
ARTICLE OPEN

Exploring the genetic and genomic connection underlying
neurodegeneration with brain iron accumulation and the risk
for Parkinson’s disease
Pilar Alvarez Jerez 1,2,3, Jose Luis Alcantud4, Lucia de los Reyes-Ramírez 5, Anni Moore1, Clara Ruz4, Francisco Vives Montero 4,
Noela Rodriguez-Losada 6, Prabhjyot Saini7,8, Ziv Gan-Or 7,8,9, Chelsea X. Alvarado2,10, Mary B. Makarious 1,11,
Kimberley J. Billingsley 1,2, Cornelis Blauwendraat 1,2, Alastair J. Noyce 11,12, Andrew B. Singleton1,2, Raquel Duran4 and
Sara Bandres-Ciga1,2✉

Neurodegeneration with brain iron accumulation (NBIA) represents a group of neurodegenerative disorders characterized by
abnormal iron accumulation in the brain. In Parkinson’s Disease (PD), iron accumulation is a cardinal feature of degenerating
regions in the brain and seems to be a key player in mechanisms that precipitate cell death. The aim of this study was to explore
the genetic and genomic connection between NBIA and PD. We screened for known and rare pathogenic mutations in autosomal
dominant and recessive genes linked to NBIA in a total of 4481 PD cases and 10,253 controls from the Accelerating Medicines
Partnership Parkinsons’ Disease Program and the UKBiobank. We examined whether a genetic burden of NBIA variants contributes
to PD risk through single-gene, gene-set, and single-variant association analyses. In addition, we assessed publicly available
expression quantitative trait loci (eQTL) data through Summary-based Mendelian Randomization and conducted transcriptomic
analyses in blood of 1886 PD cases and 1285 controls. Out of 29 previously reported NBIA screened coding variants, four were
associated with PD risk at a nominal p value < 0.05. No enrichment of heterozygous variants in NBIA-related genes risk was
identified in PD cases versus controls. Burden analyses did not reveal a cumulative effect of rare NBIA genetic variation on PD risk.
Transcriptomic analyses suggested that DCAF17 is differentially expressed in blood from PD cases and controls. Due to low
mutation occurrence in the datasets and lack of replication, our analyses suggest that NBIA and PD may be separate molecular
entities.
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INTRODUCTION
Neurodegeneration with brain iron accumulation (NBIA) represents a
group of inherited heterogeneous neurodegenerative disorders
characterized by iron accumulation and the presence of axonal
spheroids in the basal ganglia and other brain areas1. The worldwide
prevalence of NBIA in the general population is estimated between
1–3/1,000,000 individuals, adding these disorders to the group of
ultra-rare orphan diseases2. In view of the rarity of these disorders
and its diverse clinical presentation, NBIA can often go unrecog-
nized, underdiagnosed, or misdiagnosed.
In the brain, the substantia nigra, putamen, globus pallidus and

caudate nucleus have the highest iron concentration, and total
iron content increases with age3. Brain iron is crucial for important
processes such as the synthesis of myelin and neurotransmitters
and oxygen transport3,4. Higher nigral iron concentrations have
been shown in Parkinson’s Disease (PD) patients in postmortem
studies repeatedly5,6. This excess of intracellular iron is associated
with oxidative stress, lipid peroxidation, cellular dysfunction, and

neuronal death in PD and thus potentially playing a role in PD
pathogenesis7,8.
To date, mutations in 13 genes have been associated with

autosomal dominant (FTL), autosomal recessive (ATP13A2, PANK2,
PLA2G6, FA2H, CP, C19orf12, COASY, GTPBP2, DCAF17, VAC14) and
X-linked forms of NBIA (WDR45, RAB39B), and are involved in a
wide range of molecular processes affecting mitochondrial
function, coenzyme A metabolism, lipid metabolism and autop-
hagy9. Typically, NBIA disorders present with variable and complex
phenotypes including parkinsonism, dystonia, intellectual disabil-
ity, and cognitive decline1. The NBIA clinical spectrum is broad and
there is increased awareness of clinical overlap between different
NBIA disorders as well as with other diseases such as Parkinson’s
disease (PD). In PD, it has been widely suggested that genetic
components contributing to disease might include rare genetic
variants of small or moderate effect, where functional and
deleterious alleles might exist10. Furthermore, it has been
previously predicted that variability in genes causing young-
onset autosomal recessive neurological diseases contribute to
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late-onset neurological diseases. In fact, homozygous and
compound heterozygous loss-of-function mutations in TREM2
have been previously associated with an autosomal recessive form
of early-onset dementia, while when found in heterozygous state
confer moderate risk for Alzheimer’s disease11,12. Similarly,
homozygous and compound heterozygous mutations in GBA are
responsible for Gaucher’s disease while heterozygous variants are
a well-validated risk factor for PD13.
In PD, iron accumulation is a cardinal feature of degenerating

regions in the brain and has been implicated in mechanisms that
precipitate cell death14. Iron is a transition metal involved in
several cellular functions such as neuronal metabolism, DNA
synthesis, oxygen transport, mitochondrial respiration, and
myelination in the brain15. Furthermore, it is implicated in
production and turnover of some neurotransmitters such as
dopamine, epinephrine or serotonin16. Iron tends to accumulate
with age mainly in the cortex and the nuclei of the basal ganglia,
including the globus pallidus, putamen, and caudate nucleus; and
an excessive accumulation in these regions is associated with
neurodegenerative disorders17. Evidence suggests abnormal iron
levels in the brains of PD patients and a role for iron dysregulation
in the disease18. Interestingly, NBIA-related genes are involved in
mitochondrial function and autophagy, dysfunction of which is

implicated in PD, suggesting there could be shared molecular
pathways and gene networks between NBIA and PD19. Further-
more, autopsy examination of NBIA-genetically confirmed cases
has demonstrated Lewy bodies in some subforms, linking the
pathology of both diseases20.
The aim of the present study was to explore the relationship

between genes known to contain mutations that cause autosomal
dominant/recessive NBIA and PD etiology. Using the largest
genetic and genomic datasets of PD cases and controls to date
including the Accelerating Medicines Partnership Program for
Parkinson’s Disease (AMP-PD) and the UKBiobank (UKB), we
screened for the presence of known and rare pathogenic
mutations linked to NBIA in PD. We further examined whether a
genetic burden of variants in NBIA-linked genes could contribute
to the risk of developing PD by performing single gene, gene-set,
and single variant association analyses. Finally, to investigate the
potential effect of changes in NBIA-linked genes expression in PD
compared to healthy individuals, we assessed publicly available
expression quantitative trait loci (eQTL) results from GTEx v8,
BRAINEAC, and transcriptomics data from AMP-PD.

RESULTS
Genetic screening of NBIA-related genes in whole-genome
and whole-exome sequencing data of Parkinson’s disease
cases and controls
ATP13A2. Genetic variants in the ATPase Cation Transporting 13A2
(ATP13A2) gene, located on chromosome 1, have been previously
associated with Kufor-Rakeb syndrome, spastic paraplegia type 78,
and parkinsonism21–23. A total of 36 protein-coding variants were
present in the screened datasets, of which four missense variants
had a higher frequency in cases versus controls. A summary of
variants with a higher frequency in cases can be found in Table 1
while additional variant information is listed in the supplemental.
The variants found in AMP-PD (p.I946F, p.A249V, p.T12M) have been
previously associated with PD in individuals of European ancestry
although their pathogenicity is still unclear24,25. The p.T402M variant,
found in UKB, has been previously described in a homozygous
individual with ataxia-myoclonus syndrome with an age at onset of
38 and lacking parkinsonism26,27. The report postulates that
together, progressive ataxia with action myoclonus along with lack
of parkinsonism may suggest a new phenotype linked to ATP13A2.
In our UKB cohort, the p.T402M heterozygous mutation carrier was a
male PD case with age at recruitment of 55 years. This mutation was
absent in controls.

CP. The Ceruloplasmin (CP) gene, located on chromosome 3, is
closely related to iron metabolism in the brain28. Four out of 29
variants had a higher frequency in cases than controls. Notably,
p.R793H and p.P477L, were seen in both AMP-PD and UKB. Reports
have linked lower CP levels with PD development, and CP gene
mutations have been associated with substantia nigra hyperecho-
genicity using transcranial sonography29. In addition, hyperecho-
genicity is a common finding in idiopathic PD patients and many
studies suggest that it is an important risk marker of future PD30,31.
One mutation originally associated with substantia nigra (SN)
hyperechogenicity, although listed as likely benign, is p.R793H32.
Our study identified the p.R793H variant in both homozygosity and
heterozygosity with higher frequency in cases than controls both
AMP-PD and UKB. However, it did not reach statistical significance
for either dataset. Of note, we observed biallelic heterozygosity in
one case and two controls from UKB carrying both the p.P477L and
p.R793H mutations. The p.I392F variant was only present in UKB
data. A three base pair deletion at this position has been associated
with aceruloplasminemia, a disorder in which iron gradually
accumulates in the brain and other organs33. In addition, this is a
multi-allelic variant for which the risk allele identified in our analyses
differs from those reported on HGMD.

Table 1. Summary of variants in NBIA related genes with higher
frequency in PD cases versus controls, SNP= Single Nucleotide
Polymorphism, p= P-value.

SNP Gene p (AMP-PD) p (UKB) Cohort

chr1:16988161:T:A ATP13A2 0.147 – AMP

chr1:16996487:G:A ATP13A2 – 0.024 UKB

chr1:17000494:G:A ATP13A2 0.502 – AMP

chr1:17005754:G:A ATP13A2 0.264 – AMP

chr3:149183513:C:T CP 0.067 0.887 AMP

chr3:149198448:T:A CP – 0.047 UKB

chr3:149199783:G:A CP 0.648 0.260 AMP

chr3:149206202:T:A CP – 0.427 UKB

chr16:74719154:G:A FA2H – 0.024 UKB

chr16:74774524:C:T FA2H 0.824 0.985 AMP

chr16:74774662:G:C FA2H 0.875 – AMP

chr19:29702747:T:C C19orf12 – 0.609 UKB

chr19:29702977:C:A C19orf12 0.875 – AMP

chr19:29702977:C:G C19orf12 0.264 – AMP

chr19:29708268:G:A C19orf12 – 0.024 UKB

chr19:48966341:G:T FTL 0.875 – AMP

chr20:3889237:A:T PANK2 – 0.694 UKB

chr20:3907997:A:G PANK2 0.114 – AMP

chr20:3910812:A:G PANK2 0.439 – AMP

chr20:3912486:T:A PANK2 – 0.024 UKB

chr20:3912490:D:3 PANK2 – 0.199 UKB

chr20:3918695:G:A PANK2 0.439 0.106 AMP

chr22:38113560:C:T PLA2G6 – 0.427 UKB

chr22:38126390:T:C PLA2G6 0.875 0.069 AMP

chr22:38132881:C:T PLA2G6 0.467 0.523 AMP

chr22:38132917:C:T PLA2G6 0.264 – AMP

chr22:38133007:G:A PLA2G6 0.875 – AMP

chr22:38143275:C:T PLA2G6 0.875 – AMP

chr22:38169326:G:A PLA2G6 0.151 0.514 AMP

Bold entries indicate statistical significance at a nominal p value < 0.05.
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FA2H. In the Fatty Acid 2-Hydroxylase (FA2H) gene, located on
chromosome 16, we found 28 coding variants out of which two
missense variants had a higher frequency in cases. The variant
p.E78K appeared in both datasets and is associated with the fatty
acid hydroxylase-associated neurodegeneration(FAHN)/hereditary
spastic paraplegia (SPG35) phenotype although no conclusions
were drawn about its significance34. The p.E78K mutation has also
been reported in a patient with an age at onset of 10 with a
positive family history of spastic paraplegia and was labeled as a
putative pathogenic variant35. Our PD carriers with the p.E78K
mutation had an age of inclusion of 70 and 52 for AMP-PD and 69
for UKB. The case/control frequency for p.E78K did not reach
significance in our analysis. For the p.T207M mutation, all
previously reported carriers were compound heterozygous with
additional mutations in FA2H and had the spastic paraplegia
phenotype22,34,36. In our study, we found one male UKB case with
an age at inclusion of 65 carrying the p.T207M mutation. This
mutation was absent in controls and was the only FA2H mutation
that reached statistical significance.

C19orf12. Variation in the Chromosome 19 open reading frame 12
(C19orf12) gene, located on chromosome 19, has been associated
with the mitochondrial membrane protein-associated neurode-
generation (MPAN) subtype of NBIA which presents with cognitive
decline progressing to dementia, prominent neuropsychiatric
abnormalities, motor neuronopathy, and parkinsonism movement
abnormalities37,38. Out of 18 coding variants present, four
missense variants in our datasets showed a higher frequency in
cases versus controls, with only one proving significant and
previously linked to the MPAN phenotype in the literature. In
AMP-PD data, we found two multiallelic variants, p.G65V present
in one case and one control and p.G65A present in just one case
and no controls. In two patients reported in the literature,
compound heterozygosity for p.G65V and p.G69RfsX10 variants
led to the MPAN phenotype38. In addition, another two patients
were reported to have this phenotype; one carrying the
compound heterozygous mutations p.G65V and p.P60L and the
other carrying a homozygous p.G65V variant39. The p.K142E
variant, present it our data, has been seen in compound
heterozygosity in patients with the MPAN NBIA phenotype40–42.
Lastly, we found the p.P60L mutation at statistical significance
present in one UKB case and absent in controls. The carrier under
study was a female PD patient with an age at inclusion of 66 and
no other notable C19orf12 mutations. The p.P60L variant has been
previously detected in an MPAN patient who also carried the
p.G65E C19orf12 mutation38.

FTL. Our study identified only one missense variant (p.E104) out
of nine with a higher frequency in cases than controls in the
Ferritin Light Chain (FTL) gene, located on chromosome 19. The
p.E104 mutation was only of note in the AMP-PD dataset and was
present in one case and one control (F_A= 2.02 × 10−4,
F_U= 1.62 × 10−4). The p.E104 variant has been reported as
causing an L-ferritin deficiency phenotype38,43.

PANK2. Variation in the Pantothenate Kinase 2 (PANK2) gene,
located on chromosome 20, has been previously associated with
pantothenate kinase-associated neurodegeneration (PKAN), the
most common subtype of NBIA44. Clinical symptoms include
dystonia, dysarthria, muscular rigidity, poor balance, and spasti-
city44,45. We found six out of 68 distinct coding variants in our
dataset with a higher frequency in cases. The p.G521R mutation
was the only one present in both AMP-PD and UKB. This variant
results in an unstable and inactive PanK2 protein and has been
reported as the most common variant in PANK246. It is often found
in a compound heterozygous state in individuals presenting with
the PKAN phenotype46,47. In AMP-PD, two PD cases, one male and
one female with ages at inclusion of 54 and 67 respectively,

carried the p.G521R mutation in heterozygous state compared to
one control (F_A= 4.05 × 10−4, F_U= 4.05 × 10−4). In UKB, three
cases, all males with an average age at inclusion of 62 years old,
presented with the p.G521R mutation in heterozygous state
compared to five controls (F_A= 1.36 × 10−3, F_U= 4.43 × 10−4).
None of the PD p.G521R carriers from either cohort contained this
mutation in compound heterozygous state.

PLA2G6. In the Phospholipase A2 Group VI (PLA2G6) gene, located
on chromosome 22, we found 100 variants of which seven
missense variants had a higher frequency in cases versus controls.
These variants have been previously associated with both infantile
neuroaxonal dystrophy (INAD) and PD48–52. INAD is a severe
progressive psychomotor disorder, which presents before the
third year of life, characterized by the presence of axonal
spheroids throughout the central and peripheral nervous
system52–54. The variant p.M470V is the only variant out of three
associated with the INAD phenotype that was present in both the
AMP-PD and UKB cohorts55. In addition, p.A343T has been
associated with PD and we identified 77 cases and 86 controls
carrying this mutation in AMP-PD (F_A= 1.58 × 10−2,
F_U= 1.41 × 10−20) and 29 cases and 130 controls in UKB data
(F_A= 1.31 × 10−2, F_U= 1.15 × 10−2)49,55. Of note, one of the
p.A343T AMP-PD case carriers was a female homozygous for the
mutation with an age at inclusion of 65. In addition, a
heterozygous carrier of p.A343T in the UKB was a PD case and
additionally carried the p.S34L mutation, also associated with
PD49,55. This patient had an age at inclusion of 60. However, no
PLA2G6 mutation with a higher frequency in cases reached
statistical significance.

Transcriptomic analyses
Two genes including FA2H (ENSG00000103089.8) and CP
(ENSG00000047457.13) were removed for further analyses based
on poor call rates (missingness rate > 0.33). Of the 10 NBIA genes
left, DCAF17 expression (ENSG00000115827.13) was found to be
significantly different in cases versus controls (Fig. 1)(Table 2). To
further investigate these results we looked into SMR analysis for
the DCAF17 gene. To prioritize SNV candidates, results were
initially filtered by chromosome and base pair position for the
DCAF17 gene in hg19. Afterwards, the resulting candidates were
filtered by the SMR multi p-value at a threshold of p < 0.05. SMR
analyses for the DCAF17 gene revealed four eQTL signals with a
significant SMR p-value. Out of these four eQTL signals, only one
was significant in both SMR analyses (p= 0.0024) and Nalls et al.67

GWAS (p= 0.0004). A summary of the DCAF17 SMR data can be
found in the supplementary data.

Cumulative effect of genetic variation through single gene
and gene-set burden analyses
When considering the cumulative effect of rare variation on PD
risk, single gene and gene-set burden analyses did not reveal any
statistically significant differences between cases and controls at
MAF < 0.01 or MAF < 0.03 in any of the three cohorts and after
meta-analysis (Table 3).

DISCUSSION
Using the largest PD genetic and genomic datasets available to
date, we conducted a comprehensive genetic assessment of NBIA
related variants and genes for a potential role in PD etiology. We
identified 29 previously reported NBIA coding mutations in a total
of seven genes including ATP13A2, CP, FA2H, C19orf12, FTL, PANK2,
and PLA2G6 with a higher frequency in PD cases than controls. All
phenotypes previously linked to the reported variants in NBIA
genes involve neurological disorders, adding to the conclusion of
clinical overlap between neurological diseases and the strong link
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between brain iron accumulation and a number of neurodegen-
erative disorders. However, only four out of the 29 variants of
interest we reported had a statistically significant difference in
frequency between cases and controls (p < 0.05), all only
significant in UKB data. Within these four variants, one was found
in ATP13A2, one in FA2H, one in C19orf12, and one in PANK2,
always in only one case and no controls. Notably, none of these
four variants have been previously associated with PD in the
literature. Noting the very low mutation frequency in the current
data and the lack of replication, we cannot conclude that the
mutation spectrum contributing to NBIA phenotype overlaps with
PD etiology. As such, despite enrichment for the risk allele in PD
cases versus controls in four variants, these data suggest that in

their heterozygous state NBIA variants are not frequently
associated with risk of PD.
We performed burden analyses at two different frequency

levels, MAF < 0.01 and MAF < 0.03, on both individual genes and
as a gene-set. Meta-analysis of SKAT-O results were not significant
for any individual gene or as a gene-set at either frequency level,
suggesting that a cumulative effect of rare variation on NBIA
genes does not play a role on PD etiology (Fig. 2).
Transcriptomic analyses revealed that DCAF17 is the only gene

that is differentially expressed in blood from PD cases and
controls. We further investigated this gene through Summary
data-based Mendelian Randomization. One DCAF17 eQTL signal
was significant for both GWAS and SMR. The DCAF17 gene is
found on chromosome 2, encodes DDB1- and CUL4- associated
factor 17, and is considered the cause of Woodhouse-Sakati
syndrome, a rare neuroendocrine disorder that presents with
neurological problems such as seizures and dystonia. While the
exact role of the protein is still unclear, it is postulated that it may
affect cellular activities such as growth, proliferation, and stress
response specifically in the nucleolus of brain, liver, and skin
cells56. It is possible that differing cellular stress responses
between PD cases and controls may be leading to DCAF17
differential expression. However, it is still unclear what is driving
the significant DCAF17 differential gene expression in our data and
further assessments are needed.
This study has some limitations, mostly related to variant

detection. Despite using the most well-powered PD datasets, it is
nevertheless difficult to detect rare variants as evidenced by the
number of variant counts of zero in both cases and controls. It is
possible that other rare variants exist in NBIA genes that were not

Fig. 1 DCAF17 expression in blood of PD cases versus controls. Center line indicates the median. The box bounds represent the first and
third quartiles while the whiskers extend the box by 1.5× the interquartile range (IQR).

Table 2. Results of transcriptomic analysis using blood PPMI data.

Gene Ensemble ID T-statistic P-value

ATP13A2 ENSG00000159363.17 −0.5126 0.6083

DCAF17 ENSG00000115827.13 −4.036 5.54E−05

GTPBP2 ENSG00000172432.18 −0.3596 0.7192

VAC14 ENSG00000103043.14 −0.5266 0.5985

COASY ENSG00000068120.14 0.4632 0.6432

C19orf12 ENSG00000131943.17 −1.446 0.1482

FTL ENSG00000087086.14 0.655 0.5125

PANK2 ENSG00000125779.22 0.8218 0.4113

DCAF17 is the only NBIA gene with significant differential expression in PD.
Bold entries indicate statistical significance at a nominal p value < 0.05.
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detected in our study. Therefore, we cannot fully elucidate the
relationship between rare variants in NBIA genes and PD. In
addition, due to a low number of non-European individuals found
in the chosen datasets, we were underpowered to properly detect
variation in other populations. Several the variants we identified
have been reported in the literature in non-European populations,
so a study encompassing a greater genetic diversity, with a larger
number of non-European individuals, is warranted and would

allow us to better characterize the relationship between NBIA and
PD etiologies. In addition, as we have mainly focused on coding
variants, it is also possible that non-detected variants, such as
larger structural variant (SVs) events in NBIA genes, affect PD risk.
There is increasing evidence that SVs are likely the main
contribution to disease susceptibility and have a substantial effect
in coding regions of the genome where they can result in
deleterious alterations of the DNA sequence57. Therefore, further

Table 3. Results of burden analysis at two minor allele frequencies for NBIA genes in PD.

Gene Variant Group MAF P_AMP P_UKB P_Meta WeightedZ

ATP13A2 All 0.01 0.0904 0.8813 0.2811 0.6518

ATP13A2 All 0.03 0.6599 0.5547 0.7339 −0.6615

ATP13A2 Coding 0.01 0.9272 0.2949 0.6281 −1.0192

ATP13A2 Coding 0.03 0.6622 0.3033 0.5233 −1.2470

C19orf12 All 0.01 0.8789 0.5115 0.8089 1.6650

C19orf12 All 0.03 0.7091 0.5115 0.7305 1.2089

C19orf12 Coding 0.01 1.0000 0.4262 0.7897 1.6592

C19orf12 Coding 0.03 1.0000 0.4262 0.7897 1.6592

COASY All 0.01 0.5435 0.0832 0.1853 −0.5970

COASY All 0.03 0.5435 0.0832 0.1853 −0.5970

COASY Coding 0.01 1.0000 0.0936 0.3154 0.4017

COASY Coding 0.03 1.0000 0.0936 0.3154 0.4017

CP All 0.01 0.3392 0.4920 0.4657 1.0089

CP All 0.03 0.6747 0.4339 0.6524 0.2643

CP Coding 0.01 0.6615 0.3514 0.5717 0.4431

CP Coding 0.03 0.6615 0.2169 0.4221 0.1493

DCAF17 All 0.01 0.2382 0.2288 0.3721 −0.9574

DCAF17 All 0.03 0.2382 0.7715 0.8393 0.2144

DCAF17 Coding 0.01 0.1146 0.4555 0.6522 0.8371

DCAF17 Coding 0.03 0.1146 0.7161 0.8917 1.2486

FA2H All 0.01 1.0000 0.3676 0.7355 −0.4057

FA2H All 0.03 0.8598 0.3676 0.6801 −0.7388

FA2H Coding 0.01 0.5816 0.5064 0.6546 −0.9324

FA2H Coding 0.03 0.5397 0.5064 0.6278 −0.8240

FTL All 0.01 0.4990 0.8460 0.7862 −0.1314

FTL All 0.03 0.4990 0.8460 0.7862 −0.1314

FTL Coding 0.01 0.5583 NA NA 0.0555

FTL Coding 0.03 0.5583 NA NA 0.0555

GTPBP2 All 0.01 0.5471 0.1980 0.3491 −0.7209

GTPBP2 All 0.03 0.2766 0.4241 0.3687 −0.8013

GTPBP2 Coding 0.01 0.0696 0.3808 0.1227 −1.6865

GTPBP2 Coding 0.03 0.6000 0.3712 0.5572 0.7064

PANK2 All 0.01 0.3261 0.8209 0.6205 1.5979

PANK2 All 0.03 0.4622 0.9000 0.7809 0.8418

PANK2 Coding 0.01 0.7875 0.0507 0.1684 0.3729

PANK2 Coding 0.03 0.7875 0.0507 0.1684 0.3729

PLA2G6 All 0.01 0.7644 0.2124 0.4575 1.3405

PLA2G6 All 0.03 0.7661 0.3815 0.6518 0.4891

PLA2G6 Coding 0.01 0.9007 0.3588 0.6882 −0.9407

PLA2G6 Coding 0.03 0.8603 0.6690 0.8935 0.1710

VAC14 All 0.01 0.2814 0.4390 0.3819 −1.2446

VAC14 All 0.03 0.3986 1.0000 0.7653 −0.3362

VAC14 Coding 0.01 0.3683 0.7708 0.6414 0.0051

VAC14 Coding 0.03 0.3683 0.8155 0.6616 −0.0728

MAF Minor Allele Frequency, P_AMP P value in AMP_PD cohort, P_UKB P value in UKB cohort, P_Meta P value in meta analysis, Weighted Z Weighted Z Statistic.
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study into SVs would be an important step in identifying the
relationship between NBIA and PD. Lastly, the cohorts currently
available do not allow us to accurately perform a comprehensive
clinical characterization of potential atypical symptoms nor are we
able to perform clinicogenetic correlations exploring brain iron
accumulation on MRI in PD cases with NBIA gene variants,
therefore possibly drawing limited conclusions. In addition, as it
has been previously suggested elevated nigral iron levels are
unlikely to contribute to PD etiology but may vary with anti-
parkinsonian drugs used for treatment58. Taking everything into
account, we suggest that even though NBIA and PD share similar
symptoms, they could be molecularly different entities supporting
the notion that the mechanisms underpinning iron accumulation
in PD are not shared with NBIA. Elevated nigral iron levels may not
contribute to PD etiology and may vary with anti-parkinsonian
drugs used for treatment or any other environmental factors.

METHODS
Whole-genome sequencing data
Whole-genome sequencing (WGS) data was obtained from the
Accelerating Medicines Partnership—Parkinson’s Disease Initiative
release 2.5 (AMP-PD; www.amp-pd.org) which contained 3376 PD
patients and 4610 healthy unrelated controls of European
ancestry, with an average age at onset of 62 years in cases and
age at collection of 72 years in controls. Ancestry was determined
by principal component analysis versus the 1000Genomes
populations and individuals deviating by more than six standard
deviations from the European population mean were excluded
from the analysis. Diagnosis criteria vary slightly between each
subcohort within AMP-PD, but detailed cohort characteristics, as
well as quality control procedures, are further described in
https://amp-pd.org/whole-genome-data. Informed consent was
obtained for all human participants in this cohort. Healthy
unrelated controls include individuals with no neurodegenerative
disease diagnosis nor any family history of such disease lacking
any familial link to other individuals in our study. Data generation

is described in detail by Iwaki and colleagues59. NBIA-related
variants were extracted from the data by using PLINK1.9 and
annotated with ANNOVAR60,61. Coding variants present in the
Human Gene Mutation Database (HGMD) went through associa-
tion analyses for risk of PD using Fisher’s exact test and logistic
regression and adjusted by sex, age, and at least 5PCs to account
for population substructure.
To assess the cumulative effect of multiple rare variants on the

risk for PD, we performed single gene and gene-set burden
analyses for all extracted variants under RVTESTS package v2.1.0
default parameters and adjusted by sex, age, and at least 5 PCs to
account for population substructure62. Including all variants within
the gene boundaries, a minimum allele count (MAC) threshold of 1
was applied. Sequence Kernel Association Test (SKAT-O) was
performed considering two variant frequency levels: MAF < 1%
and MAF < 3%. Age, sex, and at least 5 PCs, were accounted for as
covariates.

Whole-exome sequencing data
Whole-exome sequencing (WES) data was obtained from the UK
Biobank 2021 release (UK Biobank; https://www.ukbiobank.ac.uk/),
which contained 1105 PD patients and 5643 healthy unrelated
controls of European ancestry, with an average age at recruitment
of 63 years in cases and 64 years in controls. Ancestry
determination follows that of AMP-PD. Disease diagnosis of
individuals is determined by self-reports and hospital codes and
healthy unrelated controls include individuals with no neurode-
generative disease diagnosis nor any family history of such disease
lacking any familial link to other individuals in our study. Detailed
cohort characteristics, as well as quality control procedures, are
further described in https://www.ukbiobank.ac.uk/enable-your-
research/about-our-data/genetic-data. Informed consent was
obtained for all human participants in this cohort. Variant
extraction, association tests, and burden tests follow the AMP-
PD WGS pipeline.

Fig. 2 Overview of methods for association and burden analyses. Variants in NBIA genes were called in our PD and control cohorts and
were then annotated and run through the analyses69.
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Transcriptomics data
Whole blood time progression gene expression data (gencode v29)
from 0 to 24 months after first study visit was accessed from AMP-
PD. We used PPMI (https://amp-pd.org/unified-cohorts/ppmi),
PDBP (https://amp-pd.org/unified-cohorts/pdbp), and BioFIND
(https://amp-pd.org/unified-cohorts/biofind) cohorts at the base-
line of the study, 0 month time point (note BioFIND ‘Baseline’ is at
‘0.5’ month), including a total of 1886 cases and 1285 control
samples. Expression data were quantified as transcripts per
kilobase million (TPM) and quantile normalized before NBIA related
genes values were extracted using Ensembl gene ids. Using the
scikit-learn Python packages 19, residuals were calculated using
linear regression, and the data were adjusted using age, sex, race,
at least 5 PCs, cohort, and missingness rate as covariates. To test for
significant differences in expression between the cases and
controls, we performed a t-test with the residuals. We also used
an additional dataset taken from the 24-month time point in the
PDBP and PPMI cohorts of 841 cases and 386 controls to confirm
our findings.

Summary based Mendelian Randomization
SMR is a mendelian randomization (MR) method that uses
summary-level data to test if an exposure variable (i.e. gene
expression) and outcome (i.e., trait) are associated because of a
shared causal variant. In order to distinguish pleiotropy from
linkage, the heterogeneity in dependent instruments (HEIDI)
method was applied to each tested single nucleotide variant
(SNV)63. SMR and HEIDI analysis were conducted using the SMR
package64.
In order to conduct the analysis, we used PD GWAS summary

statistics as well as methylation and eQTL meta-analysis summary
statistics65,66. PD GWAS summary statistics from Nalls et al.67

contained 17 datasets which consisted of 37,688 PD cases, 18,618
proxy cases, and 1,417,791 controls67. The methylation data we
used consists of brain and blood gene expression data from a
meta-analysis conducted by Qi et al.65. All eQTL analyses were
performed to test for potential in cis association between
methylation site and SNV. In order to achieve this, SNVs within
1 Mb of the probes of interest were selected65. The eQTL summary
statistic data used were generated from peripheral blood and
came from the meta-analysis conducted by Wu et al.68. All of the
SNPS from Wu et al. are located within 2 Mb of a probe68.
In order to prioritize SNP candidates, results were initially

filtered by chromosome and base pair position for the DCAF17
gene in hg19. Afterwards, the resulting candidates were filtered by
the SMR multi p-value at a threshold of p < 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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