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A scoping review of neurodegenerative manifestations in
explainable digital phenotyping
Hessa Alfalahi 1,2✉, Sofia B. Dias 1,2,3, Ahsan H. Khandoker1,2, Kallol Ray Chaudhuri4,5 and Leontios J. Hadjileontiadis1,2,6

Neurologists nowadays no longer view neurodegenerative diseases, like Parkinson’s and Alzheimer’s disease, as single entities, but
rather as a spectrum of multifaceted symptoms with heterogeneous progression courses and treatment responses. The definition of the
naturalistic behavioral repertoire of early neurodegenerative manifestations is still elusive, impeding early diagnosis and intervention.
Central to this view is the role of artificial intelligence (AI) in reinforcing the depth of phenotypic information, thereby supporting the
paradigm shift to precision medicine and personalized healthcare. This suggestion advocates the definition of disease subtypes in a
new biomarker-supported nosology framework, yet without empirical consensus on standardization, reliability and interpretability.
Although the well-defined neurodegenerative processes, linked to a triad of motor and non-motor preclinical symptoms, are detected
by clinical intuition, we undertake an unbiased data-driven approach to identify different patterns of neuropathology distribution based
on the naturalistic behavior data inherent to populations in-the-wild. We appraise the role of remote technologies in the definition of
digital phenotyping specific to brain-, body- and social-level neurodegenerative subtle symptoms, emphasizing inter- and intra-patient
variability powered by deep learning. As such, the present review endeavors to exploit digital technologies and AI to create disease-
specific phenotypic explanations, facilitating the understanding of neurodegenerative diseases as “bio-psycho-social” conditions. Not
only does this translational effort within explainable digital phenotyping foster the understanding of disease-induced traits, but it also
enhances diagnostic and, eventually, treatment personalization.
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INTRODUCTION
In 2017, 18-month-long search log data were analyzed to identify
people with neurodegenerative diseases1. In this bulge of fruitful
data harnessed to infer disease-induced behavioral cues, there is
currently no need for more data. Still, the focus needs to be
directed to making sense of it in characterizing subjects’ behavior
and naturalistic human traits2. Understanding and detecting
subtle disruptions in behavior, in early-stage neurodegenerative
diseases, is a complex problem. This complexity arises from the
theoretically independent, yet practically connected levels of
analysis, from genes to molecules, cells, circuits, and eventually to
behavior3. Bridging the explanatory gap between these levels of
analysis has become feasible with the advancement in computa-
tional modeling4. The latter provided the principles for synthesiz-
ing disparate pieces of evidence, in unprecedented ways, to
formulate new conceptualizations on specific phenomena of
neurodegeneration. Regardless of the operating level, the mer-
ging of computational models, powered by artificial intelligence
(AI) and big data, and behavioral neuroscience is critical for the
future of neurology, given its key role in the rational development
of timely efficient diagnostic and nosological models and
treatment decisions/strategies. So far, advances in research have
blurred the boundaries and established redefinitions for diagnos-
tic criteria in Parkinson’s disease (PD)5,6, and in Alzheimer’s disease
(AD)7, in particular. However, clinical practice in neurodegenera-
tive diseases and AI speaks two different languages, and an effort
for a translation framework is yet to be made, thereby establishing
a paradigm shift from data-based to knowledge-based models,

with an emphasis on patient-specific phenotype8. This translation
rests on behavioral neuroscience, fostered by advancements in
digital technologies that allow the aggregation of real-life data.
Furthermore, from a clinical perspective, neurodegenerative

diseases usually never present unified symptom profiles9. Despite
decades of research, the dissatisfaction with the diagnostic criteria
of neurological and psychiatric disorders that stems from the
covert heterogeneity of symptoms continues to obscure timely
diagnosis and treatment10. Reliance on sum scores and thresholds,
for such inconsistent syndromes, impedes underpinning the
neurobiological correlates of the symptoms per se, irrespectively
of the diagnosis of the patient. The concept of comorbidities is of
particular importance, which stems from the network approach
that envisions the causal interplay between symptoms, which
does not necessarily originate from the same neural substrate, but
rather from complex dynamic interactions among them11. Dealing
with this level of complexity demands superb tools that originate
not only from sophisticated computational models but also from a
mechanistic understanding of multiple levels of analysis3. Take, for
instance, PD; although a movement disorder, it is quintessentially
a neuropsychiatric disorder given that it is preceded by and
accompanied by dementia, depressive and psychotic symptoms12.
In light of this, this paper moves away from the traditional group-
wise analysis. It attempts to establish new insights into the
neurobiological, technical, and clinical implications of disturbed
behavioral characteristics. In this way, adopting complex and
dynamic theories can foster rigorous scientific practice, stemming
from idiographic approaches toward patient-specific contexts13,14.
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We consequently suggest an urgent call for refinement of the
assessment and intervention tools with complete consideration of
the multifaceted nature of these disorders in a naturalistic and
timely manner, by the adoption of behavioral quantification.
It is now known that a continuum of non-specific neurodegen-

erative manifestations constitutes the prodromal stage of
neurodegenerative diseases15. Neurology is, therefore, in dire
need of translational research that accounts for the heteroge-
neous presentations of neurodegeneration to facilitate the
development of targeted treatments. However, a uniform, multi-
disciplinary framework for deciphering this heterogeneity through
robust computational analysis still needs to be developed. The co-
existence of tremendous computational models for handling
heterogeneous behavioral data resulted in the cultivation of data-
driven approaches that lacks interpretability16. Besides that, a
major challenge is to convert a huge amount of data into
meaningful knowledge for neurologists. Arguing from a novel
perspective, the merging of neurodegenerative background
knowledge and the new knowledge inferred from naturalistic
data is foreseen to establish a new definition of the prodromal
phenotype17; a paradigm we introduce, called “explainable digital
phenotyping” (see Fig. 1). The introduced taxonomy is motived by
the ecological transition18 of neurodegenerative disease char-
acterization, whereby the patients represent the microsystem
level that includes the manifestations stemming from brain, body
and social, behavioral decline. The mesosystem describes the
influence of real-life contexts and environmental factors that
result in phenotypic and temporal heterogeneity of neurodegen-
erative diseases. Lastly, we enclose in the taxonomy the role of
neuroscientists, bioengineers and neurologists in cultivating new-
generation AI systems within a co-creation macrosystem. Further-
more, given the interplay of genetics and environmental factors in

inducing and modulating the neurodegenerative phenotype19, a
precise definition of the latter is still elusive and should ideally be
inferred from per-patient real-life characteristics and temporal
behavior change, shifting the current paradigm from classification
to forecasting. Thus, identifying the developmental process that
leads to neurodegeneration becomes feasible only if a new
theoretical taxonomy is formulated, methodologically rigorous
and based on validity checks.
As opposed to the false hope of eXplainable Artificial

Intelligence (XAI)16, the explanatory power should be based on
rigorous validation of digital biomarkers that quantify behavioral
decline relevant to brain, body and neurodegenerative social
manifestations across the populations. We transform the non-
specific symptoms inferred from naturalistic data captured in-
the-wild into specific explanations of neurodegeneration-
induced behavioral decline. On the one hand, we encapsulate
in the definition of the phenotype the symptoms, the dispersion
of the symptoms, and a standardized framework for model
architecture, validity, reliability and reproducibility. On the other
hand, we hypothesize that the definition of phenotypic
representations concerning symptom level, temporality, causality
and complexity of neurodegenerative diseases will facilitate the
translation of the technology from bench to bedside20. Apart
from early diagnosis, the ultimate hope is to add a dimensional
assessment scale alongside the well-defined categories and to
search for sensitive and specific biomarkers that aid in rethinking
pathogenesis and nosology. Besides that, we aim for an
elaboration beyond the correlation between the indexes and
the symptoms (clinical states), and rather conclude biological,
technical and clinical validation levels. It is the derived latent
variables (features) via the analysis of digital biomarkers that can
reveal hidden causal factors. In other words, this review fills the

Fig. 1 The taxonomy of explainable digital phenotyping of neurodegenerative diseases. The quantification of patient-specific subtle
behavioral decline at the brain, body and social level is the microsystem of the taxonomy (white). The analysis of the interaction with
environmental factors that aid in deciphering inter- and intra-patient variability is the mesosystem of the taxonomy (blue). The co-creation
approach by neuroscientists, neurodegenerative disease specialists and bioengineers fosters the creation of a new AI landscape for
personalized neurodegenerative disease characterization (pink).
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gap between empirical research and clinical practice by mapping
quantitative traits to a knowledge-supported paradigm.
Moreover, in this review, we attempt to overcome the black-

box nature of how AI is currently perceived for refining and
organizing our understanding of neurodegeneration manifesta-
tions based on behavioral perturbation in-the-wild. This refine-
ment rests on a new standardized framework of multi-level
validation for establishing explainable digital phenotyping. First,
we report the validity and reliability of digital biomarkers of
brain, body and social levels by mapping them to their
neurological etiology. The explanations are expanded to include
the role of digital biomarkers in defining disease subtypes,
accurate definition of thresholds between normal and abnormal
and severity estimation. Second, we reinforce the concept of
granularity by validating the analysis algorithms and their
sensitivity to time and context, decoding inter- and intra-
patient variability based on phenotypic and temporal hetero-
geneity. Third and lastly, we express the importance of reflecting
complexity and non-linearity features of neurodegeneration on
modeling characteristics and interpreting the interactions
between multimodal data for designing decision-making sys-
tems with human reasoning power. While a critical emphasis is
made on the role of deep learning in neuroimaging, we
emphasize the robustness of the deep learning models in
analyzing and predicting patient-specific outcomes based on the
behavior for the first time21. To the best of our knowledge, this is
the first review that attempts to establish a theory-grounded
taxonomy, one that exploits the power of pattern analysis
techniques for early diagnosis and treatment, and that provides
three digital biomarkers validation levels, namely: neurobiologi-
cal, technical and clinical (practical) bases. In this line, we pave
the way for the translation of knowledge between empirical
research and clinical practice in neurodegenerative diseases, and
we rigorously discuss research and clinical opportunities peering
into a possible future, with emphasis on experimental design,
analysis methodologies, interpretation and data translation to
patients in the clinic.

METHODS
Study design
In this paper, we undertake a “scoping review” strategy whereby
we map the literature in the field of neurodegenerative diseases
and their behavioral manifestations measured by AI technology
in-the-wild to delineate the nature, features and volume of the
evolving explainable digital phenotyping field22. It should be
noted that our intention here is to bring together key concepts
from neuroscience, neurodegenerative disease healthcare and AI
that, from our perspective, define an emerging taxonomy. In this
vein, we attempted to provide qualitative evidence on (1) the
theories on behavioral decline in PD and AD, (2) the AI
methodologies for measuring and analyzing functional charac-
teristics of neurodegeneration in-the-wild, and (3) the process by
which complexity, temporal and phenotyping heterogeneity of
neurodegenerative diseases are tackled by AI. With this review
design, we aim to reinforce the role of AI validation and
explainability for co-created decisions in neurodegenerative
disease (PD and AD) healthcare and set up a roadmap for the
clinical adoption of digital technology in neurology.

Review questions
To fulfill the objective of formulating the taxonomy of “explain-
able digital phenotyping” for neurodegenerative diseases, we
attempted to answer three main research questions. To over-
come the black-box nature of how AI is currently perceived for
personalized neurodegenerative disease characterization, our
objectives with this paper are:

(1) The definition of the “prodromal behavioral repertoire”
based on fine-grained behavioral cues detected in-the-wild
and associated with the brain-, body-, and social-level
neurodegenerative manifestations.

(2) The analysis and validation of computational models in AI
that facilitated deciphering the phenotypic and temporal
heterogeneity of the neurodegenerative disease.

(3) The computational methods of tackling the complex
nature of neurodegenerative disease diagnosis, such as
uncertainty and heterogeneity from systemic and integra-
tive perspectives.

Database search strategy
To synthesize the framework of explainable digital phenotyping,
we have undertaken a rigorous and replicable search of the
relevant literature on AI technology’s role in defining the fine-
grained behavioral decline in PD and AD.
This review follows the Preferred Reporting Items for Systema-

tic Reviews and Meta-Analysis (PRISMA 2020)23, and Fig. 2
summarizes the literature search process. Based on the above,
we searched for articles published between January 1, 2010, and
August 31, 2022, that employed behavioral data collected under
clinical or naturalistic settings and used machine learning (ML)
algorithms for PD or AD diagnosis and monitoring, without
language restrictions.
Searches were conducted via Web of Science, PubMed Medline,

and Scopus; the major multidisciplinary databases that report
studies on both clinical and engineering domains.
We used the following search terms: [*Neurodegenerative

diseases* OR *Parkinson’s disease* OR *Alzheimer’s disease *]
AND [*Artificial Intelligence* OR *Machine Learning* OR *Deep
Learning*] AND [* Wearable Technology * OR *Home Sensors* OR
*Self-Reports*].
The main inclusion criteria are as follows:

(1) Peer-reviewed journal articles and conference proceedings.
(2) A significant contribution to the digital phenotyping domain

for PD or AD, including clear disclosure of the collected
behavioral data, valid data processing techniques and
statistical and/or AI formulation for symptom monitoring/
detection/prediction.

(3) Articles utilizing only behavioral data, whether in clinical or
ecologically valid settings. Studies employing physiological
signals such as ECG, electroencephalogram (EEG) or
electrooculographic (EOG) are excluded.

The characteristics of included studies are summarized in
Supplementary Table 1.

NEURODEGENERATIVE MANIFESTATIONS
The brain tier
Neurodegenerative disorders start with progressive loss of
neurons due to the accumulation of misfolded proteins in
neurons and their surrounding glial cells24. Besides the wear
and tear changes in the brain with normal ageing, neurodegen-
eration in the glial cells, for instance, is usually triggered by
inflammatory immune responses and over-expression of cyto-
kines in the glial cells decades before the emergence of any
symptoms25. Furthermore, in the early stages, neuroimaging
studies showed that specific brain regions become hyperactive in
neurodegenerative diseases, reflecting a compensatory mechan-
ism and perhaps a sign of inefficiency26. The synaptic integrity is
altered due to neurodegeneration as well, resulting in neural
network oscillations with specific spatiotemporal spread path-
ways, leading to heterogeneous and progressive behavioral
change27. Disturbances to human behavior constituents, such
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as emotional, cognitive and sensory-motor regions, are linked to
abnormalities in localized brain regions that are anatomically
connected. Despite the underlying diagnosis, behavioral distur-
bances rarely occur in isolation, a mixture of emotional, cognitive,
and motor deficits coexist instead28. This is attributed to the basal
ganglia, a group of subcortical nuclei tightly linked to movement
disorders, which are anatomically and functionally subdivided
into regions connected to emotional, associative and sensor-
imotor functions. Consequently, within this integrated network,
abnormalities originating from one node result in network-wide
perturbations, that reflect on individuals’ behavior and task-
specific performance29. This concept is also referred to as
distributed processing. In addition, a feature that characterizes
the basal ganglia nuclei is their high spatial topography, that is,
discrete regions of the basal ganglia exert pronounced control on
motor and executive functions30. More importantly, the segre-
gated loops that form the cortico-basal ganglia-thalamic circuits
sub-serve emotional, associative (cognitive) and motor proces-
sing. This architecture has been validated in animal studies30–32,
as well as human studies33–35.
Neurodegenerative diseases are accompanied by progressive

personality change, referred to as behavioral and psychiatric
syndrome36. Although previously, the identification of the subtle
behavioral changes, such as visuospatial navigation, memory
impairment and motor decline, to predict conversion to neuro-
degeneration has been attempted, the resulting accuracy was
deemed clinically low37. Stemming from the aim of improved
understanding of premorbid behavioral change, in the following,
we review the dimensional, fine-grained behavioral disturbances
and their neural correlates, derived from remote digital technol-
ogy, and identify potential assessment and interventional tools
based on digital biomarkers, as summarized in Table 1.

Motor. Neurodegenerative diseases are characterized by pro-
gressive motor decline due to oxidative stress, cellular damage38,
and the depletion of the dopaminergic neurons in the substantia
nigra (SN) pars compacta39. These symptoms are usually mild at
early stages, therefore, detected at advanced stages after
progressing to gross motor symptoms. A natural consequence
of this is to look for surrogate motor symptoms, derived from
naturalistic behavioral characteristics, that affect fine dexterity
skills. Dexterity loss and fine motor impairment, also referred to as
limb-kinetic-apraxia40, constitute a central feature of cortico-basal
disorders, particularly those combining parkinsonism and cogni-
tive decline41. Besides that, compelling evidence suggests that
this feature carries different representations depending on
the extent of pathological spread, and is a marker of disease
progression. While these definitions date back to the 1920s, there
is currently no standardized clinical assessment to detect such
deficits, especially in the elderly population. To this end, we review
the clinically relevant motor variables derived from passively
acquired smartphone typing parameters, known as keystroke
dynamics42–44. The search for high throughput, naturalistic tasks
for motor behavior analysis came about not only to increase the
participant pool, but also to minimize the Hawthorne effect. The
proliferation of smartphones and the growing interest in
embracing technology for healthcare allowed the exploitation of
passively collected data. To this end, human-device interaction
patterns, when pulled together via statistical and ML models,
uncover comprehensive, personalized behavioral profiles45. Cross-
sectional and longitudinal studies reveal disease-related abnormal
behaviors, and deviation from baseline. In particular, the assess-
ment of fine motor skills is realized by finger dexterity upon
typing, which became a real-life task. It has been well agreed upon
that consistency of movements and the influence of timing are

Fig. 2 Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 flow diagram for study selection. EBSCO Elton
B. Stephens Company, MEDLINE Medical Literature Analysis and Retrieval System Online, PubMed National library of medicine, IEEEXplore
Institute of Electrical and Electronics Engineers.
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highly tied to the motor cortex and thalamic attention. It is for this
reason that the typing behavior is hypothesized to embed
symptom-specific indexes, in line with standardized medical
scales, and finger dexterity tests. In any case, the ultimate
objective of these models is the identification of early warning
signs, that correspond to disease-induced transitions in beha-
vior46. The realization of this goal starts with designing behavioral
experiments that facilitate “zooming-in” to extract behavioral
features, with plausible connections to disease symptoms and
clinical scales. In this realm, passively collected typing kinetics
offered a rich set of clinically meaningful and practically useful
variables, analogous to those examined during finger dexterity
tests47. Keystroke dynamics have been employed as a promising
modality for neurodegenerative disease feature extraction48. The
hallmark motor symptoms of PD have therefore been at the center
of this paradigm, stemming from the hypothesis that implies the
impact of early disease signs on fine motor control and dexterity.
The pioneering work is that developed by Giancardo et al.,
whereby the statistical features derived from the Hold Time (HT)
are used to create an automated diagnosis metric via an ensemble
regression model, the neuroQWERTY, that did not only discrimi-
nate early PD patients from healthy controls but also de novo PD
patients49. Early studies in the field particularly targeted HT due to
its insensitivity to typing skills, but as this area gained attention,
the search for new features continued. Second and higher (>2)-
order statistics (covariance, skewness, kurtosis) derived from the
normalized Flight Time (nFT), which is the latency between
releasing a key and pressing the next one, enhanced the
interpretability of the PD features50. Besides slow movement
and temporal dispersion, PD patients are characterized by
heteroscedasticity, that is, inconsistent variation (in the FT) along
the time. Taking the analysis forward, multivariate ML models that
combine HT, nFT and the normalized Pressure (nP) applied to the
keys while typing have been validated in51. Whereas the
aforementioned studies collected and validated the diagnostic
methods in-the-clinic, the transferability of the models to data
collected in-the-wild has also been validated42,52,53. This was the
first step toward the validation of unsupervised diagnosis of PD in
uncontrolled environments, in which sampling and confounding
factors induce inevitable noise. Another breakthrough in the area
was the adoption of multimodal analysis. Data obtained from
touchscreen typing and accelerometer data were unobtrusively
collected from early-stage PD patients to estimate fine motor
impairment and tremor symptoms, respectively54. Besides that,
mild cognitive impairment (MCI), considered a precursor to
dementia and AD, was also targeted by multimodal analysis.
MCI is characterized by a decline in memory, lexical processing
and motor decline, but remains hardly distinguished from normal
ageing using current clinical diagnosis scales55. With the hope of
improving early detection of MCI symptoms, multimodal analysis
of motor and linguistic features offered promising results56,57.
Recently, typing activity was also validated to discriminate the
severity level of PD using unsupervised clustering based on the
UPDRS-III and the Patient Health Questionnaire (PHQ-8)58.
Furthermore, neurodegenerative diseases are characterized by

insidious apraxia of speech, that worsens with time59. Apraxia is
mainly associated with abnormal motor planning, and processing
of speech, independent of linguistic features, resulting in
phonetically and prosodically impaired speech. Speech apraxia
can sometimes be the only manifestation of neurodegeneration,
even in the absence of obvious movement disorder signs, and has
been linked to tau pathology and the white matter followed by
gray matter degeneration. This implies that early apraxia
manifestations progressively change to aphasia, involving linguis-
tic domains. For instance, in idiopathic REM sleep behavior
disorder (iRBD), speech impairment constitutes the first Parkinson-
ism signs60, motivating the development of digital biomarkers
deciphering acoustic features indicative of apraxia61. For example,

employing acoustic features from multilingual populations con-
veyed their language-independent longitudinal, discriminatory
performance for iRBD and PD. Hypokinetic dysarthria, for instance,
was evaluated based on the harmonics-to-noise ratio (harsh
noise), intensity and pitch variability (monoloudness and mono-
pitch), articulation rate and pauses. Most recently, PD diagnosis
was passively undertaken based on phone calls via a language-
aware ML framework62. Given that speech apraxia is independent
of language, the accuracy of digital biomarkers was validated
across centers with different European languages and no
differences were found between them.
Accelerometer data proved feasible in quantifying the rigidity,

bradykinesia and tremor in PD63. For example, recordings from six
sensors for the upper extremity, while performing naturalistic
home activities, harnessed by an ensemble of random forests and
convolutional neural networks, returned a high detection rate of
tremor and bradykinesia64. In community-dwelling elderly, falls
resemble a frequent cause of physical injury and influence mental
health. Subsequently, on the basis of inertial measurement unit
data, logistic model tree predicted fall prediction risk by employ-
ing meaningful features describing mobility and frequency of
daily activities65. Besides that, using video analysis through home-
installed digital cameras, fall features were extracted, analyzed
and labeled by communicating with caregivers at the incidence of
a fall. These include self-induced shifting of body weight, failure
to achieve a balance and freezing of gait. These characteristics
and longitudinal remote fall monitoring convey the validity of
remote gait assessment for fall prediction66. Remote monitoring
of mobility and fall prediction models have been formulated67,68.
Specifically, the impact of neurodegeneration on the spatiotem-
poral dynamics of gait, including pace, rhythm, postural control,
balance and step-to-step variability, entails not only multifaceted
quantification and analysis systems, but also deciphering long-
itudinal and inter-patient variability, for subsequent fall prediction
and rehabilitation paradigms. To convey the inter-group varia-
bility in step length, step duration and variability, analysis of
variance (ANOVA) was employed to separate healthy controls
from PD patients69. Taking the analysis a leap forward, the
detection of gait freezing episodes was performed by deep
learning based on accelerometer data revealing the potentiality
of such methods in defining risk assessment frameworks that are
otherwise unfeasible70.
Motor activity monitoring has also been used for the titration of

medication. In PD, it is well known that patients exhibit on-off
states characterized by dyskinesia and motor fluctuation that
differs depending on the limb71. Subsequently, a dataset for limb-
specific medication response sensitivity has been recently
formulated based on the fusion of data collected in-the-clinic
and data collected in-the-wild including 4-day accelerometer data
collected from the trunk, forearms and lower back72.

Cognition. Cognitive inertia refers to impairments in planning,
working memory, rule-finding and set-shifting, which, in turn,
result in apathetic behavior. The leading cause of cognitive
decline is AD and Lewy body neurodegenerative disorders73. In
particular, MCI constitutes an intermediate stage between normal
and pathological ageing, therefore, remains hardly detected but is
usually reported by caregivers without specific clinical biomarkers.
Furthermore, in PD, cognitive decline is among the major non-
motor symptoms with a profound impact on quality of life74

attributed to the spread of Lewy body even before the onset of
motor symptoms75. For early detection of cognitive decline, a
computerized battery of tests that estimate cognitive stability
indexes targeting memory, attention and response time domains
have been designed76. Subsequently, embedding cognitive
impairment evaluation in virtual game environments not only
assists in assessing cognitive function, but also aids learning and
motivational aspects. For example, in Klondike Solitaire, the player
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actions relative to game characteristics (i.e., movements, game
outcome, difficulty level) are transformed into multifaceted digital
biomarkers assessing cognitive function related to processing
time, performance, error, and executive function77. Furthermore,
the merger of virtual reality (VR) and AI facilitated the continuous
assessment of instrumental activities of daily life, by analyzing the
kinematic patterns of the head and the hand during real-life tasks,
resulting in the identification of behavioral measures capable of
predicting MCI, yet not necessarily correlated with conventional
neurological questionnaires78. Away from this dichotomous view,
the assessment of MCI should ideally be continuous and multi-
modal, revealing subtle neural perturbation79. Within the cogni-
tive domain, deficits in linguistic abnormalities, such as
progressive aphasia, are usually present in neurodegenerative
disorders80. Speech analysis through deep neural networks proved
successful in the binary classification of AD81. Computing
rhythmic, acoustic, lexical, morpho-syntactic, and syntactic fea-
tures of spontaneous speech transcribed via natural language
processing (NLP) discriminated early MCI, multi-domain MCI from
healthy controls, not only indicating the classification of subtypes,
but also the sensitivity of the method to disease progression82.
NLP models allowed multimodal analysis of fused speech and
text-linguistic features for enhanced discriminatory performance
as in transformer-based. Besides that, ensemble models for
training acoustic and linguistic features used majority voting
resulting in a discriminatory performance of 81%83. Furthermore,
the detection of early dementia symptoms and the prediction of
the mini-mental state examination (MMSE) based on speech and
transcripts data were achieved with an accuracy of 90% and a root
mean squared error of 3.61, employing recent trends in multi-
modal deep learning of textual and speech data84. As opposed to
the use of majority voting or probability averaging to make a final
prediction85, an end-to-end deep learning model was developed
comprising bidirectional encoder representation transformer and
vision-based transformer, co-attention, multimodal shifting gate
and self-attention mechanism to learn the interactions between
textual and speech features84. Cognitive impairment usually
accompanies PD motor symptoms as well; therefore, real-life
context influence on PD patients’ cognition was investigated.
Using digitized ecological momentary assessment (EMA) with a
smartphone application for assessing working memory and
executive function of PD patients at-home, cognitive function
was evaluated along with the impact of neuropsychological
symptoms86. Interestingly, PD patients showed high working
memory and executive function performance, as inferred by the
Backwards Spatial Spans task and the Trials-B task within the
application. Furthermore, the smartphone application allowed the
analysis of these behavioral domains with varied locations, time-
of-the-day and social context, constituting an avenue for future
inter-patient and intra-patient variability analysis.
Taking the analysis of cognitive function a leap forward, the

impact of circadian rhythm has been explored via mixed-effect
models in patients with AD87. This was achieved by frequent
ambulatory assessment (self-reported activity) over 7 days. The
impact of diurnal patterns in those with cerebrospinal fluid
biomarkers was also investigated and showed that they
performed worse during evening hours. In accordance with
previous studies88, the results showed that patients with AD
exhibit a reduction in memory performance and response
inhibition late during the day, but not in spatial navigation or
processing speed. Furthermore, compared to studies that utilized
conventional cognitive assessment and failed to correlate
cognitive function to daily fatigue89,90, there was a weak
correlation between subjective feelings of fatigue and cognitive
performance. Conversely, no relationship was identified between
mood and cognitive performance.
Besides cognitive assessment, a randomized control trial (RCT)

was conducted to assess improved cognitive function in the

elderly after 12 months of cognitive training via Application-based
Cognitive Training at Home91. Daily smartphone-based training for
30min improved memory, attention, language, visuospatial and
executive function in the intervention group over the year. It is
also well known that neurodegenerative diseases are character-
ized by a decline in speech production, also known as aphasia92.
Spontaneous speech tasks have been adopted to detect aphasia,
whereby patients are asked open-ended questions such as telling
a story or describing an image93. A battery of linguistic skills
quantification is performed and evaluated subsequently. Given
the impact of ageing on dynamic balance control, the quantity
and quality of mobility have been employed to detect cognitive
decline in patients with AD94. Compared to gait analysis
paradigms for locomotion analysis, the quality of turning during
daily activity proved to be a reliable predictor of cognitive
impairment. This is in line with the previously reported relation-
ship between sensor-based walking sensors and attention,
processing speed and global cognition95.

Emotion. Emotions are transient states that synchronize with
changes in physiological arousal, motor expression, subjective
feeling, action tendencies and cognitive processes, as a result of
external (environmental) or internal stimuli96. Deficits in the
reward processing neurocircuitry have always been linked to
negative emotions, that is, the responses to what should be
positive stimuli. Alterations in the amino-acid neurotransmitter,
glutamate aminobutyric acid, which plays a key role in regulating
dopaminergic pathways within the ventral tegmental area, are
usually altered in patients with dysregulated emotions97. More-
over, dysfunction of the prefrontal-basal ganglia systems results in
affective disturbances that disorganize behavior, virtually in all
neurological disorders98. Neurodegenerative diseases, in particu-
lar, are characterized by apathy, a symptom with debilitating
consequences on the quality of life, linked to a reduction in goal-
directed behavior, loss of interest and initiation of activities in
addition to emotional blunting. Early identification and treatment
of apathy results in improved quality of life and executive
function, and reduced caregiver burden99. Although a triad of
methods and scales for measuring apathy are proposed, there
needs to be more certainty in their validity and reliability100.
Tremendous effort has been made to understand and target
apathy for pharmacological and non-pharmacological interven-
tions. Yet, more emphasis should be devoted to quantifying its
biomarkers, including more precise descriptions of its ecological
manifestations. To this end, we assess the reliability of digital
biomarkers for detecting apathy in-the-wild. Apathy has been
remotely evaluated by EMA101, voice features102 and most
recently by facial expressions103. Specifically, the advances in
computer vision methods allowed the investigation of apathy
severity given by the Apathy Inventory scale through the analysis
of the intensity and frequency of Action Units extracted from
videotapes of the elderly recalling positive and negative
memories, which was extended to assess hypomimia in PD104

and lack of empathy in AD105. Given the prevalence of depression
in PD106, it was predicted using a simple support vector machine
model that employed the national Korean Biobank registry of PD
patients along with their health habits, socio-demographics,
neuropsychiatric and sleep disorder symptoms107.
The use of actigraphy that quantifies the three-dimensional

movement of the arm has also been harnessed for detecting
apathy in-the-wild. Over a 7-day analysis of the movement
activity of AD patients, several parameters, including daytime
mean motor activity, daytime napping, and nighttime motor
activity, were extracted from the actigraphy and analyzed by post
hoc ANOVA108. The results indicated that apathy is associated
with low daytime motor activity109 and shorter durations of
daytime napping. On the contrary, Mulin et al.110 found a
proportional relationship between high durations of daytime
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sleepiness and reduced goal-directed cognitive activity and
apathy that, in turn, increases dementia severity. These mixed
interpretations call for a more rigorous analysis of motor behavior
and its association with apathy.

The body tier
Real-time detection of changes in vital signs reflects early disease
symptoms attributed to neurodegeneration111. Neurodegenera-
tive manifestations stem from autonomic and peripheral systems,
and their digital representations are presented in this section.
While most wrist-worn devices are employed in analyzing motor
function, their analysis has been extended to predict non-motor
symptoms. For instance, multiple linear regression models were
performed in a retrospective study112 to correlate bradykinesia
and dyskinesia detected from the PD Kinetigraph with non-motor
symptoms. The results indicated that bradykinesia was signifi-
cantly associated with constipation and sexual impairment, while
dyskinesia predicts cognition and mood. The noninvasive
monitoring tools extend to incorporate organic graphene sensors
and micro-fluidic systems capable of monitoring stress levels, for
instance, thereby amalgamating the electro-chemical sensing of
sweat with mobile health (mHealth)113. This implication suggests a
promising avenue for remote analysis of diurnal patterns and
responses to stress. Neurodegenerative manifestations also
include impaired circadian rhythm due to the degeneration of
the supranuclear thalamus114. In particular, weak circadian activity
levels are linked to the predisposition of amyloid beta- and alpha-
synuclein, thereby correlated with specific behavioral markers.
Actigraphy-derived measurements as evaluators of circadian
activity, such as the amplitude of motion, mesor, and motion
rhythmicity, were used as predictors of cognitive decline over 5
years. The latter was assessed by the MMSE, California Verbal
Learning Task, digit span, categorial and verbal fluency. It has
been concluded that disruption in circadian activity, measured by
actigraphy, is linked to poor cognitive performance, especially in
the executive function domain115.
Circadian rhythm manifestation should always be distinguished

from those of sleep patterns. To reflect the sleep fragmentation
characteristic of neurodegeneration116, sleep staging from EEG
has been used to convey the lower non-REM stability and high
REM/non-REM transition rate in PD117. Some studies pointed out
the beneficial effect of short daytime napping (<30min) on
cognitive function118. Reduced sleep quality has been linked to
cognitive decline119. As a result, sleep onset latency, total sleep
time, and apnea-hypopnea index were derived via NLP of 61,165
free-text polysomnography (PSG) reports from the Houston
national electronic health records (EHRs) from 2000 to 2019 to
discriminate patients at risk of dementia120. In electrophysiological
measures, reduced sleep spindles quantified from EEG analysis of
stage-2 sleep activity have also been identified as robust markers
for cognitive decline in neurodegenerative diseases121. Besides
PSG, movement analysis during sleep has also been used to
evaluate sleep quality. However, it is unlikely that the multifaceted
behavioral and physiological sensors during sleep be easily
exploited, given the burden on patients122. Remote home sensors
could be used instead. Autonomic dysfunction has been a famous
measurement target in neurodegenerative diseases, such as heart
rate variability123 and respiratory signal analysis124.
Disruption in circadian rhythm and sleep quality has also been

linked to another symptom in neurodegenerative diseases:
chronic pain125. It has also been concluded that the prevalence
of pain in neurodegenerative disease patients is linked to a
decline in cognitive performance, psychomotor behavior and
executive function126. For example, in patients with AD, pain
processing has been shown to increase127. To prove this, imaging
biomarkers and facial expression features (extracted from the
Facial Action Coding System), in addition to self-reports to label

pain levels, have been co-processed128. The results revealed that
cognitively impaired patients with high levels of pain are
characterized by reduced gray matter volume in the medial
orbitofrontal and the anterior cingulate cortex.

The social tier
Social inappropriateness is frequently the first manifestation of
neurodegeneration, especially in AD129. According to the Theory
of Mind (ToM) and its neural basis, neurodegenerative disease
induces different patterns of affective and cognitive ToM
deficits130, reflecting on the social behavior of neurodegenerative
disease patients131. In particular, social cognition, including self-
knowledge, perception of others’ emotions and beliefs, commu-
nication and interpersonal motivations, are also impacted by
neurodegenerative diseases, which adversely affect social life.
Despite this, understanding the association between cognition
and social skills and how these patterns differ between disorders
and individuals remains a challenge132. In the context of social
cognitive manifestations in neurodegenerative diseases, we can
define six symptoms as follows: (1) early behavioral disinhibition
and inappropriateness, (2) apathy, (3) decline in empathy, (4)
compulsive behavior (i.e., repetitive movements and stereotypy
speech), (5) hyper-orality and dietary changes, and lastly (6)
executive dysfunction133.
The social cognitive performance of AD patients was evaluated

based on the Ekman 60 faces test and story-based empathy test.
The former implies the selection of emotional labels for face
photos of ten actors with six basic emotions. During the latter, the
selection of the correct story ending is required134. Compared to
healthy controls, AD patients had lower performance in all tasks,
but more importantly, they reported higher discrimination
inferred by the affective tasks compared to those assessing
cognitive attribution. This implies the importance of evaluating
surrogate social cognition markers of neurodegeneration, as no
reliable cognitive ToM tasks exist. For this purpose, the passive
analysis of smartphone data, such as the frequency of phone calls
and mobile applications, facilitated the identification of patients
with cognitive impairment from age- and education-matched
healthy individuals thus far135. For instance, those with cognitive
impairment had less usage activity and contacted the same
people more frequently.
Targeting the social interactions domain of neurodegenerative

disease populations, the concept of “Enriched Environments”
achieved by video games can reinforce social engagement, and
preserve cognitive function136. Specifically, environmental enrich-
ment refers to home conditions that facilitate sensory, motor and
cognitive performance and encapsulate the enhancement of
social interactions within a unitary framework137. In particular, the
latest gamification platforms enhance social interactions and
entertainment besides improving adherence to rehabilitation138.
Such a game-buddy system, which involves two or more patients
with the same age, diagnosis, and disease stage, is hypothesized
to reinforce social and community feeling while providing a
positive environment for physical rehabilitation. Another advance-
ment in this realm lies in the development of Artificial Robots
capable of perceiving and reacting to human emotions, thereby
providing an assistive architecture for maintaining cognitive and
emotional intelligence during social interactions139. Future work is
still needed to investigate the impact of social learning140,
delivered by digital technology, on the social behavior of
neurodegenerative disease patients.
While gamification and VR have been proposed as potential

cognitive rehabilitation strategies for neurodegenerative diseases,
clinical trials did not show their therapeutic value yet thus far.
Among the innovative therapeutics for neurodegenerative dis-
eases that have emerged lately is noninvasive brain stimulation
(NIBS) approaches141. Ideally, such therapeutics should function at
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the degeneration level as NIBS enables brain plasticity to
modulate cognitive processes. Moreover, NIBS approaches should
be applied early in the disease course to yield an optimal outcome
and treat patients before the degeneration of substantial neural
tissue. Currently, there are two commonly employed NIBS
approaches transcranial magnetic stimulation (TMS) and transcra-
nial direct current stimulation (tDCS). Developed by Anthony
Barker in 1985, TMS employs a brief-lasting magnetic field to
probe correlation links between cortical areas, by stimulating
action potentials in specific cortical regions142. In contrast, tDCS is
based on passing a direct current between two electrodes on the
skull, resulting in polarized target brain regions, eventually leading
to altered resting membrane potentials. Both approaches have
been used for a multitude of neurodegenerative diseases. For
instance, in AD, tDCS in the temporal-parietal lobe proved
effective in reversing memory processing deficits by analyzing
the induced changes in the spectral characteristics of EEG before
and after therapy143. These results boosted the popularity of tDCS
in home environments for the sustained cognitive performance of
early AD patients144. Consistent with the pathophysiological
characteristics of brain dysconnectivity in prodromal AD, repetitive
TMS results in selective modification of cognitive functions such as
episodic memory. Besides neuropsychiatric behavioral analysis,
the positive outcome of neurostimulation has also been confirmed
by significant correlations between tau protein levels such as
amyloid beta and cognitive imporovement145. Overall, these
findings confirm the feasibility of noninvasive neurostimulation
in mitigating network dysfunction in AD. Similarly, in PD, TMS
targeting the prefrontal cortex results in adaptive motor function
improvement and mood swings146. Moreover, repeated tDCS over
the dorsolateral prefrontal cortex, when combined with physical
therapy, improves the long-term physical and cognitive perfor-
mance for up to 3 months of PD patients with MCI147. Such
preliminary evidence holds promise for designing holistic
rehabilitation programs in early neurodegenerative disease, but
further work on formulating personalized behavioral change
protocols is still required. In recent years, information-based
neurostimulation emerged as a refinement of understanding how
brain stimulation alters connectivity and functions in neurode-
generative diseases148. This notion proves essential for enhancing
the therapeutic outcome of noninvasive brain stimulation by
tailoring brain activity patterns and NIBS parameters at the time of
stimulation. To increase neurostimulation outcome specificity,
detailed, task-evoked brain activity patterns that encode cognitive,
emotional and motor functions over the disease course should be
monitored and modulated149. Regarding the control of NIBS
parameters, frequency-tuned interventions have shown special
clinical interest. For example, Parkinsonian tremor is mitigated
when tDCS is applied to the motor cortex at tremor frequency150.
Novel NIBS therapeutics for neurodegenerative diseases continue
to evolve in the clinical and home environment. Still, the targeted
populations are pathologically too far advanced in the disease
course, precluding robust neuroprotective impact. Hence, deci-
phering early neurodegenerative manifestations, as advocated in
this review, is likely to identify patients long before the substantial
neural loss. Notably, PD patients with intractable motor fluctua-
tions and who experience adverse medication events are
considered good candidates for deep brain stimulation (DBS)151.
DBS is a minimally invasive surgical treatment whereby the
subthalamic nuclei are targeted to be the location of electrode
placement. DBS results in long-lasting improvements in tremors
and dyskinesia.

GRANULARITY AND CONTINUITY
While it is well known that neurodegenerative diseases are
characterized by pronounced heterogeneity that impedes accu-
rate stratification and prognostication, we hereby discuss the role

of digital technology in decoding inter- and intra-patient
variability. To construct a comprehensive picture of this hetero-
geneity and the resulting biomarkers variance, we review the AI-
based methodological approaches to separate phenotypic from
temporal heterogeneity based on cross-sectional and longitudinal
behavioral analysis, respectively152. In this way, we provide
meaningful insights into the neurodegenerative mechanisms that
take place in-the-wild by applying optimal granularity parameters
to naturalistic behavioral data. Moreover, in the context of fine-
grained explanations, detecting spatiotemporal events constitutes
another venue153. In this vein, although the concept of continuous
monitoring is claimed to be achieved, the complete definition of
spatiotemporal events, symptom sensitivity to real-life contexts
and other environmental stressors still need to be discovered. For
this purpose, we include in this section the characteristics of
spatial, temporal, and environmental and context-related informa-
tion and their role in resembling intelligent, cause and conse-
quence systems. We show that once we approach the rich data
streams with a comprehensive understanding of data quality,
analysis windows, causality between variables and algorithm
characteristics, we can transform the non-specific traits into more
specific syndromes. For the first time, this is achieved by defining
phenotypic and temporal heterogeneity of neurodegenerative
disorders on the basis of remote behavioral data.

Phenotypic heterogeneity
The degeneracy of the human brain154 and the complex
interaction between the genetic background and environmental
factors result in tremendous variability in the symptom character-
istics. Instead of standard, unsupervised clustering methods that
separate heterogeneous patient groups along the axis of highest
variability that might not necessarily be related to disease
characteristics155, we focus on unbiased data-driven approaches
in defining disease subtypes based on specific features derived
from naturalistic data. Given the crosstalk in speech impairment
that occurs in neurodegenerative disorders, disease-specific
acoustic features of hypokinetic, ataxic and spastic speech
impairment characteristics were used to classify Multiple System
Atrophy parkinsonian and cerebellar subtypes (MSA-P, MSA-C)
from PD156. Furthermore, to account for PD progression during
patient subtyping and away from the conventional clustering
algorithms, multidimensional longitudinal characteristics from the
Parkinson Progression Initiative Marker data are incorporated in a
long-short-term memory followed by dynamic time warping
framework, thereby providing clinically relevant temporal trends
of patients in each class. The PD patients were subsequently
classified into mild, moderate and severe progression regardless
of the symptom severity at baseline, reflecting that disease
severity and progression rate are independent disease character-
istics157. Given the evidence of broader degeneration and more
severe symptoms in PD patients with rapid eye movement sleep
behavior disorder, defining PD subtypes on this basis was
accomplished by an ensemble random forests model of EEG
and EOG158. Specifically, a multidimensional data-driven approach
of ensemble random forests was employed to track the prognosis
of de novo PD patients and detect RBD in PD158. The system
performed automatic micro- (5 s epochs) and macro-sleep (30 s
epochs) staging and extracted EEG spectral and complexity
features, EOG energy features given its relevance to eye move-
ment energy and micro-sleep (e.g., transition and stability indexes)
features. The classification results indicated the influence of RBD
on the EEG and EOG patterns among PD patients and that the
best-performing features are those extracted from the micro-sleep
staging, particularly the wake-sleep transition index. Future clinical
trials are still needed, however, to determine if idiopathic RBD is a
subtype or a prodromal phase of PD. Another condition with
significant overlap with PD is Essential Tremor (ET), given that the
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rate of misdiagnosis of the two conditions is up to 30%159. ET was
distinguished from PD based on the complexity features of EMG
signals obtained from the biceps brachii muscles and the
kinematics of arms160.
Another area for improvement of the current screening tools is

their inability to identify subjects with suboptimal treatment
responses in real-life settings. To fulfill this aim, a retrospective
study gathered data from the Adelphi Parkinson’s Disease-Specific
Program (DSP) in seven countries (i.e., France, Germany, Italy,
Japan, Spain, UK and US) to detect PD patients who satisfy the
5-2-1 criteria161. The latter describes PD patients who take more
than five doses of levodopa daily, experience longer than 2 h OFF
state and more than 1 h of debilitating dyskinesia. The data
included the clinical assessments and outcomes reported by the
physician (clinical burden) and the self-reported information of the
patients and their caregivers, including demographics, treatment
condition and quality of life (humanistic burden). The results
indicated that 5-2-1 positive PD patients had higher clinical and
humanistic burdens. With the same goal, the MANAGE-PD system
driven by data from PD experts panel to identify patients with
suboptimal symptoms controls162. This type of analysis is
particularly essential because as the disease progresses, the need
for individualized assessment and treatment is higher163. More-
over, the longitudinal comparison of gait parameters to baseline
uncovered per-subtype progression trends, with a more signifi-
cant gait decline in the TD compared to the PIGD phenotype.
Nevertheless, such subtypes reflect only a limited view of the true
symptoms’ heterogeneity of PD in real-life practice according to a
wide range of related symptoms. These models also lack internal
heterogeneity and are based on a single entity for the separation
of PD subtypes, Consequently, multi-partitioning clustering was
used to decipher PD subtypes and analyze the associations
between them using data collected from the Movement Disorder
Society Non-Motor Rating Scale (MDS-NMS) comprising eight
partitions164. The model leverages conditional linear Gaussian
Bayesian Networks (GBN) that learn latent variables of every
partition. The reason behind using Bayesian networks includes
the graphical representation that allows interpretations of the
relationship between variables and their partitions and the
conditional dependencies between partitions. Eventually, eight
partitions of motor and non-motor symptoms were defined;
impulse control issues, non-motor symptoms including apathy,
gastrointestinal, sleep and urinary dysfunction, dyskinesias and
psychosis, mental and physical fatigue, axial symptoms, loss of
smell and motor fluctuations, autonomic dysfunction, depression
and loss weight, and finally anxiety with excessive sweating.
Besides PD subtypes classification, the cognitive profile differ-

ences between MCI due to Lewy bodies (MCI-LB) and that
progressing to dementia (MCI-AD) have been disentangled via
longitudinal assessment of clinical characteristics and executive
function165. Employing linear mixed models revealed the distinct
profile of sharper decline in executive function and attention in
MCI-LB compared to MCI-AD with memory decline. Yet, both had
similar progression rates and times. We report the sparse studies
devoted to MCI, dementia and AD heterogeneity analysis, thereby
stressing the need for a more rigorous analysis of the hetero-
geneous cognitive phenotyping.

Temporal heterogeneity
In light of the dynamics system conceptualization166,167, wherein
emotional, cognitive, and motor (behavioral) concomitants inter-
act, forming processes that change over time, establishing the
clinical phenomenology via temporal pattern analysis became
essential. However, the latter is a matter of empirical research and
a translation of knowledge toward clinical practice still needs to be
clarified. The formulation of patient-specific case conceptualization,

is the route to patient-optimized intervention targets for neuro-
modulation and neuroprotection168.
Longitudinal data analysis aims to learn the sequence and the

ordering of the time-dependent patient characteristics concerning
disease progression. This implies the shift to hypothetical models
of dynamic biomarkers169 as an ambitious avenue yet with
significant methodological challenges, especially since the pro-
gression of the symptoms is nonlinear170, and that until now, the
definition of “early” and “long” disease duration is elusive. Owing
to the definition of patient-specific trajectories, it should be noted
that the collected biomarker data belongs to a high dimensional
space, and to a specific time point of the trajectory. To this end,
disentangling spatiotemporal patterns in longitudinal data has
been achieved by longitudinal deep learning models that do not
depend on users’ age as the case in mixed-effects models and are
based solely on the ordering of the phenotypic information171.
This was achieved via an architecture pivoted on a self-supervised
neural network model (see Fig. 3).
Understanding the evolution of the symptoms at early stages is

particularly complex compared to moderate to advanced stages.
Worth mentioning here is the progression of idiopathic RBD to
alpha-synucleinopathy, such as PD and dementia with Lewy
Bodies (DBL). Accordingly, the prognosis of neurodegeneration in
RBD patients was determined based on decreasing algorithmic
complexity of the EEG172. Besides that, adopting recurrent neural
networks for temporal pattern analysis and EEG classification
yielded high discriminatory potential173. In particular, to process
the dynamic features of EEG, the Echo State Network employs
nonlinear dynamics. It processes the temporal features of the EEG
across multi-channel spectral (frequency) inputs with random
but fixed network weights to enhance training efficiency. To
mitigate the computational cost of such “dynamic reservoir
neural networks”, a deep convolutional neural network was
designed for multi-channel EEG analysis and to localize parts of
the EEG input that excite the network nodes the most174.
Detection of REM sleep behavior events on a longitudinal basis
also supports the increasing severity of the symptoms175,176,
supporting the mono-exponential degeneration of the SN during
prodromal PD177. This approach is yet to be replicated on
behavioral data obtained in-the-wild.
Furthermore, in a group of early incident PD, a battery of gait

characteristics was used to assess impairment over 18 months for
postural instability and gait difficulty (PIGD) and tremor-dominant
(TD) subtypes, and the influence of Levodopa equivalent daily
dose178. The fact that some gait characteristics, such as pace,
swing time and posture control, were refractory to levodopa
confirms the non-dopaminergic pathology behind these domains
in PD. It suggests the need for surrogate treatments, beyond
those targeting motor behavior, focusing on cognitive domains.
In addition to symptom detection and monitoring, multivariate
mixed-effects models were utilized to assess long-term exercise’s
impact and physical training’s intensity on PD clinical course179.
Using the Parkinson’s Progression Markers Initiative data of 237
early-stage patients, class-II evidence on the association of long-
term physical activity high levels with slower PD progression rate
over a 6-year follow-up, especially when it comes to postural
instability and gait quality. In accordance with the previously
reported fact that different types of exercise are linked to
different neuroplasticity mechanisms180, Tsukita et al.179 con-
cluded that exercise habits that require sophisticated balance,
such as dancing and aerobics, are associated with the slowest
symptom deterioration.
The Oregon Center of Aging and Technology (ORCATECH)

(https://www.ohsu.edu/oregon-center-for-aging-and-technology),
a home-based innovative research endeavor to collect real-life
continuous data analysis for healthy ageing, is an example that
facilitated longitudinal monitoring181. Employing high-frequency
patient-specific distributions of executive function outcomes in
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home settings not only distinguished MCI trajectories to AD from
healthy controls but also proved that high-frequency data
acquisition offsets the need for a large sample size, which is a
grand challenge in data mining182. The data included weekly
mean walking speed, walking speed variability (obtained via in-
home passive infrared motion sensors) and time spent on
computer usage from 119 cognitively healthy old adults followed
for over 3 years to identify conversion to MCI. Using patient-
specific thresholds of high and/or low activity levels, given their
baseline information, and their longitudinal variability, the time
window for conversion to MCI was predicted.
Motivated by those mentioned above, the replicability of the

results was evaluated. The sample size for a 4-year clinical trial of
progression to AD was estimated by defining three outcome
measures, namely: (1) the observed longitudinal in-home data,
(2) the likelihood of experiencing deviations based on subject-
specific thresholds, and (3) annually performed clinical neurop-
sychiatric assessment183.
Learning temporal patterns in sequential data requires: (1) the

detection of the onset of change, (2) deciding which information
to keep and update, and which information is of the least
significance to the meaning change, and lastly, (3) updating the
models to account for the detected change for future predictions.
To this end, the adoption of sliding windows along longitudinal
data, from which the information of least importance is forgotten
according to specific rules184. These windows are adaptive such
that the size of the window grows when no changes are detected
and shrinks otherwise for rigorous analysis of the change.
Furthermore, among the most reliable models of sequential data
are Hidden Markov Models that have been utilized for Daily
Activity Recognition185. The main merit of such models is that they
follow the Markov process, which states that the prediction of the
future can be solely based on the present.
Alternatively, reinforcement learning has been proposed for the

prediction of the yearly progression of AD whereby the reward

was an optimization objective function resulting in defining the
differential relationships among the factors and their evolution
pertinent to AD progression186. Despite the enthusiastic accumu-
lation of dynamic behavioral analysis, how the parallel dynamic
measures inter-relate is yet to be elucidated for a complete
prediction of neurodegenerative disease patients’ well-being187.

TOWARD EXPLAINABLE DIGITAL PHENOTYPING
Tackling complexity
Most ageing functional decline processes, especially those attrib-
uted to neurodegeneration, are nonlinear in nature188. The
complexity of the impaired brain is a barrier to understanding
fine-grained neurodegenerative manifestations. To learn this
complexity, selective and recurrent analyses need to be applied
to behavioral data, stemming from recent trends in systems
neuroscience189. From the data analysis perspective, frequent
confusion is that of circularity that arises from the assumptions
made to selectively analyze behavioral data, which is a composite of
true effect and noise. To avoid distorted results and invalid
statistical inference due to selective analysis, the selection criteria
among the noisy data should be statistically independent of the
analysis results, in addition to dividing the dataset into training,
testing and validation subsets190. In addition to modeling
uncertainty, this characteristic should be accounted for when
designing decision-making systems in neurodegenerative diseases
medicine. Moreover, the complexity arises from the multifaceted
symptoms present in big data. A complex system, in this context,
refers to that of multiple interacting aspects with an unpredictable
outcome, which renders studying one aspect in isolation from
others insufficient191. One way to address this is through multi-
dimensional data analysis and graph-based network approaches192.
To account for the biological consequences on the digital
phenotype, smartphone data were integrated unprecedentedly

Fig. 3 Computational models for dynamic behavioral analysis and disease progression models. a Linear mixed-effect models are one of
the first models employed to learn patient-specific data distribution and patterns. b Hidden Markov Models are statistical models for
sequences of data that learn hidden states (q) given present observations (O). c Deep neural networks such as convolutional (CNN) and
recurrent neural networks (RNN) learn personalized and temporal data patterns, respectively. d Reinforcement learning is an optimization
model based on a reward function (R) relating environmental series (X) with predicted states (S) through an action (A), such that the
cumulative reward is maximized across time (t).
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with metabolic measures in real time193. This way, the impact of
lifestyle habits, such as diet, physical activity, sleep, smoking, and
exposure to toxics, can be monitored via metabolic phenotyping
alongside behavioral attributes, achieved via longitudinal and
simultaneous urine and digital data collection.
In AI-supported decision making, the quantification of uncer-

tainty is often neglected, albeit it can lead to more principled
outcomes194. To this endeavor, medical ML platforms should avoid
reporting a prediction if high-level uncertainty is present, by
seeking additional human expertise, a paradigm known as
human-in-the-loop, or additional data. The sources of uncertainty
include, but are not limited to, data noise which contributes to
aleatoric uncertainty, model parameters and model selection
resembling epistemic uncertainty or even missing information and
bias. Just as a complex patients’ representation will cause
uncertainty in the physician’s room, a point in the test dataset
far from any point in the training dataset is a source of
uncertainty. Techniques of uncertainty quantification are heavily
linked to the type of employed models. One popular way to
quantitatively represent predictive uncertainty is by the 95%
confidence interval195. Alternatively, for deep learning, the
methods usually used to estimate uncertainty include Monte
Carlo Dropout196 and ensemble models197. The former stems from
Bayesian variational inference, while the latter refers to combining
the predictions of multiple networks trained on the same dataset.
Another feature of particular importance but a relatively low

emphasis on neurodegeneration is causality. The century-old
debate that neurodegeneration starts well before diagnosis
affirms the dire need to change the medical landscape with
predictive paradigms198. Therefore, an accurate definition of

causality implies that the consequence (neurodegeneration)
happens after and is the outcome of the risk factor. However, it
is also well conceived that the interplay of genetics and
environmental factors is the main contributor to neurodegenera-
tive phenotype modulation199,200. For this purpose, modeling
causality in neurodegeneration, by accounting for neurotoxicity
exposures and lifestyle habits and developing risk assessment
models have been facilitated by progress in computational
modeling and AI (see Fig. 4), but should ideally begin in early
adulthood, given the undefined time duration between exposure
and disease onset. Of particular interest in this realm is the role of
environmental factors with an apparent connection to neurode-
generation that can be measured and analyzed for reliable
predictive models201. Among these factors is the role of pesticide
exposure202, dietary habits203, tobacco smoking204 and other
neurotoxic materials that stimulate oxidative stress and trigger the
deposition of neurofibrillary tangles.
Even at the cellular level, genetic predisposition and environ-

mental stressors result in the selective failure of particular
populations of neurons, which is, in turn, a mechanism linked to
the heterogeneous manifestations of neurodegeneration205. This
implies that multiple stressors interact and reinforce each other to
initiate multi-level chronic perturbation that leads to neurode-
generation and that this can start at any age. The resulting neural
dysfunction, however, is aggravated in the elderly, when age-
related stressor tolerance fails to withstand the load of the disease
and at this point, the symptoms begin to appear. Stemming from
here, modeling causality in neurodegeneration entails aggregat-
ing lifestyle data from at least early adulthood. Given, for instance,
the protective role of physical activity against cognitive decline

Fig. 4 The causality model of real-life neurotoxicity exposure and neurodegenerative manifestations. An ideal risk assessment model
starts in early adulthood, where specific lifestyle behaviors predisposes the brain to neurodegeneration, but without developing symptoms.
With aging, when disease tolerance starts declining, neurodegenerative manifestations begin as subtle behavioral decline in-the-wild,
affecting motor, cognitive, and emotional domains. The role of digital technology in characterizing the phenotype can be viewed as (1)
toxicity exposure and risk assessment and (2) explanations for the quantitative behavioral decline.
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and dementia206 it is not only employed as a predictor for
neurodegeneration but also as a modality to reinforce behavioral
change. Taken together, we propose a multifaceted trajectory
model and the distributed role of digital technology in (1) the
quantification of risk exposure and lifestyle habits and their
relationship to neurodegeneration, (2) the detection of early
subtle signs, and (3) the management of symptoms and disease
progression at later stages, as illustrated in Fig. 4.
What we need is decision-based systems with human reasoning

power. To capture knowledge about the complex and dynamic
properties of the systems with close functionality to human
reasoning, fuzzy cognitive maps (FCMs) were explored, depending
on real, temporal patient data. The graphical representation of
causes and effects via connected nodes, yields a simple and
symbolic description of systems behavior, employing the accu-
mulated knowledge of experts207. For PD, for instance, FCMs,
combined with nonlinear Hebbian learning, result in a diagnosis
decision process closer to that of experts208. This section reviews
the methodological principles of decision-making systems that
account for complex neurodegenerative manifestations.
Another source of complexity that arises when naturalistic data

are processed in-the-wild is the context attributes that are
undetachable from the behavioral patterns209. Consequently, for
accurate interpretation of the data, the aim is to define context-
enriched behavioral patterns210. To this end, contextual informa-
tion has been accounted for in behavioral data mining by multiple
approaches, including (1) accounting for contextual information as
features in the model, (2) incorporating contextual information in
the preprocessing stage to enhance granularity as in probabilistic
graphical models211, and (3) the detection of anomalies by fusing
the knowledge from multiple context domains212. To infer high-
level information from contextual patterns, frequent data
mining213 and complex event processing214 were combined with
learning personalized daily habits and identifying contextualized
behavioral change215. Table 2 summarizes the characteristics of
neurodegeneration and the corresponding modeling paradigms.

An update on “black-box models”
Deep learning needs neuroscience, literally. By mimicking how the
brain learns, artificial neural networks are set at the center of
efficient “big-data” analysis by tweaking the strength of connec-
tions between multi-layer neurons during training, ultimately
leading to robust classification and/or regression performance216.
Nevertheless, the information flow within the network remains
elusive, particularly problematic when neural networks are

employed to recognize disease markers and provide a diagnostic
or prognostic decision. As a consequence, we argue that neural
networks should ultimately foster the delivery of meaningful
patient-specific knowledge based on explanations that are
perceivable by neurologists and neuroscientists, resulting in mutual
knowledge exchange (see Fig. 5). Away from the cumbersome
heatmaps and salient features in XAI16 that leave us with a tradeoff
between simplicity and completeness217, we focus on drawing
interpretations given the character of the input data and the nature
of the models to transform the AI systems previously conceived as
“black-box” to knowledge-based systems. In the explainability
paradigm, the top-performing algorithms of deep learning should
be a priority, given their superior performance in computational
predictions. From a methodological perspective, deep learning
recently outperformed conventional ML models, but their role in
modeling neurodegenerative data has been neglected. Predictions
are multivariate; the algorithms predict by relatively weighting and
combining multiple factors to obtain a risk or probability218.
Furthermore, according to the statement of Transparent Reporting
for a multivariate prediction model for Individual Prognosis or
Diagnosis (TRIPOD), developers of predictive models should ensure
that besides complete reporting of model performance on testing
and validation datasets, their models can be studied further and
generalized to fit new databases, thereby supporting reproduci-
bility219. In addition, to create personalized knowledge-based
systems, integrating human intelligence (HI) and AI has been
foreseen as a promising avenue, especially when neurodegenera-
tion’s interacting risk factors are considered220. Adding human
reasoning power, which is based on neurologists’ experience to the
computationally rigorous AI algorithms, is not explored yet, but
multidisciplinary work is essential.
In domains with high uncertainty221, Bayesian networks offer an

appropriate interpretability paradigm based on the probability
theory222. In other words, Bayesian networks represent the
decision-making system components as independent nodes and
their conditional probabilities in a network structure, constituting
an expert knowledge inference paradigm. Among its applications
are the progression prediction of MCI to AD223 and the evaluation
of the severity of bradykinesia and fine motor impairment in
PD224. Although the challenges of large, labeled data and data
noise in-the-wild are discussed elsewhere, the current paradigms
toward self-supervised deep learning models and transfer learning
are foreseen to mitigate them225. We particularly show how
neuroscience-inspired deep learning rules facilitate the advance-
ment of digital technology in neurodegenerative disorders226.

Table 2. Neurodegenerative behavior characteristics, their clinical definition, modeling characteristics and corresponding relevant references.

Behavioral
characteristic

Clinical definition Modeling characteristics Reference(s)

Heterogeneity The heterogeneity of neurodegenerative manifestations stems
from different characteristics of the aggregated proteins and the
affected brain structures as well as the spatial gradient of gene-
expression pathways and inherent heterogeneity of neurons and
their synaptic configuration

• Linear mixed-effects models
• Long-short-term memory followed by
dynamic time warping framework

• Co-pathology clusters definition
• Gaussian Bayesian networks (GBN)

280–285

Temporality The progression along the prodromal phase, and the progression
along the disease itself, including treatment response, the
progression throughout the stages of the disease, i.e., increase/
decrease of severity, transformation points

• Self-supervised neural networks
• Multivariate mixed-effect models
• Recurrent neural networks
• Bayesian networks
• Reinforcement learning

185,186,286,287

Complexity The multi-level disease mechanisms. The inter-relationships
between the genetic, molecular and neural factors behind
neurodegeneration is uncertain in nature

• Graph-based network approaches
• Fuzzy cognitive maps
• Probabilistic Bayesian networks
• Ensemble models
• Monte Carlo dropout methods for
uncertainty in AI

65,192,194,195,288,289
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Another aspect of mitigating the “black-box” nature of AI in
medicine is the call for transparency227 and the consideration of
ethics, especially as AI is being integrated into the clinical
workflow228. Despite the pressing need for this, a framework for
managing the transparency of AI systems developed for
neurodegenerative behavior in-the-wild is not formulated yet. To
establish those above and foster knowledge production based on
fruitful data, a multidisciplinary group of researchers and funding
agencies gathered to jointly construct the so-called FAIR
Principles229. Besides digital data collection, labeling and storage,
they advocated for data stewardship, which refers to long-term
data curation. They are re-used for downstream investigations, in
isolation or combined with newly collected datasets. For this FAIR
endeavor, four pillars were emphasized: findability, accessibility,
interoperability and reusability. These principles should encapsu-
late not only the data, but also the algorithms and the validation
platforms, resulting in reproducible analytical pipelines. Within the
milieu of behavioral data in-the-wild, reproducibility should be
reinforced so that data analysis leads to consistent predictions and
interpretations to support innovation and knowledge discov-
ery230. Specifically, behavioral data require rich metadata that
explain the context, quality and conditions under which they are
collected, thereby reinforcing the reliability of the analysis
outcome. Furthermore, while AI proved beneficial in detecting
and managing early neurodegenerative phenotypes, Rubeis231

defined four main risks that, according to him, are deemed the
disruptive power of AI, namely the dehumanization of care as
more emphasis is given to the machines, the discrimination of
minority groups who are not represented in the data, the
depersonalization of decisions due to the algorithms, the
disciplinarian of users through continuous monitoring and data
collection. To overcome these risks, ethical AI provides a guiding
framework encompassing four main characteristics of medical
ethics232. These include (1) establishing and reinforcing a common
aim in AI (e.g., increasing the interpretability power of subtle

behavioral decline in neurodegeneration), (2) defining the norms
of professionalism and good conduct in AI by cultivating a shared
professional culture across the variable medical specialties, (3)
developing methods to translate research outcomes to clinical
practice as attempted in this review, and lastly (4) enhancing the
legal accountability.
Given the potential and attractiveness of digital phenotyping, it

is important to consider ethical and legal regulations to avoid
unintended consequences associated with privacy and data
security233. The ethical landscape associated with digital pheno-
typing data protection varies depending on the usage domain
and the relevant stakeholders. For example, data for neurologist-
mediated usage are covered by the Health Insurance Portability
and Accountability Act. This domain is concerned with informing
patients on when and why to use the broadly generated data in
the clinical environment234. On the other hand, for data scientists’
usage, a new realization of the Institutional Review Board
approvals to cover the ethical regulation of digital technology
data has been formulated235 and for disclosing the rational
decisions of the deep predictive models.
Besides that, protecting users’ data is particularly essential as

these data sources contain highly granular text messages, emails,
and location messages, to name a few. It is not only due to the
sensitivity of the behavioral data, but also the impact of the
predictions based on the data on employment, litigation, social
and other contexts. These regulations need to be disclosed in the
informed consent as individuals need to know when, why and
how their data will be collected236. Moreover, if the digital data
are to be incorporated into patients’ EHRs, the patients should be
informed that their data will be accessed by third-party
(researchers, data analysts, etc.). Therefore, methods to ensure
accountability and transparency in such regulations must be
implemented. Such legal frameworks will reinforce the trust from
the perspectives of subjects enrolled in the digital phenotyping
enterprise and preclude misuse of data237. Subsequently, data

Fig. 5 The flow of knowledge in a multidisciplinary co-creation approach. The AI Knowledge System is centered on data acquired in-the-
wild and digested by novel machine/deep learning algorithms to infer disease-induced behavioral decline. The Wild Knowledge System that
includes elderly populations who interact with smartphones and wearables resulting in a rich space of behavioral data reflective of early
neurodegeneration. The Clinic Knowledge System that involves medical decisions based on neurologists evaluation, generating clinically-
validated multimodal datasets of early neurodegeneration.
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storage and encryption are the core of the ethical perspective.
Especially when it comes to data collection, encryption and
anonymization of users’ data is the essence of privacy protec-
tion238. The data are then re-encrypted to be stored in secured
cloud servers. In particular, for smartphone-based digital
phenotyping, encryption keys are provided to the smartphone
application by which the data is encrypted and only the storage
server can decrypt the data. Thus, the data cannot be accessed
except by the authorized study server during collection, storage
and transmission.

“Value co-creation” in lifestyle medicine
To avoid the dehumanization pitfall of AI, the development of the
systems should satisfy the participatory technology design239.
This process should ideally start with identifying patients’ needs,
followed by evaluating the design outcomes. Comprehensive
evaluation and appraisal of the prerequisites of a multidisciplin-
ary effort to enhance symptom-specific neurodegenerative
disease care are yet to be conducted. This is centered on a
value co-creation approach240, whereby the designers, devel-
opers, bioengineers, neuroscientists, neurologists and end-users
(i.e., patients) exchange knowledge with equal power distribution
in an innovation process to optimize design specifications for
better diagnostic and therapeutic yield241. In neurodegeneration,
co-creation refers to the generation of unified interpretations and
meaningful multidimensional descriptions of the naturalistic
behavior242, and brings together desperate mechanistic char-
acteristics of neurodegeneration inherent to community-
dwelling elderly. This type of explanation should ideally be co-
created, and the lack of co-creation frameworks still hinders
precise behavioral identification models that aid in personalized
neurodegeneration detection. To foster such a framework,
identifying tools to engage the relevant stakeholders for the
generation of ideas, their implementation and dissemination is
essential243. The ideal developmental process starts with asses-
sing patients’ needs, identifying personalized technological
characteristics, setting up data management protocols, and ends
with a quality of care assessment. More specifically, to overcome
the current pitfalls of patient-centered medicine, a systemic
approach that encompasses internal knowledge production
enabled by data-driven computational paradigms and external
coordination of between-institution networks is essential244. In
fact, besides the unprecedented growth of digital technology, we
need a more humanistic perspective, whereby the patients’ role
in healthcare awareness and compliance to medical intervention
is centralized, as in the Diagnosis, Access, Risk assessment and
Transparency (DART) model245,246. In other words, the patients
should not only be viewed as the “data source” during the
innovation process but also as an empowered member who
influences the outcomes of the innovative product247. Central to
this aim, patient characteristics and educational level (e.g.,
illiteracy, technological fluency) and concepts adopted from
social gerontology should be considered when neurodegenera-
tive disorders are the point of interest.
Especially in assistive technology, the ageing body is always

viewed as a malfunctioning machine. We argue that the ageing
population is highly heterogeneous, multidimensional, and
nonlinear, and sets between different strengths and weaknesses,
thereby requiring a breakthrough in design personalization.
Without taking the points above into account, along with the
centralized role of the patient in this multidisciplinary landscape,
the digital biomarker industry will remain in great jeopardy.
However, a problem that arises here is the self-awareness and
the stigma associated with the end-users experiencing a
behavioral decline. For the elderly in particular, the degradation
of metacognition, that is, self-knowledge of the declining
cognitive and functional capacity248, compels as a barrier to

the positive impact of home-based digital technology and the
way it reshapes their quality of life.
We also eventually note potential pitfalls, such as the lack of

RCTs assessing the interventional efficiency of AI technology, as
the latter should be perceived as a standard medical intervention.
We also urgently call for a global and multidisciplinary consortium
to ensure the proportionate delivery of neuro-technology to low-
income populations to mitigate the dilemma of unrepresented
populations in AI algorithms.
Recent research trends document a substantial growth in the

use of connected digital devices in clinical research, with a
compound annual growth of ~34% between 2000 and 2017249. In
particular, for patients, digital technology increases enrollment in
clinical trials, given the unobtrusive nature of data collection. Thus,
the concept of “digital clinical trials”250 has the potential to
enhance patients’ engagement and define target outcomes and
reduce clinical trial cost. Consequently, real-world initiatives
emerged as examples reflecting the feasibility and potentiality
of digital clinical trials. For example, the i-PROGNOSIS European
Union-funded Horizon 2020 project offers a real-world example of
PD patients scenarios undergoing digitized monitoring and
intervention through a co-created smartphone application251.
This initiative involved academics, neurologists and engineers
from Greece, Belgium, Germany, the United Kingdom (UK), the
United Arab Emirates (UAE) and the United States (US), and
collected data passively from 2350 volunteers, from which 373
were self-reported PD patients. The holistic nature of such digital
enterprise can be viewed from diagnostic and interventional
perspectives. For the former, the smartphone application facil-
itates the acquisition of typing kinetic parameters and/or how the
subject holds the mobile phone to infer fine-grained mobility
parameters related to bradykinesia, tremor and akinesia.
Regarding PD intervention, the i-PROGNOSIS initiative formu-

lated a personalized Serious Game Suite that combines motiva-
tional and rehabilitation elements to reinforce PD behavioral
change associated with motor, emotional and cognitive facets252.
The games are adaptive to each patient’s profile through AI
algorithms that analyze the performance of patients longitudin-
ally. On the other hand, to set forward the facets for impactful
remote AD functional assessment and management, the pro-
cesses by which relevant functional domains are selected and
relevant stakeholders are engaged253. Especially in AD, activities of
daily life involve a range of cognitive and executive functions
associated with prognosis and hence, offer promising remote
measurement targets. A pragmatic example tool is the Altoida
Digital Neuro Signature (DNS), which uses a battery of
augmented-based tests for eye movement, hand dexterity, gait
and cognitive functions delivered by a tablet application254. The
DNS proved more sensitive to executive function changes than
conventional neuropsychiatric assessment scales.

CLINICAL IMPLICATIONS
Our work has important implications for clinical practice. First, the
future should be devoted to exploring the commonality,
complementarity and conflict between neurodegenerative man-
ifestations in the digital and the biological domain255, as we have
attempted in this review. Instead of the shadowing effect digital
data currently has in clinical practice, the explanations drawn from
them and the background clinical data should create a sort of
“data doubles”256. In this way, the abstracted “data-double”
becomes materially forceful by identifying those at-risk and
empowering them, thereby becoming a closed-loop system that
generates patient-specific knowledge, updating the user with
them and imposing personalized behavioral enhancement strate-
gies257,258. Currently, the validation of the digital biomarkers lags
well behind the conventional clinical tests, behind which decades
of validation effort were spent259. Our purpose with this review
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was to initiate the validity paradigm for digital behavioral data
across the heterogeneous populations of neurodegenerative
diseases and to convey the explanatory power by analyzing the
variance of behavioral attributes. This validity is, however, unlikely
to be materialized without large-scale controlled clinical trials with
regulatory approvals. For example, smartphone-based assessment
of motor decline in PD was incorporated in phase 1 clinical trial for
the first time in ref. 260 and conveyed the clinical validity of digital
biomarkers, but lasted only 6 months for 45 PD patients.
Another rate-limiting factor behind the pitfalls of early detection

and prevention of neurodegeneration is the lack of our under-
standing of its causal mechanisms. The fact that tau pathology that
triggers the onset of neurodegeneration is associated with
multifaceted behavioral change261,262 carries important implica-
tions in the context of precision medicine. A plausible solution lies
in the aggregation of latent variables in efficient computational
models attempted by all relevant stakeholders, thereby accounting
for the knowledge that flows frommultidisciplinary interaction that
is transformed into a more comprehensible one. The high variance
inferred from naturalistic behavior in-the-wild confirms the in vivo
evidence of the selective anatomical pathways of neural degen-
eration and the concept of co-pathology in neurodegeneration
that is not accounted for yet. In the competitive space of biomarker
discovery, the accumulated research effort needs to generate
decision-making tools with sufficient technical and biological
validation to allow them to be confidently used in clinical practice
as in drug discovery263. The focus in the future should be on
formulating databases that are representative of the whole
population. The problem of unrepresented populations can only
be overcome if the current biomarkers consortium works to
mitigate the disproportionate delivery of the technology to
previously untargeted populations.
The interest in involving digital biomarkers in clinical trials has

recently increased but still requires regulatory effort264. However,
the impedance toward this endeavor lies in the need for a large
sample size and the daunting organization cost. However,
increasing the frequency of data collection is foreseen to offset
the need for a “big population pool”. Moreover, accounting for
serendipitous scientific and medical questions within the digital
enterprise of Research and Development (R&D) is important for
neurodegenerative diseases265. An example of such a need lies in
symptom interplay in neurodegeneration.
We foresee a future for digital biomarkers similar to imaging

biomarkers in neurology266,267. A daunting need for benchmark-
ing databases exists, such as the Alzheimer’s disease Neuroima-
ging (ADNI) database and long-term clinical trials that prove their
reproducibility and replicability. In this vein, the collaborative work
between clinical practice and empirical research becomes
essential to define accurate thresholds of what is considered
normal and what is not. Moreover, the analysis of complicated
cases and the characterization of their short- and long-term
behavioral characteristics should be a priority, given that these
types of cases have been excluded from the studies, perhaps
leading to biased conclusions on biomarkers reliability. Another
question is what expectations clinicians can expect in their
everyday practice given the paradigm of explainable digital
phenotyping268. For instance, it is also important to note the
actions that should be taken when clinical and technological
results do not match.
The dilemma of missing data is particularly important when

designing longitudinal behavioral analysis systems, impeding
the efficient execution of the intricate computational power.
Despite the previously claimed suitability of applying Bayesian
networks to incomplete datasets, optimizing the network
weights of the data variables remains a challenge269. For the
prediction of MCI progression, for instance, missing data were
first estimated using mutual information between two features
and Newton interpolation algorithms to adjust for missing data

before a Bayesian network on the feature ordering is used to
estimate the posterior269. Nonetheless, using such models for a
set of more than two variables render us with a tradeoff between
complexity and completeness. The algorithms, not the data, will
be proven transformative270.
The brain is a dynamic organ, subject to continuous changes

in its structure and function from the molecular to the network
level154. Self-generated and environmental inputs influence this
plasticity, and its output is propagated to microscopic, meso-
scopic and macroscopic tiers (the focus of the current review).
By reinforcing design-optimized environmental rehabilitation
strategies, we propose that neuroplasticity could be the route to
enhanced brain functions, particularly during early disease
stages. This, however, comes after identifying the behavioral
deficits discussed in this review. More importantly, analyzing the
behavioral parameterization specific to every individual/patient
is essential for delivering personalized, adaptive therapeutic
strategies. Decoding the subject-level variability will inform the
emotional, cognitive and sensory-motor characteristics and,
subsequently, the preferred rehabilitation strategy, task char-
acteristics and its degrees of freedom. We foresee that this
paradigm will lead to a completely different landscape for
healthcare practice in neurodegeneration, which is predictive,
personalized and participatory.
Neurodegenerative disease patients’ care is going to change

dramatically in the coming years through an evolutionary process
driven by (1) the nationwide implementation of EHRs and (2) the
taxonomy of explainable digital phenotyping through which
the neurodegenerative manifestations are disentangled271. The
dynamic, technology-driven development of medical decision
making led to a huge spectrum of interactive health data,
engaging patients and healthcare professionals in PD care. In turn,
with the worldwide digital advancement, it is foreseen that most
countries’ provision is currently toward innovative EHRs.
Nevertheless, such technology-based measures still need to be

utilized in clinical trials, necessitating future efforts toward
validating measurement outcomes, standardizing clinically rele-
vant biomarkers and establishing an integrated platform for
clinical and digital data272. Integrating the two parallel worlds,
namely evidence-based medicine and real-life personalized
phenotypic characteristics, defines a new ecosystem of patient-
centered clinical pathway273. This paradigm shift, where patients
are empowered to move in the center of medical decisions,
requires the definition of a new Digital Clinical Pathway (DCP) that
considers multidisciplinary perspectives. In contrast to classical
clinical guidelines, this DCP will infer mobile health measurements
and merge the “big medical data” and healthcare professional
resources into a new, hybrid workflow. Within the DCP, the data
records for specific treatments are optimized, stored and
transmitted to all the stakeholders of this “Co-Creation” approach.
In particular, through deep analytic algorithms driven by AI, the
decisions reflect a new realization of “connected care” of
neurodegenerative diseases. The essence of this paradigm will
be the multimodal information inferred from clinical records and
contextualized real-life data.
Accordingly, future research endeavors include advancing

explainable deep learning models to arrive at personalized
inference models. Another important aspect will be reporting
the target parameters, including treatment options, to both
clinicians and patients.
More importantly, deriving disease subtypes based on EHR data

is key in deeply personalized phenotyping of neurodegenerative
diseases. Data-driven disentanglement of neurodegenerative
heterogeneity in PD and AD through deep representation learning
from millions of EHRs has been possible274. In particular, EHR-
derived information, such as genetics, medications, clinical notes
and laboratory results, is used in dimensionality reduction deep
learning methods such as convolutional autoencoders, word
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embeddings and convolutional neural networks to infer low-
dimensional vector representations of patients. The resulting
vectors are eventually hierarchically clustered into multi-disease
and disease subtype groups. For instance, PD stratification analysis
results in two main subgroups: motor (tremor-dominant) and non-
motor subgroups. Similarly, AD stratification analysis results in
three subgroups based on AD onset, disease progression and
severity of cognitive impairment. Nevertheless, there are sig-
nificant limitations associated with stratification analysis, including
noisy and unlabeled data, hospital-specific biases related to the
inherent structure of EHRs and the choice of the complex disease
traits that play a role in the analysis outcome. Data engineering
experts are yet to reach the equilibrium between hand-
engineered patient features and end-to-end deep learning models
and to ensure the generalizability of the proposed models.

CONCLUSION
To conclude, neuroscience is an interdisciplinary domain that
affords cooperation between important academic domains that
still need to be improved by methodological gaps275. In this
review, we attempted to reinforce the explanatory power of
subtle neurodegenerative behavioral decline in-the-wild through
the explainable digital phenotyping taxonomy that delineates
borders between neuroscience, neurodegenerative diseases,
healthcare and AI. This taxonomy rests on the ecological
transition of neurodegeneration characteristics whereby the
patients constitute the microsystem of the taxonomy, and their
interaction with the environment and their lifestyle context
resembles the mesosystem. Besides that, we defined the
macrosystem of the proposed taxonomy as the network
connecting neuroscientists, neurodegenerative diseases health-
care professionals and bioengineers who are the stakeholders of
the co-creation of new-generation AI-supported nosology for
precise behavioral interpretation.
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