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Temporal and spatial variability of dynamic microstate brain
network in early Parkinson’s disease
Chunguang Chu1, Zhen Zhang1, Jiang Wang1, Zhen Li2, Xiao Shen2, Xiaoxuan Han2, Lipeng Bai2, Chen Liu1✉ and Xiaodong Zhu2✉

Changes of brain network dynamics reveal variations in macroscopic neural activity patterns in behavioral and cognitive aspects.
Quantification and application of changed dynamics in brain functional connectivity networks may contribute to a better
understanding of brain diseases, and ultimately provide better prognostic indicators or auxiliary diagnostic tools. At present, most
studies are focused on the properties of brain functional connectivity network constructed by sliding window method. However,
few studies have explored evidence-based brain network construction algorithms that reflect disease specificity. In this work, we
first proposed a novel approach to characterize the spatiotemporal variability of dynamic functional connectivity networks based
on electroencephalography (EEG) microstate, and then developed a classification framework for integrating spatiotemporal
variability of brain networks to improve early Parkinson’s disease (PD) diagnostic performance. The experimental results indicated
that compared with the brain network construction method based on conventional sliding window, the proposed method
significantly improved the performance of early PD recognition, demonstrating that the dynamic spatiotemporal variability of
microstate-based brain networks can reflect the pathological changes in the early PD brain. Furthermore, we observed that the
spatiotemporal variability of early PD brain network has a specific distribution pattern in brain regions, which can be quantified as
the degree of motor and cognitive impairment, respectively. Our work offers innovative methodological support for future research
on brain network, and provides deeper insights into the spatiotemporal interaction patterns of brain activity and their variabilities
in early PD.
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INTRODUCTION
Parkinson’s disease (PD) is a common neurodegenerative disorder,
and the main clinical manifestations are motor symptoms (e.g.,
quiescent tremor, bradykinesia, or myotonia) and non-motor
symptoms (e.g., cognitive impairment)1. The most important
pathological change of PD is the degeneration and death of
dopaminergic neurons in the substantia nigra, which leads to a
significant decrease of dopamine content in the striatum2. Even in
the early stage of PD, the death of dopaminergic neurons in the
substantia nigra is at least 50% and the dopamine content in the
striatum is 80% or more reduced2. However, the clinical symptoms
of early PD are not typical and reliable clinical indicators are
lacking, which seriously affects the timely diagnosis and treatment
of PD. In recent years, numerous studies have tried to find early
biomarkers to evaluate PD risk in a rapid and rigorous way.
Moreover, the early treatment of PD may delay the disease
progression and prevent some non-motor function impairment of
brain. Therefore, it is of great significance to reveal the abnormal
brain activity manifestations of early PD and further provide an
accurate diagnosis tool for it.
The human brain can be regarded as a network composed of a

large number of neurons through mutual synaptic connections.
Dopamine deficiency is associated with pathological and com-
pensatory changes in the organization and connectivity of brain
networks3–5, affecting several broadly distributed neural circuits6.
Resting state electroencephalography (EEG) is the output of neural
electrical activity caused by brain physiological function7 and has
high temporal resolution and standard spatial distribution. There-
fore, resting state EEG has been widely used to describe the

spatiotemporal electrical activities of the whole brain and reveal
the functional connectivity networks of scalp. Many studies have
applied functional connectivity networks to the analysis of
dyskinesia and cognitive impairment in PD via group analysis,
and reported a series of abnormal network properties. For
example, Hassan et al.8 reported that functional connectivity
decreases with the worsening of cognitive performance and loss
of frontotemporal connectivity may be a promising biomarker of
cognitive impairment in PD, and Arroyave et al.9 suggested that
PD had lower coherence of intra- and inter-hemispheric functional
connectivity in the alpha frequency band compared with healthy
controls. The common limitation in these studies is that they
cannot be automatically used to identify PD patients at the
individual level. The development of machine learning provides
ideas and approaches to our current limitation. We intend to use
the most basic classifier (support vector machine, SVM) to
complete the task of identifying early PD patients by learning
the characteristic parameters of the brain network. However, how
to extract the characteristics of brain network for identifying early
PD is the most critical challenge. We will elaborate the basis and
advanced improvement of the brain network characteristic
indicators adopted in this paper from the following aspects.
During the past decade, the properties of brain functional

connectivity network based on EEG has been extensively studied
using the sliding window method. A fixed window-size is usually
selected heuristically, since no consensus exists yet on the choice
of the optimal window-size. Moreover, without a known ground-
truth, the validity of the computed properties of brain functional
connectivity network remains questionable and unclear. Brain
activity is thought to consist of a series of alternating transient
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steady-state patterns10–12. Constructing the EEG data segments
corresponding to each transient steady-state pattern of brain
activity into a brain functional connectivity network is expected to
become a theoretical method for constructing a brain network. In
the analysis of brain activity with resting EEG, the transient steady-
state pattern at the minimum time scale that can be recognized is
described as the EEG microstate13. The process of brain activity
can be described by a series of alternating and limited microstate
sequences of scalp electric field distribution in the resting
state14,15. Each microstate sequence lasts for a short period of
time (tens of milliseconds), and then rapidly changes into another,
which remains stable for tens of milliseconds of time13. Moreover,
studies have shown that the various classes of EEG microstates are
determined by corresponding specific brain networks16,17. There-
fore, the improved data-driven brain network construction based
on microstate segmentation proposed in this work can improve
the existing network partitioning schemes.
In our previous study, we demonstrated that a unique EEG

microstate class and the abnormal EEG microstate features existed
in early PD18. The abnormality of the microstate properties
originates from the complex dynamic brain activity transformation
process in which other microstate classes appear between the
appearance of one microstate class and its reappearance14,15.
Moreover, many EEG-based studies have found the changes of
dynamic functional connectivity networks in several neurological
disorders10,14,15, including the motor deficits and cognitive
impairment in PD11,12. It is reasonable for us to assume that in
the brain activity of a specific subject, the brain networks
corresponding to each microstate class are dynamically changing,
and such dynamic attributes may reflect the pathological essence
of the early PD patients. We speculate that the abnormal
microstate characteristics of early PD are derived from the
abnormal dynamic functional connectivity of brain networks.
Therefore, exploring the characteristics of dynamic functional
connectivity network constructed based on microstate segmenta-
tion is expected to reveal the unique features of brain network in
early PD.
Currently, most of the existing studies on dynamic functional

connectivity network focus on two aspects: (1) the changing
patterns of whole brain network19, and (2) temporal properties of
functional connectivity between pair of specific brain regions20,21.
The former may be less sensitive to the identification of local
changes in the brain and the latter usually identifies functional
connectivity features that are too cumbersome and lack regularity.
Actually, studies have shown that the human brain is intrinsically
organized into dynamic and spatiotemporal interaction net-
work22,23, demonstrating remarkable spatiotemporal variability in
its function and structure23,24. However, the spatiotemporal
properties of dynamic brain networks (e.g., the temporal variability
and spatial variability associated with a specific brain region) have
never been investigated in resting EEG studies for early PD. In
addition, the EEG microstate features also describe the compre-
hensive characteristics of temporal and spatial properties of brain
activity18. Hence, temporal and spatial properties of dynamic brain

network may convey the important wealth of information and
thus help deeper understanding of brain networks in early PD.
Intuitively, jointly using temporal and spatial variability of dynamic
brain network based on microstate can further improve the
performance of early PD diagnosis.
In this paper, we first proposed novel measures based on EEG

microstate to characterize the temporal and spatial variability of
dynamic functional connectivity network at each specific brain
region corresponding to the location of EEG channels. Specifically,
we respectively applied (1) sliding window method as baseline (2)
microstate sequence method and (3) microstate class method to
construct the dynamic functional connectivity network, and
calculated their corresponding time-space variability feature sets.
Then, we used a common SVM framework to integrate
spatiotemporal variability of dynamic functional connectivity
network for early PD classification. By comparing the classification
accuracy of the three feature sets, it can be determined that the
spatiotemporal variability of the dynamic functional connectivity
network calculated based on microstate class method has the best
effect in identifying early PD. The results indicates that the
abnormality of early PD pathological brain network is reflected in
the brain network based on microstate class to the greatest
extent. Furthermore, we investigated the changing patterns of the
temporal variability and spatial variability in early PD patients, and
determined the characteristic indicators corresponding to the
location of specific brain regions. Finally, we explored the
correlation between these characteristic indicators and clinical
scale scores to explain the relation between pathology-induced
changes of the dynamic functional connectivity network and the
motor and cognitive impairments in early PD. The significance of
this work is that it can provide a tool for clinical intelligent assisted
diagnosis of early PD, and on the other hand, the validity and
reliability of the characteristic brain network indicators of early PD
can be verified, thereby further revealing the pathological brain
network changes of early PD.

RESULTS
In this section, we present the comparison of classification results
among different methods and the further analysis of unique
spatio-temporal variability in early PD.

Classification performance
The classification results on the early PD vs. HC classification task
produced by our proposed methods (MN-SVM and MCN-SVM) and
other three SN-SVM methods are summarized in Table 1 and Fig.
1. As observed, microstate-based methods perform significantly
better classification performance than the traditional sliding
window algorithm (regardless of the sliding window parameter
configuration, the classification effect is similar), indicating that
the brain networks constructed according to the distribution
characteristics of microstates can reflect the activity characteristics
of the brain in diseased or healthy states in a tiny time period. The

Table 1. Comparison of different methods for early PD vs. HC classification.

Method Accuracy (%) Sensitivity (%) Specificity (%) F1 Score AUC

SN1-SVM 51.05 ± 0.1551 42.30 ± 0.2667 60.21 ± 0.1874 38.63 ± 0.2164 0.50 ± 0.0018

SN2-SVM 49.49 ± 0.1684 37.95 ± 0.2553 61.11 ± 0.1924 36.40 ± 0.2139 0.49 ± 0.0018

SN3-SVM 49.96 ± 0.1435 40.11 ± 0.2222 60.73 ± 0.2054 37.50 ± 0.1810 0.48 ± 0.0018

MN-SVM 69.27 ± 0.1503 41.83 ± 0.2254 92.81 ± 0.1294 50.74 ± 0.2182 0.86 ± 0.0015

MCN-SVM 95.69 ± 0.0636 92.97 ± 0.1136 98.41 ± 0.0515 93.67 ± 0.0954 0.99 ± 0.0002

Significant differences are displayed in bold and italics type. SD, standard deviation. Adjustment for multiple comparisons: FDR. Significant statistical difference
with *p < 0.05 and **p < 0.01.
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validity and value of the brain network construction algorithm
based on a priori microstate theory is also reflected. Moreover, the
MCN-SVM classifier consistently achieves the best performance
compared with other methods. Specifically, MCN-SVM achieves
the accuracy of 95.69 ± 0.0636, the sensitivity of 92.97 ± 0.1136,
the specificity of 98.41 ± 0.0515, F1 score of 93.67 ± 0.0954 and

AUC of 0.99 ± 0.0002, indicating the effectiveness of our proposed
algorithm in early PD diagnosis.

Spatiotemporal variability of brain microstate-class-window-
based networks
The above studies indicate that the brain network constructed
based on microstates can be divided into four brain network sets
according to the microstate classes and the temporal variability
and the spatial variability of the brain networks corresponding to
each microstate class are calculated as the classification features,
which can most accurately identify early PD patients. Therefore,
exploring the characteristics of spatiotemporal variability of brain
microstate-class-window-based networks in early PD can provide
value insights for the pathological brain network abnormalities of
early PD.

Temporal variability of brain regions in microstate networks
First, we explored the temporal variability of brain regions in four
microstate brain networks. Topological distribution of temporal
variability of microstate functional connectivity networks (aver-
aged over the subjects) for both groups and their differences in
the four-microstate networks was shown in Fig. 2. There were
significant differences in the temporal variability of HC and early
PD patients in the brain network corresponding to each
microstate class.
For the microstate A network, in the HC group, the brain regions

with high temporal variability were mainly located in the left
frontal lobe, while the brain regions with low temporal variability
were mainly located in the left occipital lobe. In contrast, the
temporal variability distribution of microstate A network in early
PD patients was opposite, with high temporal variability in the
right frontal lobe and low temporal variability in the right occipital
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Fig. 2 Topological distribution of temporal variability. The red points indicate the positions in which the temporal variability of microstate
functional connectivity networks in healthy controls are obviously higher than that in early PD patients, and the blue points represent the
positions that have lower temporal variability in healthy controls. The large points represent significant group difference (p < 0.01, FDR
corrected), and the small points indicate p < 0.05 with FDR corrected.
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Fig. 1 ROC curves of different methods on the early PD vs. HC
classification. SN1= sliding-window-based networks (with window
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lobe with. The regions with main differences were the left frontal
and right parietal lobe (HC > early PD); right frontal, left parietal,
and left occipital lobe (HC < early PD). In the microstate B network,
the temporal variability of most brain regions in early PD patients
was significantly higher than that in healthy subjects. The regions
with main differences were the left frontal, parietal, and occipital
lobe. Compared with the microstate B network, the phenomenon
in the microstate C network was just the opposite. The temporal
variability of most brain regions in early PD patients was
significantly lower than that in healthy controls, and the regions
with main differences were the right prefrontal, frontal, and left
occipital lobe. Similarly, the temporal variability of microstate D
network was significantly higher in early PD group than in HC
group, mainly distributed in left frontal and right parietal lobe.

Spatial variability of brain regions in microstate networks
Compared with the significant differences in the temporal
variability of brain regions in the early PD and HC groups, the
differences in the spatial variability of brain regions in the four
microstate networks were much less in the early PD and HC
groups. As shown in Fig. 3, the spatial variability of brain regions in
microstate A network and microstate B network in early PD
patients was generally higher than that in healthy subjects, but
the differences between groups were similar, and only exist in a
small area of brain regions in the left frontal and left temporal lobe

of PD microstate A network. For microstate C network, the spatial
variability of HC group was more regular and different, showing
that the spatial variability of the frontal lobe was significantly less
than that of the occipital lobe, while the spatial variability of early
PD group was more uniform, and the significant difference
between HC group and early PD group was distributed in the left
frontal lobe. A similar phenomenon was found in the microstate D
network of healthy subjects, that is, the spatial variability of the
brain regions was more regular and significantly different. The
spatial variability of the central region was significantly less than
that of the left frontal lobe, temporal lobe, and the left and right
parietal lobes, while the spatial variability of early PD group was
more uniform. Besides, the left frontal, bilateral temporal and left-
right parietal lobe showed significant differences in spatial
variability between the two groups.

Temporal and spatial variability of the whole brain in
microstate networks
The characteristic value of the whole brain variability can be
obtained by averaging the characteristic value of each brain
region of each subject. Figure 4 shows the temporal and spatial
variability of whole brain microstate functional connectivity
networks (averaged among the subjects) for both groups. The
temporal variability of microstate B network and microstate C
network was significantly different between early PD and HC
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groups. As shown in Table 2, the time variability of microstate B
network in early PD patients was significantly higher than that in
healthy subjects (t=−3.762, p= 0.002), while the time variability
of microstate C network was significantly lower (t= 2.809,
p= 0.014). This also corresponded to the differential distribution
of temporal variability in brain regions as shown in Fig. 3. As for
spatial variability, the right side of Fig. 4 indicated that there were
no significant inter-group differences between early PD patients
and healthy subjects (Table 3).

Clinical correlations with the temporal and spatial variabilities
of brain regions
As shown in Fig. 5a, temporal variability of both the right frontal
lobe of the microstate C network was significantly negatively
correlated with the MoCA scale (R= 0.377, p= 0.044). In addition,
the temporal variability of the frontal lobe in microstate C network
of healthy subjects was significantly higher than that in patients
with early PD (Fig. 2). It suggested that temporal variability of the
frontal lobe in microstate C network increases with the improve-
ment of cognitive level.
Spatial variability of microstate D network in early PD patients

was significantly correlated with clinical scale scores, and as
shown in Fig. 5b, spatial correlation of left temporal lobe in early
PD patients was significantly positively correlated with MoCA scale
(R= 0.474, p= 0.010). Besides, the spatial variability of microstate

D network in the left temporal lobe of healthy subjects was
significantly higher than that of patients with early PD (shown in
Fig. 3). It indicated that the higher the spatial variability of the
microstate D network in the left temporal lobe, the better the
cognitive level of early PD patients. In addition, the spatial
correlation of the right occipital lobe in early PD patients was
significantly negatively correlated with the UPDRS-III scale
(R=−0.454, p= 0.013) as shown in Fig. 5c. The spatial variability
of the microstate D network in the right occipital lobe of patients
with early PD was significantly lower than that of healthy subjects
(shown in Fig. 3), indicating that the decreased spatial variability of
microstate D network in the right occipital lobe was associated
with dyskinesia symptoms in early PD patients.

DISCUSSION
Recently, numerous studies25–29 suggest that the psychiatric and
neurological disease exhibit significant changes in dynamic brain
network properties. Quantification and application of changed
dynamics in brain functional connectivity networks may con-
tribute to a better understanding of brain diseases, and ultimately
provide better prognostic indicators or auxiliary diagnostic tools.
At present, most studies are focused on the properties of brain
functional connectivity network constructed by sliding window
method. However, few studies have explored evidence-based
brain network construction algorithms that reflect disease
specificity. In this work, we first define a novel approach to
characterize the spatiotemporal variability of dynamic functionally
connectivity networks based on EEG microstates, and further
develop a classification framework for integrating spatiotemporal
variability of brain networks to improve early PD diagnostic
performance. The experimental results suggest that our proposed
method outperform the conventional method based on sliding
window, indicating the advancement of brain network construc-
tion method based on EEG microstates for identifying the
abnormalities of pathological brain network in early PD. Moreover,
our work also confirms that temporal and spatial properties of
brain interaction patterns is effective in boosting the diagnosis
performance of early PD. It is worth noting that spatio-temporal
variability can be potentially used for analyzing the fundamental
properties of brain network or brain activity, e.g., the underlying
relationship between spatiotemporal variability of a specific brain
region and its neural activity and structural connectivity. The
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Fig. 4 The temporal and spatial variability of whole brain microstate functional connectivity networks in patients with early PD and
healthy controls, respectively. The green, blue, yellow, and red boxes represent functional connectivity networks of microstate class A–D,
respectively. The box plot on the left of each pair represents healthy controls and the box plot on the right represents patients with early PD.
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Table 2. Descriptive statistics of temporal variability of whole brain
microstate functional connectivity networks in patients with early PD
and healthy controls.

HC subjects Early PD
patients

Group
comparisons

Mean (SD) Mean (SD) t-value p-value

Microstate A networks 0.85 0.02 0.85 0.02 0.042 0.966

Microstate B networks 0.83 0.02 0.85 0.02 −3.762 0.002**

Microstate C networks 0.85 0.01 0.83 0.02 2.809 0.014*

Microstate D networks 0.81 0.02 0.82 0.03 −1.648 0.141

Significant differences are displayed in bold and italics type. SD standard
deviation. Adjustment for multiple comparisons: FDR. Significant statistical
difference with *p < 0.05 and **p < 0.01.
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temporal and spatial variability calculated by our proposed
method are relevant to the pathological changes in the brain of
early PD.
In this work, our research objective is to explore whether the

spatial and temporal variability characteristics of dynamic brain
networks based on EEG microstates can effectively identify early
PD patients compared with the conventional sliding window
method. To address this, a classifier with fixed parameters and
relatively simple learning ability is needed for each type of input

feature data, so that the accuracy of classification comes from the
contribution of the differences between the input characteristic
parameters. In addition, the data samples included in this work are
small, so the binary task of processing small sample data has
become the selection criterion of the classifier in this work.
Although there are various selection and optimization strategies
for machine learning classifiers at present, according to the
objective of this study, standard SVM with default parameters
configuration can meet the above requirements. Therefore, we

Fig. 5 Spearman’s correlation between scores of clinical scales and spatiotemporal variabilities of local scalp regions in microstate
networks. a Spearman’s correlation between scores of MoCA and temporal variability of local scalp region at electrode channel ‘F4’.
b Spearman’s correlation between scores of MoCA and spatial variability of local scalp region at electrode channel ‘T7’. c Spearman’s
correlation between scores of UPDRS-III and spatial variability of local scalp region at electrode channel ‘P8’. The red point indicates the region
in which the temporal and spatial variability of microstate brain networks in healthy controls are obviously higher than that in early PD
patients. FDR correction was performed for p-values.
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adopted standard SVM with linear kernel, and determined the
type of feature parameters with the best classification effect by
replacing different types of input feature sets. Due to the limited
data amount of clinical data collected, our next research plan is to
collect more data to verify the generalization potential of the
algorithm and the features proposed in this paper. In addition, we
will further collect clinical scale scores of patients (including
assessment of motor and cognitive function) to verify the clinical
correlation of such characteristic biomarkers.
The temporal variability of each scalp region characterizes the

connectivity pattern changes of all functional connectivity
between this region and other scalp regions over time. As shown
in Fig. 6b high temporal variability reveals that the dynamical
properties of a connectivity sequence of functional connectivity
between one scalp region and other scalp regions are indepen-
dent, that is, the functional modules (i.e., functional connectivity
patterns) consisting of functional connectivity between a given
scalp region and other scalp regions are relatively independent in
each time window. In contrast, low temporal variability indicates
that the functional architecture of a given scalp region is highly
correlated within each time window, i.e., the connectivity series of
dynamical functional connectivity between this scalp region and
all other scalp regions are highly synchronized. The large time
variability indicates the high flexibility of network nodes and the
strong instability of the whole network. In the set of brain
networks corresponding to a specific microstate class, the time
variability of the whole brain is high, indicating that each time the
transient steady state brain activity reflected by scalp electrical
activity occurred, the corresponding brain network had relatively
independent functional connectivity modules, and the functional
connectivity pattern of the brain network is more unstable.
In this work, we have found that microstate B networks are

more flexible in early PD than that of healthy controls. Moreover,
our results suggest that the activity of this functional connectivity
pattern in early PD is mainly reflected in the occipital lobe.
Previous studies have shown that microstate class B expresses the
visual network16,30,31, and the occipital lobe also maps the visual
network32. Therefore, we speculate that the fluctuation of the
visual network of early PD patients in a short period of time is
stronger than that of healthy controls, which may be the
manifestation of visual impairment (such as rapid eye movement)

in early PD patients. Our results suggest that the global brain
network corresponding to microstate class C in early PD is more
stable than that of healthy controls, and from the perspective of
local brain regions, this significantly stable functional connectivity
pattern is mainly distributed in the frontal lobe, and it is
significantly positively correlated with the cognitive level of early
PD patients. It indicates that when early PD patients’ brain activity
appears microstate class C, the more inflexible the frontal lobe is
in the process of dynamic changes of functional connectivity
pattern, the worse the cognitive level of patients is. Previous
studies have revealed that the saliency network corresponding to
microstate class C can reflect the cognitive level of PD patients18,
and the frontal lobe maps the cognitive function33, which
supports our findings.
The spatial variability of each scalp region is the change in the

synchronicity of interruption and connectivity patterns of all
functional connectivity between this region and other scalp
regions. As shown in Fig. 6c high spatial variability means that the
interruption and connectivity patterns of the time series of
functional connectivity between a given scalp region and other
scalp regions are independent. On the contrary, low spatial
variability means that the pattern of functional connectivity and
interruption between a given scalp region and other scalp regions
is highly correlated during network changes, i.e., the time series of
dynamical functional connectivity between this scalp region and
all other scalp regions are highly synchronized.
The locations of the characteristic brain regions that determine

the spatial variability of the functional connectivity network
corresponding to the microstate D in early PD are significantly
lower than that of the healthy controls were the left frontal lobe,
bilateral temporal lobe, left posterior parietal lobe, and right
posterior parietal lobe. This indicates that the dynamic synchro-
nization of functional connectivity between the above brain
regions and other regions of early PD is significantly higher than
that of healthy controls. The results of this study further reflect
that the spatial variability of the left temporal lobe in the
microstate D network of early PD patients is significantly lower
than that of healthy subjects and positively correlated with the
cognitive level of patients. This suggests that when the patients
have specific microstate D in brain activities, the stronger the
dynamic synchronization of functional connectivity between the

Fig. 6 Illustration of spatiotemporal variability algorithm with microstate A networks as an example. a Illustration of computational
processes for temporal variability and spatial variability of specific scalp location (electrical channel i). b The schematic of temporal variability
of the functional architecture. c The schematic of spatial variability of the functional architecture. The solid line width represents the strength
of the functional connectivity between two regions (electrical channel’s scalp location) and the dashed line represents fairly weak functional
connectivity. v indicates the number of microstate A networks.
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left temporal lobe and other regions (i.e., the smaller the spatial
variability), the worse the cognitive level of the patients. Besides,
the function of temporal lobe has a certain relationship with
memory and emotion34. Previous studies have shown that the
temporal lobe is the response region of cognitive impairment in
Alzheimer’s disease and even dementia, and it reflects the
cognitive function network35,36. Therefore, this work can further
infer that the spatial variability of microstate D network in the left
temporal lobe can effectively reflect the cognitive level of PD
patients. Furthermore, in the microstate D networks of early PD
patients, the spatial variability of right posterior parietal lobe is
significantly lower than that of healthy subjects and significantly
negatively correlated with the level of motor function of the
patients. It means that when PD patients have specific microstate
D in brain activities, the stronger the dynamic synchronization of
functional connectivity between the right posterior parietal lobe
and other regions (i.e., the smaller the spatial variability), the worse
the patients’ motor symptoms will be. Previous studies have
confirmed that the parietal lobe can reflect the motor function
network37,38, which further supports our findings.
There are several potential limitations to this study. First, more

subjects need to be recruited to provide more evidence for
studying the correlation between temporal and spatial dynamic
characteristics of microstate network and motor function/cogni-
tive function, and to further verify the reliability of characteristic
indicators of specific changes. Second, the dynamic temporal and
spatial variability of microstate functional networks should be
further explored and validated using the fMRI-EEG simultaneous
recording technology. Finally, magnetoencephalography (MEG)
(with more spatial information) experiment should be executed to
provide more evidence to explain the dynamic variability of the
early PD microstate brain networks.

METHODS
General information about participants
In this study, a total of 29 drug-off early PD patients (9 males, 20
females, age: 62.4 ± 6.3 years old) were recruited from the department
of Neurology, General Hospital of Tianjin Medical University, and 22
age-matched healthy control (HC) subjects (11 males, 11 females, age:
63.8 ± 5.5 years old) as the HC group. All patients with early PD were
screened by the same neurologist using the same criteria (inclusion
criteria: patients with the Hoehn and Yahr rating scale (H-Y) stage: 1).
In addition, none of the healthy subjects had a history of neurological
or psychiatric illness. The inclusion criteria for patients with early PD
were as follows: 1. all participants were diagnosed with primary PD; 2.
no head tremor symptom; 3. all patients with early PD were stopped
from medication for more than 12 h before EEG collection; 4. no
history of psychiatric disorders; 5. no history of head trauma with loss
of consciousness. The detailed information of included subjects is
shown in Table 4.

Acquisition protocol
All participants (including early PD patients and healthy controls)
seated comfortably in a quiet semi-dark room with eyes closed
but kept awake. EEG signals were recorded between 9 a.m. and 11
a.m.. EEG activities of the brain scalp at 19 electrodes were
collected. Besides, additional channels were also used to monitor
four electrooculograms (EOGs), as well as electrocardiogram (ECG)
and electromyogram (EMG) for further preprocessing. All electro-
des used for collection are kept below 5 kΩ in impedance. EEG
signals were sampled at 500 Hz. EEG data of each participant was
monitored lasting for 15 to 20 min.
All patients received a detailed behavioral and neuropsychiatric

assessment. The evaluation scales used in the present study are
Uniform Parkinson’s Disease Rating Scale-III (UPDRS-III) and
Montreal Cognitive Assessment (MoCA). UPDRS-III and MoCA are

used as a quantitative criterion to assess patients with dyskinesia39

and cognitive impairment40, respectively. All subjects understood
the purpose of collecting the data and the significance of the
study, and signed the informed consent.
The studies involving human participants were reviewed and

approved by Medical Ethics Committee of Tianjin Medical
University General Hospital. All subjects understood the purpose
of collecting the data and the significance of the study, and signed
the written informed consent form.

Analysis materials
Nineteen Ag/Agcl scalp electrodes (active electrodes, SYMTOP,
Beijing, China) Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7,
T8, P7, P8, Fz, Cz and Pz were placed on the scalp in accordance
with international standard 10–20. These 19 Ag/AgCl scalp
electrodes are linked to 19 data channels, and 2 reference
electrodes (A1 and A2) are linked to the both earlobes. The UEA-
BZ amplifier (SYMTOP, Beijing, China) was linked to these data
channels to amplify and digitize the EEG signals. The acquisition of
EEG signals was handed by Study Rome software. The preproces-
sing of raw EEG was performed in MATLAB software (MathWorks
Inc., Natick MA, United States). EEG microstate analyses were
carried out by Cartool software (the Key Institute for Brain-Mind
Research, Zurich, Switzerland). Statistical analyses were performed
by SPSS 25.0 software (IBM Inc., Chicago, IL, United States) and
MATLAB software (MathWorks Inc., Natick MA, United States).

EEG preprocessing
Fast Independent Component Analysis (Fast-ICA) was applied on the
continuous EEG signal41. The correlation components of horizontal
and vertical eye artifacts, ECG, and EMG artifacts were set to zero to

Table 3. Descriptive statistics of spatial variability of whole brain
microstate functional connectivity networks in patients with early PD
and healthy controls.

HC
subjects

Early PD
patients

Group
comparisons

Mean (SD) Mean (SD) t-value p-value

Microstate A networks 0.77 0.02 0.76 0.03 1.665 0.205

Microstate B networks 0.76 0.02 0.75 0.05 1.368 0.237

Microstate C networks 0.76 0.04 0.76 0.03 −0.541 0.591

Microstate D networks 0.79 0.04 0.76 0.04 2.330 0.096

Significant differences are displayed in bold and italics type. SD, standard
deviation. Adjustment for multiple comparisons: FDR. Significant statistical
difference with *p < 0.05 and **p < 0.01.

Table 4. Subject characteristics.

HC subjects (N= 22)
(N= 22)

Drug-off early PD patients
(N= 29)

Age (years,
mean ± SD)

63.8 ± 5.5 62.4 ± 6.3

Sex (Male/Female) 11/11 9/20

H & Y stage n.a. 1

Scores of UPDRS-III n.a. 15.8 ± 7.5

Scores of MoCA n.a. 26.2 ± 2.9

H&Y stage=Hoehn and Yahr rating scale, UPDRS-III= the third part of the
Unified Parkinson’s Disease Rating Scale, MoCA=Montreal Cognitive
Assessment, n.a.= not applicable.
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reconstruct the EEG signals after the removal of artifacts. Then,
based on existing research18, each EEG signal was processed by a
2–20 Hz band-pass Finite Impulse Response (FIR) filter to eliminate
the interference of high frequency noises. However, artifacts caused
by body movement and technical artifacts were difficult to be
removed by Fast-ICA and filtering, such that the epochs of EEG data
that were contaminated due to the presence of artifacts were
rejected by manual screening. Successive EEG recordings for a total
of 5min of each subject were retained for microstate analyses.

Functional connectivity network construction based on EEG
microstate analysis
In order to obtain the microstate sequences of each subject, the
preprocessed EEG signals were imported into Cartool software for
EEG microstate analysis. Global field power (GFP) is a measure of
scalp potential intensity, and is based on potential differences
between the potential of all electrodes at each sampling point and
their average potential, leading to a scalar value of the field
intensity at each sampling point:42

GFP tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ui tð Þ � u tð Þ½ �2

n

vuuut (1)

here, n represents the number of electrodes, ui (t) denotes the
measured potential strength of the i th electrode at time t, and
u tð Þ represents the average potential strength of all electrodes at
time t. Since the highest signal-to-noise ratio of EEG is located at
the peak of GFP, the EEG topographic maps at the time point of
GFP peaks were selected for clustering analysis. The clustering

algorithm called modified K-means algorithm43 was performed to
obtain respective four microstate classes of early PD patients and
healthy controls, respectively. Then the generated microstate
class-labeled maps were used as templates to assign original
continuous EEG signals of each participant to homologous
microstate classes (A, B, C or D class), thus a microstate sequence
corresponding to EEG sequence was formed.
We used the segmented microstate windows in the microstate

sequence to construct the functional connectivity network, as
shown in Fig. 7. Specifically, for each subject, we first divided the
EEG sequence into n non-overlapping microstate windows
according to the distribution of each microstate class in the
microstate sequence, and the EEG data corresponding to each
window has a specific microstate class. Then, we adopted the
phase lag index (PLI) algorithm44 to obtain the brain functional
connectivity network (i.e., adjacency matrix) between 19 detection
electrodes of each subject. The functional connectivity of pair-wise
EEG channels within the rth microstate window can be obtained
by quantify the asymmetry of the phase difference distribution
between two signals, and it can be defined as:

Fr i; jð Þ ¼ sign sin Δϕ tkð Þð Þ½ �h ij j; k ¼ 1; 2; :::;mr ; i ≠ j (2)

where Fr(i, j) defines the functional connectivity of electrical
channel i and j within the rth microstate window, :h idenotes the
mean value inside, Δϕ(tk) is the phase difference calculated at k
time points and mr is the number of time points within the rth
microstate window. The range of PLI values is from 0 to 1, with
0 standing for no coupling or coupling with zero lag between the
two signals and 1 indicating perfect (non-zero delay) phase
locking. Finally, the 19 × 19 adjacency matrix containing PLI values

Fig. 7 Functional connectivity network construction based on EEG microstate analysis. a EEG microstate analysis is used to form the
microstate sequence corresponding to EEG sequence. b The microstate windows are used to construct functional connectivity networks
based on microstate sequences. c The functional connectivity networks based on microstate classes. GFP global field power, SVM support
vector machine, PLI phase lag index.
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of all pair-wise EEG channels can be taken as the functional
connectivity network Fr within the rth microstate window. Thus, as
shown in Fig. 7b, a set of functional connectivity networks are
obtained with v microstate windows (called microstate-window-
based networks, MNs), i.e., F ¼ F1; � � �; Fr; � � �; Fvf g. Furthermore,
we divide the functional connectivity networks corresponding to
each microstate classes into separate sets of brain networks
(called microstate-class-window-based networks, MCNs) as shown
in Fig. 7C.

Temporal and spatial variabilities of dynamic functional
connectivity network
Figure 6a illustrates the computational processes of temporal and
spatial variability of specific scalp location (electrical channel i).
Given the set of functional connectivity networks,
F ¼ F1; � � �; Fr ; � � �; Fvf g, to characterize the temporal variability
of dynamic functional connectivity network at a specific scalp
location (electrical channel location), the temporal variability of
dynamic functional connectivity associated with a specific scalp
location (electrical channel i) is defined as:

Ti ¼ 1� 1
v v � 1ð Þ

Xv

p;q¼1;p≠q

corr Fp i; :ð Þ; Fq i; :ð Þ� �
(3)

where Fp(I,:) represents the functional architecture of electrical
channel i at the pth microstate window (e.g., when i= 5,
Fp 5; :ð Þ ¼ Fp 5; 1ð Þ; Fp 5; 2ð Þ; � � �; Fp 5; 4ð Þ; Fp 5; 6ð Þ; � � �; Fp 5; 19ð Þ� �T

)
and corr Fp i; :ð Þ; Fq i; :ð Þ� �

is the correlation coefficient between two
different functional architectures measuring their temporal
similarity.
In order to characterize the spatial variability of dynamic

functional connectivity network at the specific scalp location,
firstly, the changing profile of functional connectivity between a
pair of electrical channels within all microstate windows is defined
as a spatial functional connectivity sequence (e.g., Fs i; jð Þ ¼
F1 i; jð Þ; F2 i; jð Þ; � � � ; Fv i; jð Þ½ �T denotes the spatial functional con-
nectivity sequence between electrical channel i and j). Then the
spatial variability of dynamic functional connectivity associated
with a specific scalp location (electrical channel i) is defined as:

Si ¼ 1� 1
18 ´ 17

X19

j;h¼1;j≠h≠i

corr Fs i; jð Þ; Fs i; hð Þð Þ (4)

where corr Fs i; jð Þ; Fs i; hð Þð Þ denotes the correlation coefficient
between two different spatial functional connectivity sequences
Fs(i, j) and Fs(i, h), such that it measures the spatial similarity of all
functional connectivity sequences associated with a specific scalp
location (electrical channel i).
In general, two types of variabilities defined at a particular scalp

location reflect the local variability of dynamic functional
connectivity networks from two different perspectives. Specifi-
cally, the temporal variability defined in Eq. (3) reflects the time-

varying characteristics of the functional structure of local brain
regions, and the spatial variability defined in Eq. (4) embodies the
space-varying characteristics of spatial functional connectivity
sequences associated with local brain regions.

Methods for comparison
In this work, we designed three kinds of features for the disease
classification based on standard SVM classifier with linear kernel
(with default parameters). The differences in classification
effectiveness depend on the attributes of the features that are
inputs of the SVM. The spatiotemporal variability (temporal
variability and spatial variability) of functional connectivity
networks based on equal length sliding windows (called
sliding-window-based networks, SNs) are considered as the
baseline features. The other two sets of features for comparison
are the spatiotemporal variability of MNs and MCNs, respectively.
We define the three feature classifiers as SN-SVM, MN-SVM and
MCN-SVM (Fig. 8). In order to avoid the contingency of the
sliding windows, we compared the classification result of SN-
SVMs with several popular window lengths and step lengths
(with window length of 500, step length of 500; with window
length of 1000, step length of 500; with window length of 1000,
step length of 1000). In the experimental process of using each
feature classifier, two classification tasks (early PD vs. HC) are
conducted using a 5-fold cross-validation strategy. Specifically,
the whole subject samples (the spatiotemporal variability of 19
EEG channels of 51 subjects (29 early PD vs. 22 HC) calculated
from each kind of networks) are randomly partitioned into
5 subsets, from which 4 subsets were randomly selected for
training and the remaining subset for testing during each cross-
validation process. The above procedure was repeated 10 times
and the average of these 50 trails was reported to avoid any bias
caused by the partition. We evaluate the classification perfor-
mance of each method by computing the performance
measurements including accuracy, sensitivity, specificity, F1
Score, and the area under receiver operating characteristic
(ROC) curve (AUC).
Based on the performance of feature classifiers, we can determine

that the features based on which the classification effectiveness is
best express distinct abnormal indicator of dynamic brain networks
in early PD. Therefore, we further analysis the unique spatiotemporal
variability in early PD based on the brain network construction rule
corresponding to the best disease classification performance.

Statistical analysis
The independent-sample t-test was performed to evaluate the
differences between early PD patients and healthy controls at a
p < 0.05 significance level. Spearman’s correlation analysis was
performed to verify the certain correlation between the
indicators and clinical scales, and the correlation was accepted

SNs

MNs

MCNs

Temporal variability

Spatial variability

Temporal variability

Spatial variability

Spatial variability

Temporal variability SVM Classification SN-SVM

MN-SVM

MCN-SVM

Fig. 8 Features calculated by different methods are taken in a common SVM classifier for disease classification.
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at p < 0.05. We used the false discovery rate (FDR) to correct the
results.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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