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Aberrant neurophysiological signaling associated with speech
impairments in Parkinson’s disease
Alex I. Wiesman1, Peter W. Donhauser1,2, Clotilde Degroot1, Sabrina Diab3, Shanna Kousaie4, Edward A. Fon 1, Denise Klein 1,5,7✉,
Sylvain Baillet1,7✉, PREVENT-AD Research Group* and Quebec Parkinson Network*

Difficulty producing intelligible speech is a debilitating symptom of Parkinson’s disease (PD). Yet, both the robust evaluation of
speech impairments and the identification of the affected brain systems are challenging. Using task-free magnetoencephalography,
we examine the spectral and spatial definitions of the functional neuropathology underlying reduced speech quality in patients
with PD using a new approach to characterize speech impairments and a novel brain-imaging marker. We found that the
interactive scoring of speech impairments in PD (N= 59) is reliable across non-expert raters, and better related to the hallmark
motor and cognitive impairments of PD than automatically-extracted acoustical features. By relating these speech impairment
ratings to neurophysiological deviations from healthy adults (N= 65), we show that articulation impairments in patients with PD are
associated with aberrant activity in the left inferior frontal cortex, and that functional connectivity of this region with somatomotor
cortices mediates the influence of cognitive decline on speech deficits.
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INTRODUCTION
Parkinson’s disease (PD) is the second most common neurode-
generative disorder worldwide1, and is characterized by progres-
sive declines in motor function and cognition. Difficulties
producing intelligible speech are some of the earliest2–4 and
most debilitating5,6 impairments of PD. Speech production is
inherently complex, and speech symptoms in patients with PD are
multidimensional7; they commonly include hoarse voice, imprecise
articulation, and monotonous prosody4,8. Alongside reductions in
speech volume i.e., hypophonia9,10, these impairments are
classically termed hypokinetic dysarthria11–14. However, the best
approach to quantifying pathological changes in speech remains
unclear. On the one hand, evaluation of dysarthric symptoms by a
certified speech-language pathologist using clinical scales is time-
consuming but often regarded as the gold standard. On the other,
more rapid and inexpensive assessments based on automatically-
extracted acoustical measures4,15,16 are promising, but may not
provide a sufficiently nuanced representation of the disease
symptomatology. The optimal outcome of remediation speech
therapies in PD is improved intelligibility to human listeners,
hence the value of human assessment of speech impairments as
an alternative. Human ratings of speech impairments in PD are
highly reliable across raters17–19, time points20, and levels of rater
expertise19, and can contribute to predicting disease progres-
sion18 and therapeutic outcomes20 better than simpler acoustical
metrics.
Beyond the robust quantification of speech impairments in PD,

their neurophysiological origins are also unknown. In the healthy
brain, speech production engages a distributed and predomi-
nantly left-lateralized ensemble of cortical regions including the
primary motor, primary auditory, pre-motor, posterior parietal and
inferior frontal cortices21–27. Temporally, cued speech production
requires the integration of incoming phonological information in

the left superior temporal cortex, followed by engagement of left
inferior frontal cortex (LIFC) for syllabification and temporal
ordering of speech, which then overlaps with sustained motor
processing in the precentral gyrus and voluntary control of motor
initiation in the left middle and superior frontal cortices, and finally
monitoring of auditory feedback in left superior temporal
regions24,28–36. The spectral components of neurophysiological
activity related to speech production have also been studied
extensively31,37–55. They include a key role for alpha (~7–13 Hz)
and beta (~15–30 Hz) frequency bands in speech-network regions,
and slower delta band (~2–4 Hz) activity in prefrontal regions, for
effective production of speech44–50,52. Interregional beta-band
functional connectivity between prefrontal, auditory, and motor
cortices is also essential for healthy speech production44,56.
Functional neuroimaging studies of patients with PD have

shown that speech production recruits greater cerebral blood flow
and oxygenation across prefrontal, auditory, and motor
regions57–60 than in healthy controls, and that this hypermetabo-
lism is normalized by common PD therapies57,58. Inter-regional
connectivity of the speech circuit also appears to impact speech
production in PD61,62, with opposing effects of decreased versus
increased functional connectivity during speech preparation and
production, respectively63. The neurophysiological spectrum of
these effects is less studied; a limited literature suggests decreased
beta oscillations in the subthalamic nucleus64 and primary motor
cortex65 in patients with PD during active speech. Importantly, it
remains relatively unclear to what extent these patterns of
aberrant neural activity during active speech production under
highly controlled experimental conditions relate to the real-world
difficulties experienced by patients. Given the key role of rhythmic
neural activity in motor and cognitive impairments in patients
with PD66–68, and the proven and future potential for therapeutic
interventions based on frequency-specific neurostimulation in this
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population69–71, a clearer understanding of the spatio-spectral
neural bases of speech intelligibility deficits in PD is essential.
In this study, we examine the spectral and spatial definitions of

the functional neuropathology underlying reduced speech quality
in patients with PD (N= 59). Towards this goal, we first quantified
patient speech impairments with a novel interactive tool designed
for non-specialists – an approach intended to better capture the
difficulties with speech intelligibility faced by patients with PD. We
then introduce a new brain mapping technique of spectral
neurophysiological deviations (the Spectral Deviation Index; SDI)
between each patient and a group of demographically-matched
healthy controls (N= 65). This new metric allows for anatomically-
resolved mapping of neurophysiological aberrations in patient
participants, without requiring specific hypotheses regarding the
expected frequency bands involved. We hypothesized that
aberrant neurophysiological manifestations would involve multi-
ple frequency bands, map to brain regions known for their
involvement in speech production, and scale with the severity of
speech impairments in patients with PD. Based on previous
literature indicating beta-frequency connectivity changes in
patients with PD72,73 and the importance of such connectivity in
healthy speech production44,56, we also anticipated that neuro-
physiological beta connectivity across the brain circuit for speech
production would be altered in those patients with more
pronounced speech difficulties.

RESULTS
Demographics, clinical assessments, and speech impairments
in patients with PD
Demographics for both groups, as well as clinical features for the PD
group, are reported in Table 1. We used a novel approach to
quantify speech intelligibility along three features (i.e., voice,
articulation, and prosody) as implemented in the audio_tokens
toolbox (Fig. 1A)74. Speech quality assessments were consistent
across raters for all assessed features: voice (intra-class correlation
coefficient [ICC]= 0.89, 95% CI= [0.83 0.93]), articulation (ICC= 0.88,
95% CI= [0.81 0.92]), and prosody (ICC= 0.78, 95% CI= [0.66 0.86];
Fig. 1A). These speech impairment ratings were also related to
clinical features of PD (Fig. 1B): they were all significantly related to
clinical motor function (UPDRS-III, minus speech sub-scores; voice:
t(51)= 2.82, p= 0.007; articulation: t(51)= 3.61, p < 0.001; prosody:
t(51)= 3.07, p= 0.003), such that greater non-speech motor
impairment was associated with greater speech difficulties. We
found weaker associations between all three speech features and PD
staging (Hoehn & Yahr scale; voice: t(45)= 2.05, p= 0.046;

articulation: t(45)= 2.07, p= 0.044; prosody: t(45)= 2.05, p= 0.046;
all uncorrected for multiple comparisons). Only articulation impair-
ments were associated with patient cognitive abilities (MoCA scores;
voice: t(56)=−0.47, p= 0.639; articulation: t(51)=−2.85, p= 0.006;
prosody: t(51)=−1.15, p= 0.250), such that greater cognitive
impairment was associated with greater articulation difficulties.
Further, these speech ratings related to non-speech motor
dysfunction (ΔAIC= -6.69) and cognitive function (ΔAIC=−9.03)
better than acoustical features extracted automatically from the
same recordings. All three features were also significantly related to
speech impairment ratings made by a trained clinician administrator
(UPDRS-III speech sub-score; voice: t(51)= 5.17, p < 0.001; articula-
tion: t(51)= 3.51, p < 0.001; prosody: t(51)= 4.49, p < 0.001; Supple-
mentary Fig. 1).

Spectral pathology is related to articulation impairments in
PD
To examine multi-frequency patterns of neurophysiological
change in patients with PD, we developed a metric of absolute
(i.e., sign-invariant) spectral deviation across four canonical
frequency bands (i.e., the Spectral Deviation Index [SDI]; Fig. 2A).
The average of individual SDI maps across all patients emphasized
spectral deviations in premotor, primary somatomotor, and
superior parietal cortices bilaterally (Fig. 2B). These findings are
robust against the binning density of the frequency spectrum
(Supplementary Fig. 2A). The greatest variability of SDI across
patients was found in the bilateral prefrontal and temporal
cortices (Fig. 2C). In most brain regions, the association of the SDI
with clinical scores (i.e., MoCA and UPDRS-III) was stronger than
that of a linear model parameterized with the four band-limited
estimates of neurophysiological power (Supplementary Fig. 3).
We performed a multiple regression analysis of these maps on

all three speech features, and found that articulation impairments
were uniquely associated with spectral pathology in the LIFC
(TFCE; pFWE= 0.027; peak vertex= x: −51, y: 36, z: 2; Fig. 3A), with
greater LIFC deviations associated with greater speech impair-
ment (Fig. 3B). This effect was normalized in individuals taking
higher daily equivalent doses of dopamine replacement therapy
(N= 25; t(18)= 2.43, p= 0.026; Supplementary Fig. 4). Neural
activity in all tested frequency bands (from delta to beta)
contributed to this effect (ΔAIC; delta= 10.56; theta= 2.86;
alpha= 9.74; beta= 3.80; Fig. 3C), with the strongest influences
from the delta and alpha bands. Post-hoc analysis of frequency-
specific relationships suggested that speech impairment was
related to an acceleration of neural activity in the LIFC: greater

Table 1. Between-group demographic comparisons and patient group clinical profile.

Age
(years)

Sex
(% male)

Handedness
(# left/ambi)

Education
(years)

HC 63.02 (8.13) 65 3/3 15.85

PD 65.95 (8.14) 71 4/3 15.14

p 0.067 0.434 0.863 0.615

MoCA UPDRS-III UPDRS-III Speech
(N= 54)

Hoehn & Yahr
(N= 48)

Years Since Dx
(N= 56)

% Taking DA Agonists
(N= 53)

PD

Range 12–30 7–71 0–3 1–3 1–25 -

Mean (SD) 24.44 (3.99) 32.68 (14.77) 1.35 (0.83) 1.96 (0.70) 6.66 (4.74) 28.81

HC healthy control group, PD Parkinson’s disease group, MoCA Montreal Cognitive Assessment, UPDRS-III Unified Parkinson’s Disease Rating Scale part III, Dx
Diagnosis, DA Dopamine. Unless otherwise indicated, values indicate means and associated parentheticals indicate standard deviations. HC sample N= 65, PD
sample N= 59, unless otherwise indicated. P-values indicate significance of between-groups comparisons, using Mann–Whitney U tests and chi-square tests
for continuous and categorical variables, respectively.
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impairment was associated with increased activity in the faster
(alpha & beta) and decreased activity in the slower (delta & theta)
frequency bands (Fig. 3D and Supplementary Fig. 5). SDI values in
the LIFC did not significantly relate to clinical motor function
(UPDRS-III, minus speech sub-scores; t(51)= 1.54, p= 0.130) or
MoCA (t(56)=−0.25, p= 0.807) scores. The relationship between
cross-spectral pathology and articulation impairment remained
significant (p < 0.001) when potential confounds were added to
the model (head motion: p= 0.284; eye movements: p= 0.147;
cardiac artifacts: p= 0.996; local cortical thickness: p= 0.211; local
aperiodic slope: p= 0.914; disease duration: p= 0.282; distance
from MEG sensor array: p= 0.067), when only French speakers
were considered (N= 51; p < 0.001), and when the SDI metric was
computed from all spectral power density estimates in the
2–30 Hz range (p= 0.002; Supplementary Fig. 2B). There was no
moderating effect of dopamine agonist use on this relationship
(p= 0.746).

LIFC-somatomotor beta-frequency connectivity mediates
cognitive contributions to articulation impairments in PD
We computed whole-cortex frequency-specific functional con-
nectivity maps to examine whether signal similarities between the
LIFC and the rest of the cortex were related to speech
impairments in PD. The connectivity analyses were seeded at
the vertex location corresponding to the peak of the SDI-
articulation impairment statistical map (Fig. 3A; x: −51, y: 36, z:
2). We found that articulation impairment related to connectivity
between LIFC and a distributed network of pre-motor, anterior
cingulate, and somatomotor regions in the beta band, above and

beyond the effects of age, prosody impairments, and voice
impairments (TFCE across vertices and secondary Bonferroni
correction across 4 frequencies; pFWE < 0.001; peak vertex= x:
−11, y: −12, z: 46; Fig. 4A). This relationship was such that patients
with weaker LIFC-somatomotor functional connectivity exhibited
worse articulation impairments (Fig. 4B, left). This relationship
remained significant (p < 0.001) when potential confounds were
added to the model (head motion: p= 0.749; eye movements:
p= 0.517; cardiac artifacts: p= 0.970; disease duration: p= 0.502)
and when only French speakers were considered (N= 51;
p < 0.001). There were no moderating effects of dopamine agonist
use (p= 0.501) or levodopa equivalent daily dose (p= 0.843) on
this relationship. Further, this shared variance was independent of
SDI effects in the LIFC, as both LIFC SDI values (t(56)= 4.28,
p < 0.001) and beta LIFC-somatomotor connectivity (t(56)=−5.66,
p < 0.001) were significantly associated with articulation impair-
ment, above and beyond the other, when included in a single
linear model (R2= 0.52). Beta LIFC-somatomotor functional con-
nectivity did not relate to UPDRS III scores (t(51)=−1.10,
p= 0.275), but did significantly covary with MoCA scores
(t(56)= 2.98, p= 0.004; Fig. 4B, right), such that stronger
connectivity was related to better cognitive function. The relation-
ship between MoCA scores and articulation impairment was also
fully mediated by beta-band connectivity (causal mediation
analysis, 10,000 simulations; Fig. 4C), as indicated by a significant
indirect effect (average causal mediation effect=−0.005,
p= 0.024) and a non-significant direct effect (average direct
effect=−0.011, p= 0.223) upon addition of connectivity values
to the linear model.

Fig. 1 Speech impairment ratings are reliable and associated with clinical features of PD. A Graphical user interface for the manual rating
of speech feature impairments using audio_tokens. When hovered-over with the mouse, colored circles play speech samples from separate
patients with Parkinson’s disease (each represented by a different color), allowing for interactive and comparative rating (i.e., by clicking and
sliding the circles horizontally) of impairments in each speech feature. Intraclass correlation coefficients (ICC) indicate reliability of speech
ratings across three independent raters. B Significant linear relationships between voice, articulation, and prosody impairments and two
common clinical scales in Parkinson’s disease: the Unified Parkinson’s Disease Rating Scale part III (i.e., UPDRS-III, minus speech sub-scores) and
the Montreal Cognitive Assessment (MoCA). All models controlled for age. Shaded intervals represent the 95% confidence interval.
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DISCUSSION
This study introduces and combines novel approaches to
spectral brain mapping and speech impairment quantification
to delineate the functional neural pathology contributing to
speech impairment in PD. In one of the largest MEG studies of
PD to date, we identify a pathological relationship between
articulation impairments and spectral deviations in the LIFC,
with strongest contributions from neurophysiological activity in
the delta and alpha bands. In healthy adults, the LIFC is a hub
that exhibits multi-frequency interactions with a number of
language network regions45. Our data also showed that
neurophysiological connectivity between LIFC and a network
of somatomotor cortices in the beta band were independently
associated with articulation impairments, and fully mediated
the effect of cognitive abilities on these impairments. Together,
these results provide a spatially- and spectrally-resolved cortical
network that explained 52% of the variance in articulatory
impairments in our sample of patients with PD. These findings

may be of significance to future biomarker research and
therapeutic targeting in PD, although further research into
the out-of-sample predictive capacity of the SDI is required
before this approach could be applied in the clinic. We also
anticipate that our new, individualized modeling approach of
spectral brain pathology for each patient may translate and be
meaningful to other clinical populations.
Our approach to speech impairment quantification is pre-

dicated on the notion that clinical endpoints for speech
production studies in PD need to improve speech perception by
human raters17–19,75,76. One novel contribution of the present
study is the rating of speech features by non-experts through an
intuitive and interactive app (audio_tokens)74, that facilitates
simultaneous comparison of speech samples from multiple study
participants. Despite being obtained from non-experts, the ratings
exhibited a degree of inter-rater reliability comparable to those
from gold-standard procedures in the field, such as speech
intelligibility quantification using transcription76. The audio_tokens

Fig. 2 The spectral deviation index (SDI). A For all participants, magnetoencephalography (MEG) data were cortically mapped, frequency-
transformed, and averaged over canonical frequency bands (i.e., δ/delta: 2–4 Hz; θ/theta: 4–7 Hz; α/alpha: 8–12 Hz; β/beta: 15–29 Hz). Pearson
correlation coefficients were then estimated at each vertex, representing the similarity across frequency-wise power estimates between each
patient and control. For each patient, the median of these values was taken over all comparisons to control participants, which was then
Fisher-transformed to ensure linear scaling (i.e., transformed with the inverse hyperbolic tangent function) and subtracted from 1 to indicate
relative deviations from the control group. Surface maps below indicate the mean (B) and standard deviation (C) of the spectral deviation
maps across all patients with Parkinson’s disease.
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ratings related to both non-speech motor features (i.e., UPDRS-III
with speech sub-scores subtracted) and cognitive function (i.e.,
MoCA scores) more effectively than common acoustical features
derived from automated methods. The audio_tokens ratings
obtained remotely from non-experts were also similar to the
assessments performed in the clinic by a trained professional (i.e.,
the speech sub-score of the UPDRS-III). We believe these findings
establish the validity and potential utility of the audio_tokens
approach in patients with PD, particularly since comparable
speech samples can be easily collected and rated without in-
person visits to the clinic. Pending further out-of-sample validation
of this approach, the significance is that of tele-medical,
longitudinal patient evaluations. A thorough comparison to more
advanced automated speech quality quantification procedures

(e.g., based on machine-learning techniques)77 remains warranted,
albeit beyond the scope of this study. These comparisons should
also be extended with future studies into the out-of-sample
predictive capacity of each speech quantification approach. If
these comparisons favor our approach, the additional predictive
clinical power of human speech ratings can be harnessed to
improve automated speech extraction methods, which in turn can
alleviate the costs of and limited access to movement disorder
specialists.
Using a novel synoptic analytical approach to map multi-

frequency neurophysiological effects, we found a topographic
pattern that aligns with previous research in patients with PD67,
wherein the strongest and most consistent disease-related
spectral deviations are expressed along the somato-motor

Fig. 3 Spectral deviation relates to articulatory impairments in the left inferior frontal cortex. A Surface maps indicate a significant
relationship between spectral deviations and articulation impairments in patients with Parkinson’s disease (PD), with spectral deviations (SDI)
and articulation impairment ratings from the peak vertex of this relationship plotted in (B). C Model contribution values shown in the donut
plot indicate comparisons between models predicting articulation impairment ratings using the SDI values from the same peak vertex and
comparable SDI values computed with each frequency left-out once. More positive differences in Akaike information criterion (ΔAIC) indicate
a stronger contribution of that frequency to the overall model, with ΔAIC > 2 signifying meaningful differences in model information. Best fit
lines represent the linear relationships between these leave-one-out models for each frequency and the articulation impairment ratings across
patients with PD (dotted black line = full-frequency, broad-band model). D Lines-of-best-fit indicate the direction of the underlying
relationships between spectral power at each frequency and articulation impairment ratings. All models controlled for age. Shaded intervals
represent the 95% confidence interval.
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cortices. Prefrontal regions showed the highest inter-patient
variability. We validate this new approach in two ways. First, we
show that the SDI is a better model of clinically-relevant
neurophysiological changes in PD than a traditional band-
limited approach in virtually every region of the brain. We

interpret this finding as indicative of the fact that the neurophy-
siological deviations that have been related to motor and
cognitive dysfunction in previous studies of PD (e.g., reduced
beta oscillations in relation to motor impairments) are captured by
the synoptic SDI metric, alongside additional information that is

A.I. Wiesman et al.
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shared across frequency bands. We also show that the SDI
approach is not sensitive to the definition of canonical frequency-
band limits nor to the frequency resolution of the power
spectrum. Taken together, these data provide evidence for the
reliability, stability and practical utility of the SDI metric, with
anticipated further improvements, including the use of varying
similarity/distance metrics in the SDI computation.
By relating speech impairments to spectral deviations from

healthy neurophysiological activity, we identified that the greater
the spectral deviations in LIFC, the more pronounced the
articulation deficits in patients with PD. The LIFC is a key node
of the speech production network21–23,78 associated to the
metrical encoding of to-be-produced speech representations78,79.
Previous research80,81 also suggests that the anterior location of
this effect along the inferior frontal gyrus might indicate a deficit
in the semantic and/or lexical aspects of articulatory functions in
PD. Further, the slower range of neurophysiological activity
involved (delta & theta frequency bands) is associated to temporal
expectation and parsing mechanisms of sensory inputs42,82–85.
Previous research has shown that discrimination of rhythmic
auditory stimuli is impaired in patients with Parkinson’s disease86.
Patients with PD also exploit metrical regularities more than
healthy participants when entraining their speech to another
person’s87. As such, temporal processing deficits have been
proposed as a target for ameliorating the language deficits often
seen in patients with PD88,89. We thus interpret the present
observations as patients experiencing difficulties producing clear
and precise speech sounds because of impaired mechanisms for
parsing and rhythmically encoding phonological information prior
to speech motor initiation. We also found that increased
expressions of faster frequencies (alpha & beta frequency bands)
in LIFC were related to speech deficits. Strong alpha/beta activity
in the parieto-occipital90,91 and somatomotor92–94 cortices reflects
enhanced functional local inhibition. Additionally, alpha/beta
activity in LIFC is reduced around speech preparation50,95,96.
Taken together, we interpret our findings as indicative that
patients with reduced inhibition of LIFC at rest exhibited the best
articulation abilities, possibly because of greater ability to parse
speech information in time. Overall, these effects involve at once
several components of the neurophysiological frequency spec-
trum in a single brain region. This highlights the utility of the
proposed spectral deviation approach, as this pattern of shared
speech impairment information across multiple frequencies would
not have been detected using a band-limited analysis (e.g.,
focusing on the beta band).
In contrast to the multi-spectral and spatially-focal nature of

speech-related neural pathology in the LIFC, the network-level
connectivity patterns that related to articulation abilities in
patients with PD were limited to the beta-band and spatially-
widespread. Our data show that beta-band functional connectivity
between the LIFC and prefrontal, frontal, and parietal somato-
motor regions was negatively associated with speech impairments
in patients. Substantial structural and functional connectivity
effects have been reported between these regions97,98, and
functional connectivity between LIFC and superior frontal regions
during speech comprehension is reduced in PD99,100. Previous

studies have also reported increased beta-band connectivity in
patients with PD67, with indications of clinical significance,
although it is still unclear if the relationship is one of
impairment101,102 or compensation72,103–105. Our results point at
a possible compensation role for beta-band connectivity in speech
production: in the tested patient cohort, the stronger the LIFC-
somatomotor beta connectivity, the higher the cognitive and
articulation abilities. This effect was statistically independent of
the spectral deviations we observed in LIFC, which indicates that
both effects represent distinct PD functional pathologies of
speech production brain systems. We also note that increases in
beta-frequency power and connectivity do relate to clinical
impairments, albeit in opposing directions: increased power and
decreased fronto-motor connectivity are both associated with
worse speech impairments. Differing patterns of PD-related
change in beta-frequency amplitude versus connectivity have
been shown previously67,73,101,102. Our findings indicate that these
opposing neurophysiological effects of the disease are also
inversely related to clinical outcomes. We hope that these findings
can inspire future research of individualized clinical monitoring
and interventions via, for example, non-invasive therapeutic
neuromodulation.
Our data also show that the strength of beta-band connectivity

effects fully mediates the relationship between cognitive abilities
(MoCA scores) and articulation impairments. In other words, the
contribution of cognitive declines to speech impairments in
Parkinson’s disease seems to be entirely (but not necessarily
solely) accounted for by variations in LIFC-somatomotor con-
nectivity in the beta band. However, we did not observe such an
effect between motor impairments and speech deficits, nor any
significant relationship between UPDRS-III scores and beta-band
connectivity. Our interpretation is that reduced beta-band
connectivity between LIFC and somatomotor cortices is a
biological proxy for cognitive contributions to articulation
deficits in PD.
Whether speech impairments are “dopa-resistant”106 remains

controversial107,108. We find a normalization of the pathological
relationship between spectral deviations and articulatory impair-
ments in the LIFC of patients with higher equivalent dopamine
therapy doses, which indicates that the neurophysiological bases
of speech deficits in PD may be, in part, modifiable with levodopa.
The nature of this effect also suggests that the spectral deviations
and related speech impairments that we observe are not a
secondary result of dopamine replacement therapy. However, we
acknowledge that the present data cannot fully disentangle which
of these effects are related to PD neuropathology versus the use
of dopamine replacement therapies. All patients in our study were
under a stable dosage of antiparkinsonian medication, but only a
small subset (N= 25) had detailed data available regarding their
medication regimens. We foresee the present data will inspire
further research to clarify these aspects. As the vast majority of
individuals diagnosed with PD are administered antiparkinsonian
drugs, we argue that reporting both medication-related and
-unrelated effects advance research against the disease.
The relatively large and heterogeneous patient data used for

the present study were aggregated from the Quebec Parkinson

Fig. 4 β-frequency functional connectivity between left inferior frontal cortex and somatomotor regions mediates the impact of
cognitive decline on articulation impairments. A Surface maps indicate a significant relationship between articulation impairment ratings
and frequency-resolved functional connectivity, computed using orthogonalized amplitude envelope correlations (AEC) with the peak vertex
of the relationship from Fig. 3 as the seed. B β-connectivity and articulation impairments from the peak vertex of this relationship are plotted
on the left, and the relationship between the same β-connectivity values and cognitive function (i.e., Montreal Cognitive Assessment [MoCA]
scores) are plotted on the right. C Paths between MoCA scores, articulation impairment ratings, and β-connectivity values to the left indicate
partial correlations (r) between each set of variables. The correlation value in parentheses represents the mediated relationship between
MoCA scores and articulation impairment ratings when accounting for β-connectivity. The total effect, average direct effect (ADE), and
average causal mediation effect (ACME; i.e., indirect effect) are plotted with 95% confidence intervals to the right. All models controlled for
age. Shaded intervals represent the 95% confidence interval. **p < 0.01, *p < 0.05.
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Network (QPN). The open repository features minor inconsisten-
cies in the availability of clinical information across participants.
Specifically, non-overlapping subsets of participants who under-
went MEG neuroimaging did not have details available regarding
dopaminergic medication regimens, Hoehn & Yahr staging,
Unified Parkinson Disease Rating Scale (UPDRS) subscale scores,
time since diagnosis, or whether they were taking dopamine
agonists. Although we acknowledge this is a limitation of the
current study, we feel that the scientific benefits of this unique
dataset do stand out. We also emphasize that we did assess the
impact of these clinical features by testing their relationships to
our key findings, with participants with missing data excluded
pairwise.
In sum, we believe our data advance the understanding of basic

mechanisms involved in speech production in health and disease.
They also highlight two new dissociable neurophysiological
markers of symptom-specific clinical decline in PD, which should
be validated in future studies of their out-of-sample predictive
capacity. If validated, these biomarkers could then be used to
improve the targeting of non-invasive neuromodulatory therapies
in PD69,71. Further, the principle of the SDI is generalizable to other
neurological and/or psychiatric disorders. In particular, the
combination of easily administered speech sample recordings
with a short resting-state MEG session has potential for identifying
biomarkers in a host of neurodegenerative and neurodevelop-
mental disorders, many of which have speech impairment as a
presenting complaint.

METHODS
Participants
The Research Ethics Board at the Montreal Neurological Institute
reviewed and approved this study. Written informed consent was
obtained from every participant following detailed description of
the study, and all research protocols complied with the Declara-
tion of Helsinki. Exclusionary criteria for all participants included
current neurological (other than PD) or psychiatric disorder; MEG
contraindications; and unusable MEG, speech sample, or demo-
graphic data. All participants completed the same speech and
MEG protocols with the same instruments at the same site.
Patients with mild-to-moderate idiopathic PD were enrolled as a

part of the Quebec Parkinson Network (QPN; https://rpq-qpn.ca/)109

initiative, which includes extensive clinical, neuroimaging, neurop-
sychological, and biological profiling of participants. A final sample
of 59 participants with PD fulfilled the criteria of having complete
and useable MEG, speech sample, and demographic data. All
patients with PD were prescribed a stable dosage of antiparkinso-
nian medication with satisfactory clinical response prior to study
enrollment. Twenty-five of these patients opted to provide detailed
medication regimen information, from which the Levodopa
Equivalent Daily Dose was calculated using established conversion
factors110 and used in post hoc analyses. Patients were instructed to
take their medication as prescribed before research visits, and thus
all data were collected in the practically-defined “ON” state. The
motor subtest of the Unified Parkinson’s Disease Rating Scale
(UPDRS-III)111 and Montreal Cognitive Assessment (MoCA)112 were
administered to all participants by a trained clinician administrator
(S.D.). We also computed all relationships between motor
pathology and speech feature ratings with the clinical speech
sub-score (UPDRS-III, item 1; sub-scores available for N= 54)
subtracted from the UPDRS-III scores to avoid bias. Additional
clinical data were also available for subsamples of the patient group
in the form of the Hoehn & Yahr scale (N= 48) and disease duration
(i.e., time since diagnosis; N= 56).
Neuroimaging data from 65 healthy older adults were collated

from the QPN (N= 10), PREVENT-AD (N= 40)113, and OMEGA
(N= 15)114 data repositories to serve as a comparison group for

the patients with PD. These participants were selected so that
their demographic characteristics, including age (Mann–Whitney
U test; W= 1551.50, p= 0.067), self-reported sex (chi-squared test;
χ2= 0.61, p= 0.434), handedness (chi-squared test; χ2= 0.29,
p= 0.863), and highest level of education (Mann–Whitney U test;
W= 1831.50, p= 0.615), did not significantly differ from those of
the patient group. Importantly, due to the marginal difference
observed between groups, age was included as a nuisance
covariate in all statistical models. This sample size was selected
based on previous work indicating that group sizes of N > 50 are
sufficient to estimate frequency-specific neurophysiological activ-
ity in healthy adults115. Group demographic summary statistics
and comparisons, as well as clinical summary statistics for the
patient group, can be found in Table 1.

Speech sample collection, rating & processing
Four auditory speech samples of cued sentence repetitions were
recorded from each patient by the same neuropsychologist.
Participants were fluent in French and/or English, and were
allowed to hear and speak the sentences for repetition in the
language of their choice (French: N= 51; English: N= 8). Speech
samples were recorded an average of 19.63 days (SD= 53.44)
from the date of neuroimaging data collection. All patients
repeated four sentences (two easy, two hard; to capture a range of
difficulties and avoid potential ceiling effects) in the same order
(see Supplementary Information: Materials & Methods). Sentences
were taken from an in-house neuropsychological battery at the
Montreal Neurological Institute, and were matched between
languages in terms of length and number of syllables. To ensure
that the language spoken did not meaningfully bias our analyses,
we reproduced our major findings excluding the English speakers
(N= 8) from our sample. Sentences were pre-recorded by a female
native speaker of each language and played to the participants at
test time. Speech samples were recorded from participants using a
Shure SM10ACN Cardioid Dynamic head-worn microphone. The
microphone was positioned such that it was comfortable for
the participants to wear, approximately at a two-finger distance to
the participant’s mouth. Recordings were performed using a
Tascam DR-10L Digital Audio Recorder.
The speech features of the recordings were then quantified in

two ways: (1) using an automated extraction approach based on
commonly-used metrics from previous literature in PD4,116,117, and
(2) using the new Javascript toolbox audio_tokens74 to collect
speech impairment ratings from non-experts. The automated
extraction approach quantified the following features of the
speech data using Praat118 with the Python-parselmouth inter-
face119: harmonics-to-noise ratio (hnr), timing and amplitude
fluctuations of glottal pulses (jitter and shimmer, respectively),
standard deviation of pitch measured over voiced segments
(f0_std), and a proxy for vowel space (area), namely the product of
the inter-quartile range of F1 and F2 values measured over voiced
segments (as a simplified version of the procedure described in
Sandoval et al.116). To derive a single measure roughly represent-
ing voice quality from these features, the first principal
component was extracted from the hnr, jitter, and shimmer
features. The resulting metric, f0_std, and area were used in
further analyses.
For the non-expert ratings of the speech samples, three

university students with minimal-to-no experience in speech
assessment each rated multiple features of every sample on a
continuous scale, including the magnitude of impairments in
voice (instruction: “Does the speaker’s voice sound harsh or
breathy?”), articulation (instruction: “Is the speaker’s articulation
slurred or imprecise?”), and prosody (instruction: “Does the speech
sound flat or monotonous?”). Sample ratings were performed in the
audio_tokens toolbox74 (Fig. 1A), which allowed for interactive and
dynamic comparison of speech samples across patients. The
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resulting values were then averaged across the 4 sentences for
each speech feature/rater/patient, and the intraclass correlation
coefficient (ICC; type [C,k]: multiple raters, two-way random
effects, consistency)120 was computed to assess inter-rater
reliability for each feature. Given the high consistency across
raters for all three features (Fig. 1A), we used the mean of these
values across the 3 raters to derive singular estimates of speech
impairment for each feature in every patient. The speech sub-
score of the UPDRS-III was also used as a measure of speech
impairment collected by a trained clinician administrator.

Magnetoencephalography data collection, preprocessing &
analysis
Eyes-open resting-state MEG data were collected from each
participant using a 275-channel whole-head CTF system (Port
Coquitlam, British Columbia, Canada) at a sampling rate of
2400 Hz and with an antialiasing filter with a 600 Hz cut-off.
Noise-cancellation was applied using CTF’s software-based built-in
third-order spatial gradient noise filters. Recordings lasted a
minimum of 5 min115 and were conducted with participants in the
seated position as they fixated on a centrally-presented crosshair.
Participants were monitored during data acquisition via real-time
audio-video feeds from inside the shielded room, and continuous
head position was recorded for each session.
MEG preprocessing was performed in Brainstorm121 unless

otherwise specified, with default parameters and following good-
practice guidelines122. The data were bandpass filtered between
1–200 Hz to reduce slow-wave drift and high-frequency noise, and
notch filters were applied at the line-in frequency and harmonics
(i.e., 60, 120 & 180 Hz). Signal space projectors (SSPs) were derived
around cardiac and eye-blink events detected from ECG and EOG
channels using the automated procedure available in Brain-
storm123, reviewed and manually-corrected where necessary, and
applied to the data. Additional SSPs were also used to attenuate
highly-stereotyped artifacts on an individual basis. Artifact-
reduced MEG data were then arbitrarily epoched into non-
overlapping 6 second blocks and downsampled to 600 Hz. Data
segments still containing major artifacts (e.g., SQUID jumps) were
excluded within each session using the union of two standardized
thresholds of ±3 median absolute deviations from the median:
one for signal amplitude and one for gradient. An average of 79.19
(SD= 14.68) epochs were used for further analysis (patients: 84.07
[SD= 7.78]; controls: 74.77 [SD= 17.82]). Empty-room recordings
lasting approximately 2 min were collected on or near the same
day as the data recordings and were processed using the same
pipeline, with the exception of the artifact SSPs, to model
environmental noise statistics for source analysis.
MEG data were coregistered to each individual’s segmented T1-

weighted MRI (Freesurfer recon-all)124 using approximately 100
digitized head points. For participants without useable MRI data
(N= 11 patients with PD; N= 3 healthy adults), a quasi-
individualized anatomy was created and coregistered to the
MEG data by warping the default Freesurfer anatomy to the head
digitization points and anatomical landmarks for that partici-
pant125. Source imaging was performed per epoch using
individually-fitted overlapping-spheres forward models (15,000
vertices, with current flows unconstrained to the cortical surface’s
normal direction) and dynamic statistical parametric mapping
(dSPM). Noise covariance estimated from the previously-
mentioned empty-room recordings were included in the compu-
tation of the dSPM maps.
Inspired by previously-developed measures of multi-spectral

neurophysiological signal pathology126,127 and cortical morpho-
metric similarity in clinical populations128,129, we developed a new
metric of neurophysiological spectral pathology derived from
time-resolved MEG source maps: the Spectral Deviation Index (SDI;
Fig. 2A). The SDI provides an estimate of deviations from healthy

levels of neurophysiological activity across multiple frequency
bands, simultaneously. This estimate is computed per patient and
retains the original spatial resolution of the MEG cortical maps,
thus allowing for unbiased detection of functional neurophysio-
logical pathology without strong a priori hypotheses regarding
the frequency bands involved. This approach preserves statistical
sensitivity and does not require corrections for multiple compar-
isons across multiple frequency bands. It also enables the
detection of multi-spectral patterns of neurophysiological
changes. We computed vertex-wise estimates of power spectral
density from the source-imaged MEG data using Welch’s method
(3 s time window, 50% overlap), which we then averaged over
canonical frequency bands (delta: 2–4 Hz; theta: 5–7 Hz; alpha:
8–12 Hz; beta: 15–29 Hz)123, and over all artifact-free 6-second
epochs for each participant. The root-mean-square (RMS) norm of
PSD across the three unconstrained orientations at each vertex
location and for each participant was then projected onto a
template cortical surface (FSAverage) for comparison across
participants. For each PD participant, the resulting PSD map of
spectrally-resolved estimates of neural power was correlated
across frequencies (i.e., delta, theta, alpha and beta) at every
spatial location (i.e., vertex) with the comparable estimates from
each control participant. This resulted in a matrix of Pearson
correlation coefficients (r) representing the spectral neurophysio-
logical similarity between all patient and control participants at
each cortical location. Using these matrices, we generated for
each patient the continuous SDI metric of spectral deviations per
vertex by taking the median of the resulting Pearson coefficients
(r) across correlations with all control participants, normalizing
these values using the Fisher transform (i.e., the inverse hyperbolic
tangent; using the atanh function in Matlab), and subtracting
them from 1 to generate a normally-distributed metric of spectral
deviation (i.e., higher values indicate greater functional neural
pathology). A similar approach was taken using all spectral power
estimates in the 2–30 Hz frequency range (i.e., without averaging
over canonical frequency bands; 28-Hz range * 1/3 Hz frequency
resolution= 85 samples) to ensure the stability of the SDI
computation against differences in frequency-band limits and
sparse spectral sampling.
In addition to deriving individual SDI maps, we also used the

source-imaged MEG data to investigate patterns of connectivity
that relate to speech impairments in patients with PD. We
extracted the first principal component from the three elementary
source time series at each vertex location in each participant’s
native space, and derived whole-cortex functional connectivity
maps, using the peak vertex identified in our spatially-resolved SDI
statistical analysis (back-transformed into each participant’s native
space) as the seed. We used orthogonalized amplitude envelope
correlations (AEC)130,131 as the connectivity measure, based on the
same frequency definitions used for the SDI mapping. We
estimated connectivity over each epoch and averaged the
resulting AEC estimates across epochs, yielding a single AEC
map per participant and frequency band. We projected these
individual AEC maps onto the same template cortical surface
(FSAverage) for group analyses.
Finally, we extracted several metrics to test for potential

confounds of our primary effects of interest. To test whether
our findings were mediated by local neurodegeneration, we
estimated cortical thickness with the recon-all pipeline in
Freesurfer124 and extracted values at the peak vertex of each
significant statistical cluster for inclusion as nuisance covariates
in post-hoc models. To determine whether SDI effects were
related to shifts of the aperiodic broadband component of
neural spectra, we processed PSDs with specparam (Brainstorm
MATLAB version; frequency range = 2–40 Hz; Gaussian peak
model; peak width limits= 0.5–12 Hz; maximum n peaks= 3;
minimum peak height= 3 dB; proximity threshold= 2 standard
deviations of the largest peak; fixed aperiodic; no guess
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weight)132 to estimate the slope of aperiodic neural spectral
components. We also investigated possible confound effects
due to participant head motion, eye movements, and heart-rate
variability: we extracted the RSS of signals from the head
position indicators, EOG, and ECG channels, respectively. To
measure the impact of the distance of participant’s heads from
the sensor array on the SDI outcome, we computed the average
Euclidean distance from each participant’s (back-transformed)
LIFC peak vertex location to all sensors in the MEG array.
Alongside age and disease duration, these derivations were
included in post hoc statistical models to examine the
robustness of the initial effect(s) of interest against potential
confounds.

Statistical analyses
We assessed relationships between continuous variables using the
lm function in R133, with a significance threshold of p < 0.05. Model
comparisons were performed using the Akaike information
criterion (AIC), with differences in AIC (ΔAIC) between tested
models of | ΔAIC | > 2 considered as meaningful134. Where appro-
priate135, we performed causal mediation analyses using a non-
parametric bootstrapping approach for indirect effects with
10,000 simulations136. This approach can be used to determine
to what degree a third factor (M) is responsible for the effect of an
independent variable (X) on a dependent variable (Y), by
dissecting the original relationship into its direct (X→Y) and
indirect (X→M→Y) effects. All statistical models included age as a
nuisance covariate. Participants with missing data were excluded
pairwise per model.
We performed statistical comparisons using spatially-resolved

neural data, covarying out the effect of age, using SPM12. Initial
tests used parametric general linear models to investigate
relationships with speech impairment ratings (i.e., multiple
regression with voice, prosody, and articulation impairment ratings
as predictors), beyond the effects of age. Contrasts for each speech
feature were thus corrected for age and independent of the other
features. We used Threshold-Free Cluster Enhancement (TFCE;
E= 1.0, H= 2.0; 5000 permutations)137 to correct the resulting F-
contrasts for multiple comparisons across vertices. TFCE avoids the
assumptions of parametric modeling, accounts for potential non-
uniform spatial autocorrelation of the data, and avoids the arbitrary
selection of cluster-defining thresholds. We applied a final cluster-
wise threshold of pFWE < 0.05 to determine statistical significance,
and used the TFCE clusters at this threshold to mask the original
statistical values (i.e., vertex-wise F values) for visualization. A
secondary Bonferroni correction was applied across cluster p-
values when multiple models were computed with overlapping
hypotheses (i.e., in the case of the four frequency-defined
connectivity models). We extracted data from the vertex exhibiting
the strongest statistical relationship in each cluster (i.e., the “peak
vertex”) for subsequent analysis and visualization.
To determine the relative contribution of individual fre-

quency bands to the significant SDI-speech relationships, we
used an adapted leave-one-out approach. We recomputed SDIs
at each peak-vertex four times – each time excluding data from
one frequency band. Speech impairment ratings were then
regressed on these modified SDI values, and we derived the
ΔAIC between each leave-one-out model and the original
model, with higher values indicating greater contribution to the
original effect, and a standard cut-off of | ΔAIC | > 2 was used to
indicate meaningful contribution. Lines-of-best-fit were also
fitted to the data post hoc and plotted to display the nature of
the underlying relationships between spectral power and
speech ratings for each frequency band.
We compared the SDI metric to a canonical band-limited

approach of modeling clinical variability. To perform such a
comparison across the entire cortical surface, we parcellated the

SDI and band-limited source maps (per participant) into 68
regions-of-interest using the Desikan-Killiany atlas138 and tested
four models per region: two models based on motor scores (i.e.,
UPDRS-III) and two based on cognitive scores (i.e., MoCA) as
dependent variables. For each of these dependent variables, we
tested one model using SDI values and another model based on
band-limited spectral power as independent variables. For every
pair of SDI and band-limited models, ΔAIC was computed by
subtracting the AIC of the band-limited model (form: clinical scores
~ delta+ theta+ alpha+ beta+ age) from the AIC of the SDI
model (form: clinical scores ~ SDI+ age), resulting in a value where
lower ΔAIC indicates stronger evidence for the SDI model. The
resulting ΔAIC values were thresholded using a standard cut-off
of | ΔAIC | > 2 and plotted for visualization using ggseg139.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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