
ARTICLE OPEN

Cortex-wide topography of 1/f-exponent in Parkinson’s disease
Pascal Helson 1✉, Daniel Lundqvist 2, Per Svenningsson 3,4, Mikkel C. Vinding 2,5✉ and Arvind Kumar1✉

Parkinson’s disease (PD) is a progressive and debilitating brain disorder. Besides the characteristic movement-related symptoms,
the disease also causes decline in sensory and cognitive processing. The extent of symptoms and brain-wide projections of
neuromodulators such as dopamine suggest that many brain regions are simultaneously affected in PD. To characterise brain-wide
disease-related changes in neuronal function, we analysed resting state magnetoencephalogram (MEG) from two groups: PD
patients and healthy controls. Besides standard spectral analysis, we quantified the aperiodic components (κ, λ) of the neural
activity by fitting a power law κ/f λ – f is the frequency, κ and λ are the fitting parameters—to the MEG power spectrum and studied
its relationship with age and Unified Parkinson’s Disease Rating Scale (UPDRS). Consistent with previous results, the most significant
spectral changes were observed in the high theta/low-alpha band (7–10 Hz) in all brain regions. Furthermore, analysis of the
aperiodic part of the spectrum showed that in all but frontal regions λ was significantly larger in PD patients than in control
subjects. Our results indicate that PD is associated with significant changes in aperiodic activity across the whole neocortex.
Surprisingly, even early sensory areas showed a significantly larger λ in patients than in healthy controls. Moreover, λ was not
affected by the Levodopa medication. Finally, λ was positively correlated with patient age but not with UPDRS-III. Because λ is
closely associated with excitation-inhibition balance, our results propose new hypotheses about neural correlates of PD in cortical
networks.
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INTRODUCTION
In Parkinson’s disease (PD), the progressive loss of the dopami-
nergic cells not only depletes the neuromodulator dopamine but
also alters the dynamics of other key neuromodulators such as
serotonin, noradrenaline and acetylcholine (see the review by
McGregor and Nelson1). Given the widespread prevalence of
neuromodulators in the neocortex, it is expected that the
neocortical neural circuits dynamics and function would also be
affected in PD. That is, the signature of PD-related dysfunction
should also be visible in the neuronal activity recorded from
neocortical regions.
Consistent with this, analyses of electroencephalogram (EEG)

and magnetoencephalogram (MEG) have revealed several
changes in the population activity of different neocortical regions
(see reviews by Geraedts et al.2 and Boon et al.3). While the results
are diverse given the heterogeneity of the patients, it is commonly
observed that the low frequency—delta to low-alpha band—
power increases whereas high-alpha to gamma band power
decreases4.
This kind of spectral slowing was shown to be correlated with

motor and cognitive symptoms5. Such spectral slowing has been
observed in the earliest stages of the disease (e.g., in the posterior
cortex regions6), hence demonstrating that it is not an effect of
dopamine medication. Moreover, dopamine replacement therapy
hardly reverses the spectral slowing, especially in the more
advanced PD patients6.
Compared to this (power) spectral slowing, the frequency peaks

were much less studied. Results on the latter usually hold for
global quantities such as the average of cortical oscillations (e.g.,
see Soikkeli et al.7), or the whole spectrum dominant peak (e.g.,
see Geraedts et al.2 for a review), which both decrease in PD

patients. Here we study the change in frequency peaks which is
somewhat similar as the (power) spectral slowing as frequency
peaks follow high power parts of the power spectral density (PSD).
This analysis is a way to test if spectral slowing is also seen in
our data.
Spectral power alterations are also associated with changes in

functional connectivity (FC) in PD patients. Throughout the
disease, the low-alpha band FC decreases after an initial
increase8,9. Increase in beta band synchrony is also commonly
observed in the basal ganglia (BG) as well as in the cortico-basal
ganglia loops (see the review by Hammond et al.10).
Thus, previous work on analysis of EEG/MEG has been largely

focused on oscillatory activity in different frequency bands.
Besides oscillations, the aperiodic part of the population activity
can also be informative about the underlying network dysfunction
and relative excitation-inhibition balance11. To the best of our
knowledge, the aperiodic part of the EEG/MEG activity in PD was
characterised in three studies. First, Vinding et al.12 reported
steeper power-law decay of MEG power in sensorimotor regions
of PD patients. In a more recent study, Wiesman et al.13 estimated
the aperiodic activity on four different frequency bands showing a
neurophysiological slowing—decrease through frequency of the λ
deviation from healthy control (HC). Finally, Wang et al.14 studied
low-spatial resolution EEG from PD-ON and OFF medication
showing that there is a significant increase of the offset and
exponent power-law parameters from OFF to ON medication in
some of the sensors. However, thus far it has remained unclear
how the spatial distribution of aperiodic component of the
population activity is altered by chronic dopamine depletion and
dopamine replacement therapy in human patients.
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Therefore, we studied the spatial distribution of spectral peaks
and aperiodic component of the activity from neural populations
measured with MEG in PD patients in their ON and OFF
medication states. To this end, MEG acquired using 306 sensors
were pre-processed to obtain 44 sources’ activity distributed all
over the neocortex according to the HCP-MMP1 atlas15. We found
that indeed there is a slowing in the MEG spectrum even when
the spectral peaks were identified without classical frequency
band definition. Analysis of the power-law exponent (λ) of MEG
spectrum revealed a significant increase in the λ in sensory and
motor regions in PD patients compared to the healthy controls. In
fact, λ showed a spatial positive gradient from anterior to posterior
brain regions in PD patients. Surprisingly, the frontal regions
which receive most of the dopaminergic projections did not show
a significant difference in λ. Levodopa administration did not
affect the spatial distribution of λ. However, λ changes were
correlated to the patients’ age but not to their Movement Disorder
Society’s UPDRS-III score (clinical rating of motor symptoms16).
That is, neocortical activity dynamics is more vulnerable to chronic
dopamine changes in older PD patients than in younger patients.
Moreover, our results reveal aspects of neocortical population
activity which are not affected by Levodopa therapy. Because 1/f-
exponent (λ) can be linked to excitation-inhibition (EI) balance, our
analysis suggests new testable hypotheses about the PD-related
changes in the neocortex.

RESULTS
To characterise how cortical activity is changed in human PD
patients, we analysed the MEG signals acquired during resting
state. To this end, we quantified both the oscillatory peaks and the
slope of the power spectrum for MEG sources corresponding to 44
different brain regions, and then we estimated the dependence of
the latter on age and UPDRS-III, see “Methods” for details.

Slowing of spectral peaks in PD
Analyses of MEG and EEG from PD patients suggest that frequency
associated with peak power in the theta and alpha bands is
reduced in human PD patients when compared to healthy
controls3. To test whether this is also the case in our data, we
searched for Gaussian peaks in the spectrum of MEG signals
without explicitly defining the frequency bands (see “Methods”).
By estimating the distribution of all the frequency peaks

observed across all the brain regions, we found that indeed in
PD there is a general slowing of spectral peaks (PD-OFF vs HC,
P value < 10−20 with Kolmogorov–Smirnov test, see Fig. 1a).
Notably, Levodopa medication did not improve this slowing, in
fact, if at all it seemed to worsen the frequency peaks slowing
(PD-OFF vs PD-ON, P value < 0.017 with Kolmogorov–Smirnov test).
Next, we sorted the frequency peaks into classical frequency

bands (theta= 4–8 Hz, alpha= 8–13 Hz, beta = 13–30 Hz, and
gamma= 30–45 Hz). Thus, we obtained the proportion of peak
frequency (pband;bG ) for each band, MEG source b and group G.
Given the frequency peaks slowing there were not enough peaks
in the theta and gamma bands to compare the HC and PD groups
(Fig. 1a, c, d). This explains the missing dots for some brain regions
in Fig. 1c, d. Therefore, we restricted our statistical analysis to
alpha and beta bands as it is not possible to perform statistical
analysis with the few points we have in theta and gamma bands.
Even though there was a reduction in alpha band peak power,

the difference did not reach a statistical significance level for none
of the brain regions (Fig. 1b, left). In the beta band also we found a
widespread decrease in the mean peak frequency among most of
the patients (Fig. 1b, right). This suggests that frequency peaks
slowing does not affect the alpha and beta bands locally.
However, when we pool data across all the brain regions,
frequency peaks slowing can be observed in all bands. The main

local effect (i.e., brain region-specific) of frequency peaks slowing
is the reduction in the power of gamma-band oscillations and
increase in the power of theta bands oscillations. In particular,
gamma-band peaks were almost completely missing from the
frontal regions in PD patients (Fig. 1d). By contrast, HC seem to be
lacking theta band peaks in the central–temporal and posterior
brain regions (Fig. 1c).
The lack of significance might be due to the low number of data

points which makes it very hard for changes in frequency peaks
distribution to be significant. But it is also possible that each
patient’s brain compensates in its own way, and therefore we do
not find statistically significant changes at the group level.
Because the periodic component of the data was not informative
about the disease, we performed the analysis on the aperiodic
component in order to get more insights on how these changes
are spatially and temporally distributed over the cortex.

Neocortex-wide change in the 1/f-exponent distribution in PD
Next, we focused on the aperiodic component of the neural
activity and analysed how the spectral power decreased as a
function of frequency. Using the FOOOF algorithm, we fitted a
power-law function to the PSD (see “Methods”) and estimated the
exponent λ for each MEG source and subject. Across all the data, λ
spanned a relatively wide range 0.1–2.0. However, temporal
variation of λ for individual brain regions in both healthy controls
and PD patients was smaller than across subject variance (Fig. 2a,
b). We found that in healthy controls, λ was smaller in sensory
regions than in the cognitive regions (Fig. 2c, left). However, this
apparent gradient of λ from frontal to posterior regions is not
statistically significant.
By contrast, in PD patients (both OFF and ON medication) λ was

larger in sensory regions than in the cognitive regions (Fig. 2c,
middle, right). Moreover, λ showed a clear frontal to posterior
gradient (Spearman correlation (rs), P value < 10−6 and

rsðλbG; ybÞ<�0:65 where yb is the y-coordinate of the brain region
b, G∈ {PD OFF, PD ON} and λ stands for the time average of λ).
From Fig. 2c, it is clear that there are differences in the spatial

distribution of λ in PD patients and HC. To quantify this difference,
we performed a brain region-wise comparison of λ in HC and PD
patients OFF medication (Fig. 2d, right). We found that PD patients
(OFF medication) have larger λ in auditory, visual, somato-senssory
and motor regions than in HC (for significant figures, please see
Fig. 2d, right). The same landscape of differences in λ was observed
when we compared PD patients ON medication with HC (Fig. 2d,
middle). Interestingly, a comparison of PD patients in ON and OFF
medication states did not reveal any significant differences across
the whole neocortex (Fig. 2d, left). We also note that still in most
brain regions (except frontal areas), the group variance among HC
was much lower than among PD patients (edge colours of the dots
in Fig. 2c). Finally, themost significant changes were observed in the
left hemisphere, which is expected as in our cohort most patient’s
disease started in their right hand.
λ is not constant across time (Fig. 2a, b). To quantify these

fluctuations over time, we measured the coefficient of variation
(CV, see “Methods”) of λ for each brain region in each subject.
Small value of CV of λ indicates temporal stability of λ. In general λ
was stable over time (small CV). However, λ was more variable in
frontal regions in both PD patients and HC (Supplementary
Fig. 4c). A comparison of CV of PD patients and HC revealed that
for most brain regions λ was less variable in PD patients than in
HC, particularly in the sensory regions where the CV difference
was statistically significant (Supplementary Fig. 4d, right).
Moreover, even if there is no significant difference in this

second-order temporal statistics between PD patients ON and OFF
medication, Levodopa seems to decrease temporal fluctuations in
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Fig. 1 Spectral slowing, a peak frequency perspective. a Distribution of peak frequencies in all brain regions of all individuals from the
different groups. b Distribution of frequency peaks in alpha and beta bands. The colour inside the dots is the difference (PD-OFF - HC ses1) of
the mean peak frequency of each brain region in alpha (left) and beta (right). The edge colour of the dots is the normalised difference (PD-OFF
- HC ses1) of proportion of individuals having at least one peak frequency in the given band. c, d Distribution of frequency peaks in theta (c)
and gamma (d) bands. Dot colour indicates mean peak frequency within the band. Edge colour of the dots indicate the proportion of
individuals having such peaks in the given group.

P. Helson et al.

3

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2023)   109 



some brain regions, especially frontal ones (Supplementary
Fig. 4d, left).
Finally, as λ is relatively stable over time, one can estimate λ for the

whole time series instead of small overlapping epochs. However, a
single λ value for the whole time series obscures the temporal
fluctuations in the aperiodic component which may be informative
about the disease-specific brain dynamics. Indeed, we observed that
fluctuations are weaker in PD patients even though they have higher
aperiodic components (Supplementary Fig. 4c, d). This is counter-
intuitive as we might expect larger variations for higher λs.

The 1/f-exponent is positively correlated with age but not
with UPDRS-III in PD
In the above, we have shown how λ was altered in PD patients
across the whole neocortex. The question arises: does this difference
in λ also correlate with the PD severity? λ could be affected by
subject age and UPDRS-III score. Therefore, we estimated partial
correlations between λ and UPDRS-III given age, and age given
UPDRS-III for each brain region separately (see “Methods”).
We found that a negative partial correlation between λ and

UPDRS-III scores but these correlations do not reach a statistical

Fig. 2 Cortex-wide distribution of the mean over time of λ within each group. a, b Temporal evolution of λ over time in two specific regions
(MT+C-NVA-lh and MTC-rh) for PD patients OFF medication (pale blue) and HC (pale red). Each line corresponds to one subject. Blue and red
lines indicate group averages. c Temporal average λG of λG for each group G∈ {HC, PD-ON, PD-OFF}. Here mean½λG� and std½λG� stand,
respectively, for the mean and standard deviation of λG over the group G. The inside colour refers to the mean over the group. The border
colour refers to the fluctuation of λG within the group G. d Difference of temporal average of λ between two groups Ga, Gb∈ {HC, PD-ON, PD-
OFF}. The inside colour refers to the difference between the means over the groups. The border colour refers to the averaged fluctuation of λ
combining the two groups Ga and Gb.
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significance level (Fig. 3a, see also Supplementary Fig. 5 for Spearman
and Pearson correlations). On the other hand, in PD patients (both
ON and OFF medication), λ and age were positively correlated,
especially in the left hemisphere T-P-O-J, SPC, PCC, MTC, MT + C-
NVA, I-FOC, EAC, DSVC and LTC, VSVC in the right hemisphere
(Fig. 3b, see also Fig. 4 for brain region names, Supplementary Table
1 for exact P values and Supplementary Fig. 6 for Spearman and
Pearson correlations). By contrast, we did not find any significant
correlation between λ and age in healthy controls. Despite a decline
in the dopaminergic neuron function due to normal ageing17, these
“normal” changes do not seem sufficient to affect the aperiodic
component of cortical population activity, unlike in PD.
It is somewhat counterintuitive that despite significant PD-

related changes in λ, it was not correlated with UPDRS-III, even
in the motor regions of the cortex. This result may be explained
by a lack of sensitivity of the data or by the fact that λ is not by
itself related to motor symptoms. The fact that the increase in λ
was positively correlated with age suggests that persistent
dopamine depletion may be more detrimental for brain
networks that are already undergoing age-related deteriora-
tion like the sensory areas. For instance, vision is impaired in
PD, especially in patients with cognitive decline18,19. Alterna-
tively, brain networks in younger patients may be more
malleable to compensate for the loss of dopamine than in
older patients.

DISCUSSION
Given chronic change in the neuromodulator dopamine, we
expect that excitation and inhibition (EI) balance may be altered in
the neocortical regions. To test this we analysed the aperiodic
activity of MEG data which has been inversely related to EI balance
in several previous studies20–29. We found that the 1/f-exponent
(λ) was higher in PD patients than in HC in most brain regions but
not in frontal regions. The most significant changes occurred
within sensory and motor regions. Moreover, we found that λ
showed a spatial gradient from posterior to anterior brain regions
in PD patients. Although not significant, in HC the gradient of λ
was reversed compared to that in the PD patients. When
examining the fluctuations of λ over time, we found that λ was
more variable in the frontal regions. Moreover, λ fluctuated more
in HC controls than in PD patients. This was not expected as λ was
globally larger in PD. Surprisingly, Levodopa medication had a
little effect on the topography of λ. Finally, we computed different
correlation measures between λ and both the age and UPDRS-III
score. We did not find any correlations in the HC group either with
age or UPDRS-III. Although not significant, global negative
correlations with UPDRS-III were observed in PD patients. On the
other hand, λ was positively correlated with age in PD patients in
both ON and OFF medication states.
Previously, Vinding et al.12 analysed the same data for 1/f slope

(λ) but that analysis was restricted to the sensorimotor association
regions. Consistent with our results, they showed that the

Fig. 3 Cortex-wide distribution of partial distance correlation between the mean over time λG and Y knowing Z for each group
G∈ {HC ses1, PD ON, PD OFF}. a (Y, Z)= (UPDRS, age). b (Y, Z)= (age, UPDRS).
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exponent is steeper in the sensorimotor cortex of PD patients. Still
aligned with our results, they also found that λ was positively
correlated with age in PD patients but not in HC and the
correlation between λ and UPDRS-III was not significant. We build
on that study and now show the topography of λ over the whole
neocortex in both healthy controls and PD patients. Our analysis
shows that λ changes in early sensory regions are also correlated
with age but only in PD patients.
Recently, Wang et al.14 analysed the 1/f slope of EEG activity.

Our results and methods differ from theirs in several ways. First,
Wang et al.14 acquired brain activity using 32 EEG sensors,
whereas we have a much denser spatial sampling of brain activity
as we used 306 MEG sensors. Moreover, we performed a source
reconstruction whereas their analysis was at the sensor level.
Concerning the topography of λ’s topography, we found that λ
decreased (increased) from sensory to cognitive regions in PD
patients (healthy controls). By contrast, Wang et al.14 have
reported similar topography in both healthy and PD patients. In
their study, λ was high in the central regions with a decrease in all
directions from there on. This difference might be due to the fact
that we used a brain atlas to project the MEG sensors to sources as
well as the difference in the number of EEG/MEG channels used in
two studies. Nevertheless, this is a conspicuous difference that
should be investigated in a study where both MEG and EEG are
acquired from the same patients. In contrast to Wang et al.14, we
did not find significant differences between PD-ON and PD-OFF
states. This could be due to the difference in recording protocols
in the two studies: in our case, dopamine effects were acute in the

sense that patients were OFF medication for at least 12 hours but
then took the medication only one hour before the ON
medication state was recorded. Unlike ref. 14, we have analysed
partial correlation between UPDRS-III/age and each MEG source.
This separation of brain regions and partial correlation revealed
that λ was correlated to age but only in PD patients.
There are at least three possible interpretations of the changes

in λ. Population signals such as MEG are generated by dipoles
created by transmembrane currents30. The transmembrane
currents are generated due to synaptic inputs impinging on the
neurons. Therefore, the frequency spectrum of the MEG (and also
EEG, LFP) reflects the time constants of the synaptic inputs.
Typically, inhibitory (GABAergic) synaptic transients have a longer
time constant than excitatory (glutamatergic) current. Therefore,
increased λ may be an indicator of either increased GABAergic or
reduced glutamatergic currents. That is, λ is a proxy of relative
excitation-inhibition (EI) balance11.
However, even glutamatergic synaptic inputs due to NMDA

receptors can also be very slow. Therefore, it is also possible that
increased λ may indicate a relative increase in the NMDA type
synaptic currents. In the context of our results, we found that λ in
PD is increased in the sensory areas. These areas usually have
relatively small fractions of NMDA receptors31.
Finally, it is also possible that the change in λ is simply a

reflection of changes in the dynamics of local and external inputs
to the network. That is, if the network is driven by slowly
fluctuating inputs it will also reflect in slower fluctuations and

Fig. 4 Cortex-wide projection of the centre of mass of the 44 brain regions investigated here using MEG. The brain regions were extracted
using the HCP MM1 atlas.

P. Helson et al.

6

npj Parkinson’s Disease (2023)   109 Published in partnership with the Parkinson’s Foundation



therefore larger λ. If this is the case then we would also expect a
change in the time scales of spiking activity.
Each of these possibilities suggest a different but testable

hypothesis. If the slope of the MEG reflects change in the relative
fraction of excitatory and inhibitory currents, then it is tempting to
hypothesise that in PD there is an increase in inhibition in the
sensory region. Increase in relative fraction of NMDA will also
account for an altered excitation-inhibition balance on longer time
scales. Techniques such as MRS could be used for a non-invasive
estimate of the relative fraction of AMPA, NMDA and GABA in
order to test this hypothesis. Ideally, these hypotheses should be
tested in animal models with in vivo measurements of excitatory
and inhibitory currents.
If changes in the λ reflect a change in the time scales of

fluctuations in the input then, we will need to explain how in a
presynaptic network the spectrum of neuronal activity could
change. For that we again revert to the hypothesis of a change in
excitation-inhibition balance. However, before following this line
of reasoning, we need to estimate whether there are significant
changes in the spiking activity of a given brain region where λ has
changed. This suggests that spiking activity from early sensory
regions should also be recorded in animal models of PD.
As we discussed earlier, it is tempting to relate the slope of the

frequency spectrum to EI balance. Origin of pathological activity in
the basal ganglia during PD, especially the beta band oscillations
is closely related to changes in the EI balance in STN and GPe
regions of the basal ganglia32,33. Local field potential recorded
from the STN or GPe during DBS surgery can be used to estimate
relative EI balance at different locations in the STN in terms of λ s.
Such an estimate of relative EI balance could guide stimulation
electrode placement.
A lack of a clear correlation between λs and UPDRS-III suggests

that it may not be useful as a clinical bio-marker. The largest
changes in λ were observed in the sensory areas. Therefore, it is
reasonable to hypothesise that λ should be related to the severity
dysfunction of sensory processing or sensorimotor integration. But
it should be emphasized that UPDRS-III does not measure sensory
dysfunction. This could be one of the reasons why λ is not related
to the severity of PD motor symptoms in our study.
However, the correlation between λs and age in the PD group

suggests that λ is indeed altered in PD. In particular, we observe a
positive correlation in PD in most brain regions except the frontal
regions. This result may suggest that dopamine depletion has an
important impact on the sensory and motor “ageing”. In particular,
this effect seems to be non-linear and non-monotonic with
respect to age. Indeed, we used different dependence measures
to tease apart the different possible dependence types: linear
(Pearson), monotonic (Spearman), no assumption (distance
correlation). Our results show that when there is a dependence,
it seems to be mainly non-linear and non-monotonic (significant
and larger distance correlation than other dependence measures).
This is somehow expected as distance correlation theoretically
includes any kind of dependence but here it is much more
significant in the age dependence case.
A positive correlation between λ and age in PD patients is a

curious observation. Previous work from several groups have
shown a negative correlation between λ and age in the
neocortex34–36. However, in over 60 years old HC, λ from
somatosensory regions may positively correlate37. In contrast to
these findings, in our data we did not observe any significant
correlation between λ and age in HC. As age is highly (positively)
correlated to disease duration, PD thus seems to affect all (except
frontal parts) necortex’s λs by increasing them over age/disease
duration.
Levodopa effects are fast as shown by the UPDRS-III score

improvements only one hour after the drug administration. We
found that in our data Levodopa influenced the frequency peaks
slowing. However, the effect of Levodopa on λ was not observed

in the neocortex. To the best of our knowledge, there is no
consensus on the cortical effects of Levodopa12. In our study, a
possible reason could be the short time (1 hour) between taking
the medication and recording of MEG. A recent study in ref. 14

reported changes in the λ estimated from EEG. In that study, PD
patient ON medication took their medication dose as usual, in the
morning before the measurement. However, Wang et al.14 also
reported that Levodopa did not improve the aperiodic part (i.e., λ
increased) of the neocortex activity spectrum. In addition, the total
washout of Levodopa may take days38. The latter could explain
the similar results we obtained for ON and OFF medication.
Here we used a commonly used range of frequencies (1–45 Hz)

for our analysis. This range is relatively small. Indeed the broader
the frequency range, the better the fit should be. However, for
MEG it is not as easy to take the largest band possible because
muscle artifacts become more prominent in high frequencies.
Therefore, local field potential or ECoG may be more suited for
such an analysis over broad frequency ranges.
Next, we have used a specific brain atlas and it is not clear how

the topography of λ may change when using a different brain
atlas. In this regard, adding information from the sensor space
may help matching the different atlases’ results.
Finally, to better understand the functional implications of λ

changes, a more detailed correlation analysis is needed that takes
into account the UPDRS-III sub-scale16. Furthermore, future studies
should also take into account the non-motor symptoms by adding
cognitive, depression and anxiety scores in our analysis. However,
as the latter are quite difficult to evaluate, we might need a larger
cohort than ours to interpret correctly the results obtained from
their analysis.
Our findings also raise the question why frontal regions are

more protected than sensory and motor regions even though
dopaminergic projections in the neocortex are primarily restricted
to the frontal regions39. The lack of prefrontal changes between
PD and HC may be due to dopamine pathways. Indeed, the main
brain area producing dopamine and projecting to the cortex (in
particular prefrontal cortex) is the Ventral Tegmental Area, which
is altered after the substantia nigra compacta in PD40. Hence,
changes in the frontal regions may take longer to manifest.
In addition, because there is such a big change in the λ value in

sensory regions one would expect deficits in the sensory
representations. It is well established that PD patients have
olfactory41, proprioceptive42 and cross-modal sensory fusion
deficits43. However, our work suggest changes in other sensory
modalities such as vision and audition.
It is common to measure functional connectivity between brain

regions in a frequency-dependent manner. Usually these esti-
mates are based on filtered time series. Here we found that λ
varies over time. Therefore, we can ask whether λ variations across
brain regions are correlated or not in PD and HCs. Recent work
suggests that functional connectivity based on the component of
aperiodic activity may be more robust44.
Overall, we show that the aperiodic activity, which usually has

been considered as noise, gives new insights in PD and deserves
more attention when analysing any neural field potentials like
ECoG, LFP, EEG and MEG. Finally, previous studies showed
frequency peaks slowing in relation to cognitive decline rather
than the motor symptoms5. It could then be that the change in λ is
a more general expression of neurodegeneration than only the
dopamine-affected systems.

METHODS
MEG data and its pre-processing
Here we analysed the resting state (eyes opened) MEG recorded
from 17 PD patients (age 41–85; five female) and 20 age-matched
healthy controls (HC; age 54–76; eight female). The data were
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acquired at the Swedish National Facility for MEG (NATMEG,
https://natmeg.se/) using the Elekta Neuromag TRIUX 306-channel
MEG system. The study was approved by the regional ethics
committee (Etikpöingsnöamden Stockholm, DNR: 2016/911-31/1)
and followed the Declaration of Helsinki. All participants gave
written informed consent before participating.
For more details of the experimental protocol, please refer to

ref. 45 study. Briefly, the MEG was acquired at a sampling rate of
1 kHz with an online 0.1 Hz high-pass filter and 330 Hz low-pass
filter. Each subject was recorded twice. MEG from PD patients was
recorded in OFF and ON medication states. In the OFF medication
condition, PD patients were off their dopamine replacement
medications (Levodopa) for at least 12 h. After the first recording
session, patients took their medication and MEG was recorded for
the second time one hour after the medication intake. HC subjects
were also recorded twice at an interval of 1 h. Neurological and
motor function MDS-UPDRS-III16 (shortened to UPDRS-III or only
UPDRS in the following) tests were performed on all participants
between the two sessions. PD patients had a second motor test
after the second session (ON medication). The patients included in
this study represent a relatively homogenous non-demented PD
sample in early to moderate disease stages who showed a very
good response to dopaminergic medication (supported by a
mean reduction of UPDRS-III by ~50%). A summary of these results
is given in Supplementary Table 2 as well as disease duration and
Levodopa dose.
Each recording epoch was of 8-min duration. Data were down-

sampled to a sampling frequency of 200 Hz. Downsampling was
done to speed up the analysis process without altering the results.
Further, we low-pass filtered the MEG signals (cutoff frequency
45 Hz). This was done because MEG signals do not have a high
signal-to-noise ratio at high frequencies. We pre-processed the
data to remove non-neural noise and eye movement artifacts
using ICA and data from an electrooculogram or electrocardio-
gram. We then used the dynamic statistical parametric mapping
(dSPM46) for source reconstruction (implemented in MNE-
Python47), followed by labelling using HCP MM1 atlas15 which
resulted in 44 brain regions (BR) signals as shown in Fig. 4.

Spectral analysis
The spectral analysis was done with the FOOOF toolbox48. We
estimated two main parameters from the spectrum: the frequency
of spectral peaks (fpeak) and the aperiodic components (see
below). fpeak was measured for the whole recording, whereas the
aperiodic components were extracted for short epoch of signal to
obtain its temporal dynamics.

Extraction of the frequency peaks. For each brain region of each
patient we estimate the power spectral density (PSD) – using
Welch’s method49 implemented in SciPy50 with default para-
meters (average = “mean” and window = “hann”) – averaging
over 5 s segments with 50% overlap over the whole signal. The
periodic part of the spectrum was extracted using the FOOOF
method proposed in ref. 48.
FOOOF optimally fits the PSD with a function composed of the

sum of an aperiodic part and a periodic part. The aperiodic part is
modelled as κ

f λ
where f > 0 Hz is the frequency, κ is the offset of the

PSD, and λ defines how the PSD decays as a function of f. The
periodic part is modelled as a sum of P weighted Gaussian
distributions whose mean, standard deviation and weight,
respectively, indicate the peak frequency, width and height of
the spectral power bump of the peak. We manually specified the
frequency band (1–45 Hz) on which the fitting was done. To
identify oscillatory peaks in the PSD using FOOOF, we need to
provide the maximum number of peaks P, their minimum height
and bandwidth. We searched for P= 4 peaks with a minimum
peak height of 100.2 V2/Hz and peak width within [1, 10] Hz (see

Fig. 5c). Thus, we obtained f 1peak ; ¼ ; f 4peak ; for each channel and
subject. For Fig. 1a, we pooled all f 1peak ; ¼ ; f 4peak ; for all channels
and subjects in each group.
From the proportion of individuals having such peaks within

each group, we defined a normalised difference between groups
as

DpropbandPDOFF�HCðbÞ ¼
pbandPDOFFðbÞ � pbandHC ðbÞ
pbandPDOFFðbÞ þ pbandHC ðbÞ

where pbandG ðbÞ is the proportion of individual in the group
G∈ {PD OFF, HC} having at least one peak frequency in the
frequency band band and the brain region b (see Fig. 1b). These
proportions, pbandG ðbÞ, for the theta and gamma frequency bands
are illustrated in Fig. 1c and d, respectively.

Calibration of λ estimate. A priori it is not clear how much error is
expected in the estimation of λ given a specific λ and epoch size.
We have fixed the epoch size to 50 sec, which is large enough to
give us a good estimate of the PSD. Still we need to determine the
appropriate segment size (W) for Welch’s algorithm. To address
this issue, we resorted to a numerical simulation approach. First,
we created a PSD of the form κ

f λtrue
, and assigned random phase

(drawn from a uniform distribution U½�π;π�) to each frequency.
Next, we used the inverse Fourier transform to reconstruct a signal
of desired length (Supplementary Fig. 1a). Finally, we extracted
λsim for different values of W (Supplementary Fig. 1d–f). We
systematically varied λtrue and W. We found that the error in the
estimate of λsim depends on both the λtrue and W (Supplementary
Fig. 1e, f). Based on these numerical experiments, we chose
W= 2 sec. which gave us the best compromise between the errors
in mean and standard deviation of the λ in a range that we have
observed in our data.

Temporal dynamics of the slope of the MEG power spectrum. To
characterise the aperiodic component of the MEG activity, we
focused on the way the power of the MEG signals decayed as a
function of the frequency. To this end, we first estimated the
time-resolved spectrum (spectrogram) of each MEG source
(epoch size = 50 s, overlap 40 s, see Fig. 5a). The PSD for each
epoch was evaluated using Welch’s method averaging over 2-s
segments with 50% overlap (default parameters: average =
“mean” and window = “hann”). Next, we fitted a power law to
each PSD using the FOOOF algorithm. In the aperiodic activity
analysis, we used the frequency band [1, 45] Hz, a minimum
peak height of 100.2 V2/Hz, a peak width within [2, 10] Hz and a
maximum of 4 peaks (see Fig. 5c for an example of such a
FOOOF fitting). The peak width lower bound is larger than the
one used in the frequency peaks analysis because the frequency
resolution is lower here. It is important to have a lower bound
significantly larger than the frequency resolution to avoid
confounding frequency peaks due to noise. Here we used 4
(resp. 5) times the frequency resolution for the aperiodic (resp.
frequency peaks) analysis. Finally, we obtained the temporal and
spatial dynamics of λ, κ and P by applying this method to each
epoch of each source (see Fig. 5d red trace). We checked the
accuracy of the fit by computing its r2 error (for all the data
combined; mean: 0.94, standard deviation: 0.04).

Variability of λ
For each brain region, we assume that λ depends only on two
parameters, time and group (PD patient ON or OFF medication
and HC). So, for a brain region b and a subject i; λbi ðtÞ is the
typical dynamics of the 1/f-exponent. To estimate the
variability of λbi ðtÞ as a function of time in a given individual
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and BR, we calculated the coefficient of variation (CV) as:

CVb
i ¼

σλbi

λ
b
i

;

where σλbi
and λ

b
i are, respectively, the standard deviation and the

mean of λbi ðtÞ.

Relationship between λ and subject age and UPDRS-III scores
λ could be related to the subject age and disease severity
(UPDRS-III score) in both linear or non-linear manner. Therefore,
we estimated both linear and non-linear measures of depen-
dence between λ and x ∈ {age, UPDRS} using the following three
descriptors:

● Distance correlation measures the non-linear dependence
between two variables:

dcovðλ; xÞ ¼ 1
n2

X

j;k

ajk � ak � aj þ a
� �

bjk � bk � bj þ b
� �

(1)

where using the notation ∣∣ ⋅ ∣∣ for the Euclidean norm,

ajk ¼ jjλj � λk jj; bjk ¼ jjxj � xk jj; and 8c 2 fa; bg; cj ¼ 1
n

X

k

cjk ; c ¼ 1
n

X

j

cj :

Here λi refers to the slope of the frequency spectrum of ith
subject for a given brain region. Other variables and this
definition are illustrated in Supplementary Fig. 2. For further
details, please see the work by Székely et al.51.

● Pearson correlation measures the linear link between two
variables:

ρðλ; xÞ ¼ covðλ; xÞ
σλ σx

(2)

where cov is covariance and σx is the standard deviation of the
variable x.

● Spearman correlation measures the monotonic relationship
between two variables:

rsðλ; xÞ ¼ ρðRðλÞ; RðxÞÞ (3)

where R( ⋅ ) is the rank function.

To disentangle the dependence of λ on the age and UPDRS-III,
we computed the partial correlations. To do so, we used
partial_corr function of the pingouin52 Python package to calculate
the Pearson and Spearman partial correlations. Concerning the
partial distance correlation, it is similar to the classical partial
correlation. It is based on projections but now in a more complex
space called the Hilbert space of U-centred matrices. We refer to
the work by Székely and Rizzo53 for a rigorous definition. We used
the corresponding function, partial_distance_correlation, from the
Python package dcor53. We performed a permutation test (200 000
permutations on the x variable) to estimate the P values.

Statistical tests
With the exception of the correlations among UPDRS-III, age and λ,
we used the Kolmogorov–Smirnov test from the ks_2samp

Fig. 5 Overview of the estimation of λ dynamics done on every brain region of each patient. a Time series of MEG from a source located in
the pre-motor cortex left hemisphere of a PD patient. b Zoom in one epoch (duration 50 sec) of the time series of (a). c The black line shows
the PSD of the time series of (b). The grey line is the full fit provided by FOOOF package. The dotted line shows the aperiodic activity following
a power law κ

f λ
. d Right: Pseudocolor image of the PSD as a function of time. The red line shows the corresponding λ for each epoch. Left:

Temporal probability density of λ.
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function implemented in SciPy50 to determine the statistical
significance of our results. This test captures more the deviations
near the distribution centre than at its tails. Moreover, its power is
greater when used in the one-tailed case. Therefore, we used the
latter to test whether the cumulative distribution functions (CDFs)
of one variable is greater or less in one group compared to
another. In the test, the statistic is Dþ ¼ supu2R½FðuÞ � GðuÞ�
where F and G are the CDFs to be compared54. For example, when
comparing the λ in Fig. 2b, we tested whether the CDF of λPDOFF
was less than λHC in the frontal regions and the opposite in other
brain regions. When comparing the two HC groups—between
sessions 1 and 2, see Supplementary Fig. 4b— λHCses1 and λHCses2
are statistically closed (distributions across the group) so that we
gathered both groups as one group (the HC group). To confirm
this similarity, we estimated Pearson correlation between λHCses1
and λHCses2, see Supplementary Fig. 3a. However, the CVs
difference between the two sessions was of the same order than
the difference between the CVs of HC and PD-OFF or PD-ON
medication. Thus, we only compared CVs session-wise: PD-OFF
and HC ses1, PD-ON and HC-ses2, see Supplementary Fig. 4c, d.
Finally, in the frequency peaks analysis, because of the few
number of frequency peaks in the theta and gamma bands, we
could not do any meaningful statistical tests. Also, we only used
session 1 for HCs as their frequency peaks are not reliable from
one session to the other, see test-retest reliability of Supplemen-
tary Fig. 3b–f.
Concerning the statistical significance of correlation measures,

we performed a permutation test (200,000 permutations on the x
variable) to estimate the P values of the partial distance
correlation. For Pearson and Spearman partial correlations, two-
sided P values were computed from the one-sample t test. The
degrees of freedom of this test is N− 1 where N is the data size
(N= 17 in PD groups and N= 20 in healthy groups).
Finally, we did not correct for multiple comparisons. We only

used comparison-wise error rate for each specific brain area,
because this study is an exploratory work on the possible changes
of the 1/f-exponent dynamics in PD. The alpha level that was used
to determine significance was a P value less than 0.01.
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