference was found for part I, II,
and III of Unified Parkinson’s Disease Rating Scale (UPDRS), and
Hoehn and Yahr (HY) scores between the two subtypes. In
addition, more severe RBD symptoms, autonomic dysfunction,
and LC degeneration were observed in subtype 1 compared with
subtype 2. By contrast, more significant declines in cognition and
olfaction were found for subtype 2. More serious degeneration in
SN, hippocampus, amygdala, and basal forebrain were also found
for subtype 2 [Fig. 3, False discovery rate (FDR) corrected].
We compared the difference of levodopa response between the

two subtypes. One hundred and twelve patients (subtype 1= 55,
subtype 2= 57) undertook the levodopa challenge test. The two
subgroups were well matched in age, gender, education level,
disease duration, and LEDD. Subtype 1 patients showed significant
poor levodopa responses than that of subtype 2 patients
(p= 0.026). The difference kept significant in regression of LEDD
between two subtypes (p= 0.025). Supplementary Table 1 shares
detailed demographic information of the patients who took the
levodopa challenge test.
No significant difference was observed between the two

subtypes for tremor, rigidity, bradykinesia, and axial symptoms,
histories of smoking, alcohol consumption, pesticide and toxic
exposure, and asymmetry index of imaging variables (see
Supplementary Materials for details).

Correlations between inferred SuStaIn stage and disease
severity
Significant correlations were found between SuStaIn stage and
UPDRS-I, UPDRS-II, UPDRS-III, UPDRS-IV, Parkinson’s Disease
Questionnaire-39 items (PDQ-39), and activity of daily life scale
(ADL) scores in subtype 1, and UPDRS-I, UPDRS-II, UPDRS-IV, PDQ-
39, and ADL scores in subtype 2 (Fig. 4, FDR corrected). These
results suggest that the features used in the SuStaIn model were
related to PD pathology, and that the SuStaIn stages assigned to
patients were reliable.

Subtypes in validation dataset
We validated our findings in the PPMI dataset. Healthy controls
and PD patients were well matched in gender, age and education
level. Detailed demographics, clinical and imaging characteristics

Table 1. Demographics, clinical and imaging characteristics of healthy
controls and Parkinson’s disease patients in discovery dataset.

Health control Parkinson’s disease p value

Sex (male) 119(68) 228(148) 0.157

Age (year) 61.71 ± 7.28 60.53 ± 8.56 0.20

Education (year) 9.56 ± 4.20 9.06 ± 3.85 0.268

Duration (year) – 4.29 ± 2.82 –

LEDD – 346.25 ± 272.41 –

UPDRS-I – 1.54 ± 1.51 –

UPDRS-II – 9.10 ± 5.33 –

UPDRS-III – 22.69 ± 12.97 –

UPDRS-IV – 0.83 ± 1.54 –

HY stage – 2.09 ± 0.62 –

PDQ-39 – 19.76 ± 18.8 –

ADL – 22.14 ± 5.17 –

RBDQ-HK 9.64 ± 5.77 20.75 ± 16.75 <0.001***

SCOPA-AUT 4.76 ± 3.44 9.57 ± 6.17 <0.001***

BSIT 8.50 ± 1.63 5.21 ± 2.47 <0.001***

MoCA 24.53 ± 3.36 23.11 ± 4.24 0.002**

HAMD 2.91 ± 2.99 3.80 ± 3.95 0.032*

CNRSN 2.50 ± 0.42 2.01 ± 0.44 <0.001***

CNRLC 2.26 ± 0.78 2.07 ± 0.74 0.030*

Free-water of basal
forebrain

0.196 ± 0.021 0.197 ± 0.017 0.721

Free-water of entorhinal
cortex

0.20 ± 0.022 0.209 ± 0.024 0.001**

Free-water of amygdala 0.172 ± 0.010 0.174 ± 0.012 0.073

Free-water of
hippocampus

0.180 ± 0.016 0.185 ± 0.018 0.019*

LEDD levodopa equivalent daily dose, UPDRS Unified Parkinson’s Disease
Rating Scale, HY Hoehn–Yahr, PDQ-39 Parkinson’s Disease Questionnaire-39
items, ADL activity of daily life scale, RBDQ-HK Rapid Eye Movement Sleep
Behavior Disorder Questionnaire (Chinese University of Hong Kong
version), SCOPA-AUT Scales for Outcomes in Parkinson’s Disease-Auto-
nomic, BSIT Brief Smell Identification Test modified for Chinese, MoCA
Montreal Cognitive Assessment, HAMD Hamilton Rating Scale for Depres-
sion, CNRSN contrast-to-noise ratio of substantia nigra, CNRLC contrast-to-
noise ratio of locus coeruleus.
*p < 0.05; **p < 0.01; ***p < 0.001.

C. Zhou et al.

3

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2023) 111



were shown in Supplementary Table 2. One hundred and twenty-
eight patients were divided into two distinct progression
subtypes. The first dysfunctional signs in subtype 1 patients
(n= 102) were in olfaction and REM sleep. These were followed by
depression and autonomic dysfunction, while cognitive decline
developed in the advanced stages. The initial symptoms in
subtype 2 patients (n= 26) were cognitive decline and hyposmia.
Autonomic dysfunction, RBD symptoms, and depression were
limited to the latter stages of the disease. Alterations in imaging
features were restricted to the end of disease stage in both
subtypes. The remaining 25 patients in that dataset were
categorized as stage 0. Distribution of two subtypes across
SuStaIn stages, boxplots of probability of maximum likelihood
subtype, MCMC iterations and 10-fold cross-validation, and the
CVIC under different number of subtypes were shown in
Supplementary Fig. 2. Two subtypes were determined as the
optional number of subtypes.
Consistent with the discovery dataset, subtype 1 patients

displayed more severe RBD (p= 0.044), but not survived after FDR
correction, while subtype 2 patients displayed significant lower
Montreal Cognitive Assessment (MoCA) score (p < 0.001). Three PD
patients with GBA mutations and 1 PD patient with LRRK2

mutations were identified. Three patients with GBA mutations
were grouped to subtype 1, and one patent with LRRK2 mutations
was grouped to subtype 2. We also assessed the differences of
longitudinal progression between subtypes. Linear mixed-effects
model analysis suggested that subtype 1 had faster rate of
progression in MDS-UPDRS-III and MDR-UPDRS-Total scores during
5 years follow up (group * time, p= 0.030 and p= 0.040,
respectively, uncorrected).
No significant difference was found between the two subtypes

for gender, age, education level, disease duration, MDS-UPDRS
scores and motor subscales of tremor, rigidity, bradykinesia, axial
symptoms, and postural instability and gait difficulty (PIGD). No
significant difference was found in environmental factors,
asymmetry index, dopamine transporter (DAT) binding ratios,
levels of amyloid-β42, α‐synuclein, and phosphorylated tau
protein in cerebrospinal fluid (Supplementary Table 4).
In addition, we found significant correlations between SuStaIn

stage and MDS-UPDRS-I, MDS-UPDRS-II, and MDS-UPDRS-III scores
for subtype 1 (p= 0.004, p < 0.001, and p= 0.015, respectively) but
not for subtype 2, which might be due to the small sample size of
subtype 2 (FDR corrected).

Fig. 2 The progression patterns of Parkinson’s disease subtypes in the discovery dataset. a The positional density maps of two Parkinson’s
disease subtypes. x axis indicates the number of events (11 variables * 3 grads). The color intensity reflects the row-wise positional density and
confidence in the ordering. The location of highest color intensity means the most probable stage/sequence of this feature. b Distribution of
two subtypes across SuStaIn stages. c Boxplots of probability of maximum likelihood subtype. d Log Likelihood across Markov chain Monte
Carlo iterations. e Log Likelihood across 10-fold cross-validation. Log Likelihood increased dramatically from 1 subtype to 2 subtypes, but not
increased slowly or even decreased from 2 subtypes to 3 or more subtypes. f The CVIC under different number of subtypes. Decreased CVIC
illustrated improved model fit. In case of little improvement in model fit, a simpler model should be favored. Box plots with center line
indicating median, bounds of boxes showing upper and lower quartile, whiskers illustrating 1.5 * interquartile range, and dots representing
the distribution of raw data (minima and maxima are included). The contrast-to-noise ratio of substantia nigra and locus coeruleus, the free-
water of basal forebrain, entorhinal cortex, amygdala, and hippocampus were enrolled. RBDQ-HK Rapid Eye Movement Sleep Behavior
Disorder Questionnaire (Chinese University of Hong Kong version), BSIT Brief Smell Identification Test modified for Chinese, SCOPA-AUT Scales
for Outcomes in Parkinson’s Disease-Autonomic, HAMD Hamilton Rating Scale for Depression, MoCA Montreal Cognitive Assessment, SuStaIn
Subtype and Stage Inference, CVIC cross-validation information criterion.
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Fig. 3 The differences of clinical and imaging features between two Parkinson’s disease subtypes in the discovery dataset. Lower CNR of
locus coeruleus or substantia nigra means more severe degeneration, while higher free-water measure means more severe degeneration. Box
plots with center line indicating median, bounds of boxes showing upper and lower quartile, whiskers illustrating 1.5 * interquartile range, and
dots representing the distribution of raw data (minima and maxima are included). The p values were FDR corrected. RBDQ-HK Rapid Eye
Movement Sleep Behavior Disorder Questionnaire—Chinese University of Hong Kong version, SCOPA-AUT Scales for Outcomes in Parkinson’s
Disease-Autonomic, CNR contrast to noise ratio, MoCA Montreal Cognitive Assessment scale, BSIT modified Brief Smell Identification Test for
Chinese. *p < 0.05; **p < 0.01; ***p < 0.001.
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DISCUSSION
We identified two distinct patterns of disease progression in PD
patients: subtype 1, in which RBD, hyposmia, and autonomic
dysfunction are early symptoms, and subtype 2, in which
hyposmia and cognitive impairment are early manifestations.
Furthermore, subtype 1 was characterized by early degeneration
in the SN and LC, followed by degeneration in amygdala,
hippocampus, and basal forebrain as the disease progress.
Subtype 2 was characterized by early degeneration in the SN,
hippocampus, amygdala, and basal forebrain, with spread to the
LC as the disease progressed. The validation dataset showed
patterns of progression similar to the discovery dataset. Moreover,
subtype 1 patients had poor levodopa response, more GBA
mutations, and worse longitudinal prognosis compared with
subtype 2 patients. These findings provide new insights into the
heterogeneity of PD from the perspective of dynamic disease
evolution, and are also potentially useful for the stratification of
patients in clinical trials and practice.
According to the Braak model, PD typically begins with RBD,

autonomic dysfunction symptoms, and hyposmia, which then
progress to emotional and classical motor disorders before
ultimately leading to cognitive impairment24,25. In this study, we
identified a subtype of PD with an identical pattern of progress
from multidimensional data by using a novel data-driven
approach. Meanwhile, subtype 1 was characterized by early
degeneration in SN and LC, which was followed by entorhinal
cortex degeneration, and eventually spreading to the limbic
system such as hippocampus, amygdala, and basal forebrain. This
trajectory of brain degeneration in subtype1 is similar with the
Braak staging hypothesis which describes the intracerebral
formation of abnormal proteinaceous Lewy bodies and the spread
of Lewy neurites from the brainstem, and midbrain to limbic
cortex25,26. Braak also pointed that the pathology of PD may
develop in the olfactory bulb and extend to adjacent regions, but

these lesions do not appear to advance substantially beyond
those areas25. Therefore, Braak concluded that although PD may
have a dual-etiology (originating from the gut and olfactory bulb),
it is the propagation of pathology through the brainstem that
ultimately drives the disease25. This viewpoint is similar with the
recently proposed “body-first” hypothesis19.
However, neuropathological and clinical evidence suggests that

Braak’s hypothesis does not apply to all PD patients. We identified
a subtype characterized by early hyposmia and cognitive
impairment, which in the later stages is accompanied by REM
sleep dysfunction. Furthermore, degeneration in the hippocam-
pus, amygdala, and basal forebrain occurred long before it did in
the LC. This subtype was consistent with the “brain-first”
hypothesis19. A recent postmortem study further supports our
findings, reporting that pathology in "brain-first" patients is
initially triggered in the olfactory bulb or amygdala20. In addition,
it has been recognized that hyposmia and cognitive impairment
can occur in the prodromal stage of PD, and is included as part of
the MDS research criteria for prodromal PD27. Our findings further
suggest that early occurrence of hyposmia and cognitive
impairment might not merely be a prodromal marker for
increased risk of PD, instead it might herald a specific PD subtype.
The clinical and imaging profiles differed significantly between

the two subtypes. Subtype 1 showed more severe RBD symptoms,
autonomic dysfunction-related manifestations, and LC degenera-
tion. By contrast, subtype 2 showed more severe cognitive
impairment, hyposmia, and limbic degeneration. These character-
istics of the two subtypes were well aligned with that of “body-
first” and “brain-first” subtypes, respectively18,19,28,29, and the
neuroanatomic biotypes identified using a data-driven clustering
approach14. These authors reported two subtypes of PD, one of
which was characterized by more severe RBD and autonomic
dysfunction14,18,19,28,29. According to the “body-first and brain-
first” hypothesis, α-synuclein aggregates originate in the periph-
eral or enteric nervous systems and gradually invade the

Fig. 4 Correlations between SuStaIn stage and disease severity in two Parkinson’s disease subtypes in the discovery dataset. FDR
corrected. UPDRS Unified Parkinson’s Disease Rating Scale, PDQ-39 Parkinson’s Disease Questionnaire-39 items, ADL activity of daily life scale.
*p < 0.05; **p < 0.01; ***p < 0.001.
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brainstem and cortex in “body-first” subtype patients. In “brain-
first” subtype patients, α-synuclein aggregation starts in the limbic
system and gradually spreads to the brainstem and peripheral and
enteric nervous systems. Consistent with these two subtypes,
autopsies demonstrate two dominant patterns of Lewy body
pathology distribution in the PD population: a brainstem-
predominant pattern and a limbic-predominant pattern29–32.
Additionally, recent study reviewed postmortem datasets and
further concluded that limbic-predominant patients had initial
olfactory bulb pathology and then spreads to amygdala and
neighborhood regions20. This viewpoint could explain why
hyposmia was more severe in subtype 2 patients in our current
findings.
It is worth noting that previous studies also found that PD

patients with RBD symptoms have worse cognitive performance33.
Traditional clustering analysis also tends to divide patients into
mild (fewer non-motor symptoms) or diffuse malignant (more
severe RBD symptoms and worse cognitive performance)
subtypes10. We considered that disease stage as a confounding
factor may contribute to differences in our conclusions. For
instance, a PD subtype with RBD as an early manifestation might
develop cognitive impairment at an advanced stage. In contrast, a
PD subtype with cognitive impairment as an early manifestation
could also show the symptoms of RBD at an advanced stage. Both
types of patients will reach a similar end point characterized by
severe disability followed by death7. PD patients with RBD
symptoms usually implies that the α-synuclein pathology has
been present for more than 10 years, which is much earlier than
the onset of motor symptoms3. These patients might be in the
advanced pathological stages, and consequently can have more
severe clinical manifestations. However, this does not imply that
PD patients with RBD symptoms suffered an early cognitive
decline. Accordingly, a clinical study with a large sample size
suggested that subjects (but not PD patients) with RBD symptoms
do not undergo a cognitive decline during a 5-year follow-up
period34. Therefore, the clinical characteristics of the two subtypes
identified in our study do not conflict with previous studies. In
addition, because the subjects included in clinical studies are at
different stages of the disease, most clustering algorithms will
partition individuals into early-stage or advanced-stage subtypes,
or mild or diffuse malignant subtypes. This is not conducive to
resolving the heterogeneous patterns of progression subtypes,
which are, in theory, orthogonal to disease progression itself16.
Therefore, the SuStaIn algorithm which combining clustering with
disease progression modeling was conducted to overcome this
limitation.
We found that subtype 1 had a significantly poor response to

levodopa replacement therapy compared to subtype 2, which
suggests different pathobiological mechanisms. In line with this
finding, recent animal and human studies have shown that a
deficiency of the LC noradrenergic system can complicate PD
symptoms and diminishes the therapeutic efficacy of levo-
dopa35,36. We found that subtype 2 patients have slight severe
SN degeneration when compared with subtype 1 patients,
probably because “brain-first” subtype is characterized by earlier
dopamine deficiency than “body-first” subtype18. Nonetheless, the
difference is minor and necessitates a prudent explanation. The
UPDRS-III scores and subscores for tremor, rigidity, bradykinesia,
axial symptoms did not differ between two PD subtypes, which
indicate a comparable burden of nigrostriatal dopaminergic deficit
between two PD subtypes. This finding was supported by previous
study, which suggested that motor symptom are not the core
features for distinguishing PD subtypes19. Furthermore, no
significant association was observed between substances such
as alcohol, tobacco, and coffee and PD subtypes in our current
study. And pesticide and toxic exposure may not directly affect
the subtype of PD. However, to address this issue more
comprehensively, further specialized epidemiological studies are

required, including meticulous quantification of factors such as
alcohol content, precise amount of drinking, number of cigarettes
smoked, and years of smoking.
In addition to classifying patients into different subtypes, we

assigned each patient for a SuStaIn stage. We found that SuStaIn
stage was significantly correlated with UPDRS-I, UPDRS-II, UPDRS-
III, PDQ-39, and ADL scores. Considering that these clinical
variables are mostly used for evaluating disease severity from
different dimensions, these results confirmed the rationality of
using the SuStaIn model to assign patients into specific subtypes
and stages.
The two subtypes identified from the validation dataset were

consistent with the subtypes determined from the discovery
dataset. Subtype 1 patients had severe RBD symptom, while
subtype 2 patients had significant poorer cognitive performance.
It should be noted that the results obtained from free-water
measures in the validation dataset were not entirely congruent
with those obtained from the discovery dataset. We speculated
that the lack of additional b0 with reverse phase-encode polarity
contributed to the low sensitivity in detecting the neurodegen-
eration of PD. It is known that susceptibility-induced distortions
could significantly reduce the accuracy of signal in small brain
regions37. The findings from validation dataset also provided new
knowledge about PD subtypes. Subtype 1 patients had faster rate
of progression in motor symptom and global disease severity
compared to subtype 2. This was consistent with previous studies
that reported a poor prognosis in PD patients with RBD
symptoms3,29. We also found that 3 patients with GBA mutations
were grouped to subtype 1, and 1 patent with LRRK2 mutations
was grouped to subtype 2. This finding was consistent the
proposed “body-first” and “brain-first” phenotypes3,18. They
considered that the pathogenic mechanism introduced by LRRK2
mutations may facilitate a “brain-first” subtype, whereas the GBA
mutation carriers seem to be characterized by early, marked
sympathetic denervation resembling more the “body-first” phe-
notype. Nonetheless, we acknowledged that the sample size for
this analysis was small, and further validation is needed.
No significant difference was found in DAT binding ratios

between PD subtypes, which might because of the flooring effect
of DAT imaging. In addition, no difference was found in levels of
amyloid-β42 and pathological tau protein in cerebrospinal fluid
between the two subtypes. These findings suggest that the
cognitive differences may not be caused by the burden of
Alzheimer’s disease-related pathology, but rather by the different
pattern of progression. Taken together, these findings expand our
understanding of PD heterogeneous by showing two subtypes
with different temporal and phenotype progression.
We acknowledge that the current findings are not completely

aligned with the pathological evidence of the "body-first and
brain-first" hypothesis31. Measurement errors in clinical and
imaging assessments, patient heterogeneity, or the different
pathological susceptibility of regions of the brain, might
contribute to this inconsistency. For example, objective measures,
such as polysomnography and colonic transit study, are more
effective in quantifying the severity of RBD and constipation
compared to subjective questionnaires. Although free-water
measurements may provide better pathophysiological information
regarding PD, diffusion MRI scanned with single-shell (b= 1000) is
not the optimal choice for estimating free-water38. Further studies
based on multi-shell diffusion MRI scans are necessary. Future
studies to investigate this inconsistency are warranted. Moreover,
future studies involving peripheral system examinations such as
meta-[123I]iodobenzylguanidine (123I-MIBG) scintigraphy and
intestinal biopsies might improve the understanding of distinct
progression subtypes. Incorporating a vast number of samples
should increase the confidence of subtype and stage inference,
and therefore, future studies with larger sample sizes will be
valuable for validating the current findings. Finally, considering
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the complexity of multidimensional data, having a subtype and
stage inference model better suited to integrating multidimen-
sional data in the near future would be a significant
development39.
In conclusion, we defined two PD subtypes with distinct

sequences of clinical and neurodegeneration events. These
subtypes exhibit differing clinical and imaging profiles and
responses to treatment. These findings corroborated the classical
view on disease progression reveal new insights into the non-
classical trajectory of clinical symptoms and neurodegeneration.
This classification might also be useful for stratifying patients
entering clinical trials, and might eventually shape more
individualized treatments.

METHODS
Participants
The discovery dataset included 242 PD patients and 133 healthy
control subjects. The PD patients were recruited from the Second
Affiliated Hospital of Zhejiang University School of Medicine and
diagnosed by experienced neurologists according to the United
Kingdom Parkinson’s Disease Society Brain Bank criteria. Healthy
controls were recruited from the community. Participants with
missing values in clinical assessments or MRI scans that used the
SuStaIn model were excluded. In addition, all images were visually
inspected, and images showing intracranial mass, cerebrovascular
disorders, and obvious artifacts were excluded. In total, 228 PD
patients and 119 healthy controls were included.
The protocol, consent form, and other relevant documentations

were approved by the ethics committee of the Second Affiliated
Hospital of Zhejiang University School of Medicine before the
study commenced. The study was performed in accordance with
the Declaration of Helsinki and consistently with Good Clinical
Practice. Before enrollment, all patients provided their written
informed consent.

Clinical and neuropsychological assessments
The UPDRS, HY, PDQ-39, and ADL scales were evaluated in PD
patients. The subscores of tremors, rigidity, bradykinesia, and
axial symptoms were calculated: subscore for tremor is obtained
by adding the UPDRS-III items 20–21; subscore for rigidity is
equal to the UPDRS-III item 22; subscore for bradykinesia is
obtained by adding the UPDRS-III items 23–26 and 31; subscore
for axial symptoms is obtained by adding the UPDRS-III items
27–30. All participants underwent evaluation for Brief Smell
Identification Test (BSIT) modified for Chinese, Scales for
Outcomes in Parkinson’s Disease-Autonomic (SCOPA-AUT)
survey, Rapid Eye Movement Sleep Behavior Disorder Ques-
tionnaire—Chinese University of Hong Kong version (RBDQ-HK),
MoCA test, Hamilton Rating Scale for Depression (HAMD). For PD
patients, all of the above assessments were conducted during
the "OFF state" (a period at least 12 h after withholding PD
medications).
The self-reported lifetime histories of smoking, alcohol con-

sumption, pesticide and toxic exposure of participants were
recorded. Participants were defined as alcohol drinkers if they
reported drinking at least 1 drink per week, and nondrinkers were
defined as those reporting drinking 0 or <1 alcohol drink per
week. Participants were defined as smokers if they reported
smoking at least 1 cigarette per week, and nonsmokers were
defined as those reporting smoking 0 or <1 cigarette per week.
Pesticide exposure history refers to having worked in a job that
required mixing, applying, or being exposed to any form of
pesticide, such as herbicides, insecticides, fungicides, rodenticides,
or acaricides (>6 months). Toxic exposure history was defined as
exposed to some of toxic, including heavy metals, and organic
pollutants (>6 months).

Additionally, 112 patients voluntarily underwent a levodopa
challenge test. The UPDRS-III score was assessed during the OFF
state and repeated one hour after administration of 200mg
levodopa and 50mg benserazide (the "ON state")40. The levodopa
response was expressed as the rate of change in the UPDRS-III
score [(UPDRS-IIIOFF− UPDRS-IIION)/UPDRS-IIIOFF].

Magnetic resonance imaging data acquisition and analysis
Image acquisition. All participants were scanned on a GE
Discovery MR750 3.0T MRI scanner. Earplugs and foam pads were
used to reduce noise and head motion. High-resolution 3D T1-
weighted structural MRI, diffusion tensor imaging (DTI), and
neuromelanin-sensitive imaging (NM-MRI) were performed.
High-resolution 3D T1-weighted image was acquired using a fast

spoiled gradient-recalled sequence: echo time (TE)= 3.036ms;
repetition time (TR)= 7.336ms; inversion time= 450ms; flip angle
(FA)= 11°; field of view (FOV)= 260 × 260mm2; matrix= 256 × 256;
slice thickness= 1.2mm; number of slices= 196 (sagittal). DTI was
acquired using a spin echo-echo planar imaging sequence:
TR= 8000ms; TE= 80ms; flip angle= 90 degrees; field of
view= 256 × 256mm2; matrix= 128 × 128; slice thickness= 2mm;
slice gap= 0mm; number of slices= 67 (axial). Diffusion images
were acquired from 30 gradient directions (b= 1000 s/mm2), and
included five acquisitions without diffusion weighting (b= 0). An
additional b= 0 acquisition with reverse phase-encode polarity was
acquired for distortion correction. Neuromelanin image was
acquired using a T1-weighted fast spin echo sequence:
TE= 18.6ms; TR= 600ms; FA= 77°; FOV= 220 × 220mm2;
matrix= 512 × 512; slice thickness= 3mm; slice gap= 0mm;
number of slices= 17 (axial). Scanning coverage was set from the
top of basal ganglia to the bottom of the medulla oblongata. The
acquisition plane was orthogonal to the brainstem.

Image processing
Neuromelanin-sensitive MRI. SN and LC are vital nodes in the
trajectory of PD progression. With the advent of NM-MRI, the SN
and LC are visible and measurable in vivo (Supplementary Fig. 3).
Therefore, we used NM-MRI to measure the integrity of SN and LC.
An author (C.Z.), who was blinded to the subjects’ information,
performed two manual measurements with a time interval of one
month. These measurements were conducted using ITK-SNAP
(https://sourceforge.net/projects/itk-snap/). The mean and stan-
dard deviation (SD) of the signal intensity (SI) in SN, LC, cerebral
peduncle (CP), and pontine (PT) were calculated. The CNRSN/LC was
calculated as (SISN/LC− SICP/PT)/SDCP/PT. The averaged CNRSN/LC
value from twice assessments were used for final analysis41. A
lower CNR value indicates more serious degeneration. Detailed
steps about manual measurements could be found in our previous
study35.

Diffusion MRI. According to previous studies focusing on the
trajectory of PD progression18,20,28, we measure the microstruc-
tural integrity of amygdala, hippocampus, entorhinal cortex, and
basal forebrain. In this study, we calculated the free-water
fractional volumes of them, which is an advanced diffusion MRI
measure that estimates the volume fraction of extracellular
space42. Previous studies suggested that free-water increased
under the conditions of neuroinflammatory and atrophy-based
neurodegeneration43. Free-water is considered as a more sensitive
measure than traditional diffusion and volume measures in
neurodegeneration44.
DTI data were processed using the FMRIB Software Library (FSL,

http://www.fmrib.ox.ac.uk/fsl) and MRtrix3 (www.mrtrix.org). First,
skulls were stripped from the DTI data for each participant. Then,
topup and eddy were executed to correct susceptibility-induced
distortions, eddy currents, and movements in diffusion data45.
According to previous study, free-water was calculated by fitting a
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bi-tensor model46. The signal attenuation of the water molecules
caused by and extracellular and intracellular water was predicted
by this model, respectively. The derived free-water image reflects
the volume fraction of extracellular space water. The steps to
extract the free-water measure of above brain regions were as
follows: 1) the native T1-weighted images were linearly and non-
linearly aligned into Montreal Neurological Institute (MNI)
standard space, and the outputs were visually inspected for errors
and bad registration (4 PD patients and 1 healthy control were
excluded in the following analysis); 2) the b0 images were linearly
aligned to native T1-weighted images, and the free-water images
were projected onto the T1-weighted images; 3) the free-water
images were then linearly and non-linearly aligned into MNI space
using the transformation matrix derived from T1-weighted images
registration; 4) the free-water of four regions were then extracted:
amygdala, hippocampus, entorhinal cortex, and basal forebrain.
Amygdala, hippocampus, and entorhinal cortex atlas were
acquired from the Human Brainnetome Atlas (http://
atlas.brainnetome.org/). The basal forebrain (ch1-4 were com-
bined) was defined according to the stereotaxic probabilistic maps
imbedded in the Statistical Parametric Mapping (SPM, https://
www.fil.ion.ucl.ac.uk/spm/) toolbox Anatomy v22c47. To alleviate
partial volume effects, internal erosion with one voxel were
implemented in all atlas.
In summary, CNRSN, CNRLC, free-water of amygdala, hippocam-

pus, entorhinal cortex, and basal forebrain were calculated for next
analysis. We also evaluated the asymmetry of imaging features
included in the SuStaIn model. The formula used to calculate the
asymmetry index was as follows: Asymmetry index= abs
[(featureleft− featureright)/(mean (featureleft+ featureright))]48.

Construction of the subtype and stage inference model
Feature selection. Five continuous clinical features, namely
RBDQ-HK, SCOPA-AUT, BSIT, MoCA, and HAMD, were included
in the analysis. Motor symptoms were only assessed on PD
patients, and were therefore excluded. In addition, as we aim to
model the progression in established PD (rather than prodromal
disease), which is not suitable for UPDRS scores (all patients
have motor dysfunction) in the SuStaIn model. The inclusion of
UPDRS scores in the model could result in motor dysfunction
being identified as the earliest event in PD progression. At the
individual patient level, this may be misleading as research
conducted on populations in preclinical stages of Parkinson’s
disease has revealed that changes in smell and sleep tend to
appear prior to motor symptoms24.
MRI features included CNRSN, CNRLC, free-water of amygdala,

hippocampus, entorhinal cortex, and basal forebrain, each of
them was averaged over the left and right hemispheres. As a
result, a final subject*feature matrix (347*11) was obtained for
further analysis. The confounding variables including age,
gender, and years of education were adjusted for as covariates
of no interest. The adjusted features were then converted into z
scores relative to the healthy controls (by first subtracting the
means of healthy controls, then dividing by the standard
deviation of healthy controls). As the measure of BSIT, MoCA,
CNRSN, and CNRLC decrease indicates impairment, we multiplied
their z scores by −1, so that a larger z score indicates more
severe impairment for all features. Finally, the normalized
patient*feature matrix (228*11) was input into the model.

Modeling. pySuStaIn, a Python implementation of the SuStaIn
algorithm49, was used to identify PD subtypes with distinct
progression patterns and to grade a disease stage for each
participant. Each feature was assigned three z scores (1, 2, and 3),
which represented three continuous events (stages). In other
words, each stage corresponds to a feature achieving a new z
score. The advantage of this method is that it represents the

continuous linear accumulation of changes caused by pathologic
damage, rather than an instantaneous switch from normal to
abnormal. Therefore, the pattern of progression for each disease
subtype was characterized as a piecewise linear z score model,
which consisted of a series of stages. Individuals were typed
according to the likelihood they belonged to each SuStaIn
subtype49, and the SuStaIn stage was determined by choosing
the most probable stage16. The estimation of model uncertainty
involved conducting 1,000,000 MCMC iterations. SuStaIn utilizes
this method calculated probability for each individual into a
specific stage and subtype based on their maximum likelihood16.
Individuals with no biomarker abnormality were defined as being
at stage 0 and no subtype was assigned. Finally, by iteratively
increased the number of subtypes in the SuStaIn model, a less
complex model (smaller number of subtypes) with lower CVIC
calculated through 10-fold cross-validation was considered as the
optional number of subtypes21. The algorithms and analytical
procedures used here have been described in detail for recent
studies15,16,23.

Validation dataset. We validated the reproducibility of the PD
subtypes in the PPMI dataset (www.ppmi-info.org/access-data-
specimens/download-data), RRID:SCR_00643150. For up-to-date
information on the PPMI, visit www.ppmi-info.org. Subjects were
scanned on Siemens 3.0 T TIM Trio scanners with the same
scanning parameters. The scanning parameters of 3D T1 image
were as follows: TR= 2300 ms; TE= 2.98 ms; inversion
time= 900 ms; flip angle= 90°; slice number= 176; acquisition
matrix= 240 × 256 and voxel size= 1 × 1 × 1 mm3. Diffusion
tensor image was obtained with the following parameters:
TR= 900 ms, TE= 88 ms, flip angle= 90°, voxel
size= 2 × 2 × 2 mm3, slice number= 72, 64 gradient directions
with a b-value of 1000 s/mm2. One non-gradient volume
(b= 0 s/mm2) was also acquired. As the PPMI dataset does not
contain NM-MRI data, we only calculated the free-water of SN
and LC in MNI space. The SN label was obtained from the
Automated anatomical labeling atlas 351, and the LC label were
acquired based on a LC probability atlas with peak signal
coordinates observed at two SDs52. Consequently, the free-
water of SN, LC, amygdala, hippocampus, entorhinal cortex, and
basal forebrain were input into the SuStaIn model. Clinical
assessments including University of Pennsylvania Smell Identi-
fication Test (UPSIT), SCOPA-AUT, RBDQ, MoCA, and Geriatric
Depression Scale (GDS) were used enrolled for SuStaIn model
construction. Finally, the baseline clinical and MRI data of 153
PD patients and 67 healthy controls were enrolled for validation
analysis. The model construction procedures were same with
the discovery dataset.
The MDS‐UPDRS and HY scale were conducted during “OFF”

state. Subscore for tremor is obtained by adding the MDS-
UPDRS-III items 15–18. Subscore for rigidity is equal to the MDS-
UPDRS-III item 3. Subscore for bradykinesia is obtained by
adding the MDS-UPDRS-III items 4–9. Subscore for axial
symptoms is obtained by adding the MDS-UPDRS-III items 1
and 10–13. In addition, subscore for PIGD was calculated as the
mean of 5 items, including walking, balance and freezing in
MDS-UPDRS-II items 12–13, and gait, postural stability and
freezing of gait in MDS-UPDRS-III items 10–1253,54. The DAT
binding rate (caudate and putamen) and cerebrospinal fluid
proteins (α‐synuclein, amyloid-β42, tau, and phosphorylated tau
protein) were collected. The details of the DAT processing and
cerebrospinal fluid biomarker measurements could be found in
our previous study55,56. The gene mutation information is only
available in the PPMI dataset. According to the methods used in
recent studies, the LRRK2 genetic testing included G2019S and
R1441G/C, N1437H mutations; GBA genetic testing included
N370S (also called N409S) in all, and L483P, L444P, IVS2+ 1, and
84GG mutations; SNCA genetic testing included A53T mutation;
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dual mutation carriers for both LRRK2 and GBA were
excluded57–59.
Part of the PPMI’s participants collected the information about

environmental factors tied to PD risk. This is conducted through
a single site, University of California, San Francisco, and PPMI
participants provide consent to be followed in PPMI FOUND
separately. Alcohol drinkers were defined as drunk 100 or more
alcoholic drinks during lifetime; smokers were defined as
smoked 100 or more cigarettes during lifetime; coffee drinkers
were defined as regularly drunk caffeinated coffee, that is, at
least once per week for 6 months or longer; pesticides exposure
were defined as had or ever had a job in which you mixed,
applied, or were exposed in some other way to any type of
pesticide, including herbicides, fungicides, insecticides, rodenti-
cides or fumigants; toxicants exposure were defined as used
glues or adhesives 100 or more days at work or at home during
lifetime.
The PPMI project was approved by the Institutional Review

Board or Independent Ethics Committee of all participating sites
in Europe, including Attikon University Hospital (Greece),
Hospital Clinic de Barcelona and Hospital Universitario Donostia
(Spain), Innsbruck University (Austria), Paracelsus‐Elena‐Klinic
Kassel/University of Marburg (Germany), Imperial College
London (UK), Pitié‐Salpêtrière Hospital (France), University of
Salerno (Italy), and in the USA, including Emory University, Johns
Hopkins University, University of Alabama at Birmingham, PD
and Movement Disorders Center of Boca Raton, Boston
University, Northwestern University, University of Cincinnati,
Cleveland Clinic Foundation, Baylor College of Medicine,
Institute for Neurodegenerative Disorders, Columbia University
Medical Center, Beth Israel Medical Center, University of
Pennsylvania, Oregon Health and Science University, University
of Rochester, University of California at San Diego, and
University of California, San Francisco. Informed consent was
provided according to the Declaration of Helsinki.

Statistical analysis. Statistical Package for the Social Sciences
(version 23) was used for statistical analysis. Comparisons of
demographics, clinical and imaging variables between PD patients
and healthy control were performed using two-sample t-test and
chi-squared test as appropriate. General liner model was
conducted to assess the difference of clinical/imaging variables,
asymmetry index, levodopa response, DAT binding rate (validation
dataset), and cerebrospinal fluid proteins (validation dataset)
between PD subtypes. Confounding variables including gender,
age, education, and SuStaIn stage were adjusted as fixed effects in
linear mixed-effects model. Comparisons of environmental factors
and gene mutation (validation dataset) between PD subtypes
were performed using chi-squared test. Pearson correlation
analysis was conducted to assess the consistency between the
SuStaIn-model-inferred disease stage and UPDRS, PDQ-39, and
ADL scores, which reflect the severity of the disease. FDR
correction was performed for multiple comparison correction,
and a two-tailed p-value < 0.05 was considered significant.
Additionally, the linear mixed-effects model was conducted to
assessed the difference of longitudinal progression between PD
subtype (group*time effect, validation dataset, Supplementary
Table 5).
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