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Genome-wide association study using whole-genome
sequencing identifies risk loci for Parkinson’s disease in
Chinese population
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Lifang Lei8, Weiguo Liu9, Xuejing Wang10, Xuebing Ding10, Tao Wang11, Zheng Xue12, Zhentao Zhang 13, Ling Chen14, Qing Wang15,
Yonghong Liu16, Jiayu Tang17, Xuewei Zhang18, Shifang Peng18, Chaodong Wang3, Jianqing Ding19, Chunfeng Liu 20, Lijuan Wang21,
Haibo Chen22, Lu Shen1, Hong Jiang1,23, Xinyin Wu24, Hongzhuan Tan24, Dan Luo25, Shuiyuan Xiao25, Xiang Chen26, Jieqiong Tan27,
Zhengmao Hu27, Chao Chen 27, Kun Xia27, Zhuohua Zhang5,27, Jia Nee Foo28, Cornelis Blauwendraat 29, Mike A. Nalls29,30,31,
Andrew B. Singleton 29,30, Jun Liu 4, Piu Chan3, Houfeng Zheng 32, Jinchen Li1,2,27, Jifeng Guo 1,2,23, Jian Yang 33✉,
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(PD-MDCNC)*

Genome-wide association studies (GWASs) have identified numerous susceptibility loci for Parkinson’s disease (PD), but its genetic
architecture remains underexplored in populations of non-European ancestry. To identify genetic variants associated with PD in the
Chinese population, we performed a GWAS using whole-genome sequencing (WGS) in 1,972 cases and 2,478 controls, and a
replication study in a total of 8209 cases and 9454 controls. We identified one new risk variant rs61204179 (Pcombined= 1.47 × 10−9)
with low allele frequency, four previously reported risk variants (NUCKS1/RAB29-rs11557080, SNCA-rs356182, FYN-rs997368, and
VPS13C-rs2251086), as well as three risk variants in LRRK2 coding region (A419V, R1628P, and G2385R) with genome-wide
significance (P < 5 × 10−8) for PD in Chinese population. Moreover, of the reported genome-wide significant risk variants found
mostly in European ancestry populations, the correlation coefficient (rb) of effect size accounting for sampling errors was 0.91
between datasets and 63.6% attained P < 0.05 in Chinese population. Accordingly, we estimated a heritability of 0.14–0.18 for PD,
and a moderate genetic correlation between European ancestry and Chinese populations (rg= 0.47, se= 0.21). Polygenic risk score
(PRS) analysis revealed that individuals with PRS values in the highest quartile had a 3.9-fold higher risk of developing PD than the
lowest quartile. In conclusion, the present GWAS identified PD-associated variants in Chinese population, as well as genetic factors
shared among distant populations. Our findings shed light on the genetic homogeneity and heterogeneity of PD in different ethnic
groups and suggested WGS might continue to improve our understanding of the genetic architecture of PD.
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INTRODUCTION
Parkinson’s disease (PD) is a common age-related neurodegen-
erative disorder, characterised by bradykinesia, postural instability,
rigidity, and resting tremors. The clinical picture includes non-
motor symptoms such as cognitive impairment, autonomic
dysfunction, disorders of sleep, depression and hyposmia1. The
pathological hallmarks of PD are loss of dopaminergic neurons
and Lewy bodies in the substantia nigra2. In China, the number of
individuals with PD is estimated to reach 4.94 million by 2030,
accounting for half of global cases3. The exact causes of PD are still
unclear, but genetic factors, environmental factors and aging play
essential roles in pathogenesis of PD4.
Although pathogenic mutations in disease-causing genes play

essential roles in PD, few patients carry pathogenic mutations5,6.
Common variants with small effect size can be detected via
genome-wide association studies (GWASs), and have been shown
to affect a large proportion of genetic predisposition of PD7.
Previous GWASs of PD in European ancestry, East Asian, and Latino
populations comprising more than one million samples have
identified over 80 risk loci with more than 90 independent risk

variants, including in SNCA, LRRK2, MAPT, BST1, GCH1, VPS13C, and
TMEM1758–10. Genetic heterogeneity among populations has been
inferred from differences in risk loci, such as the overall genetic
architecture defined by allele frequency and linkage disequili-
brium (LD) patterns, and allelic heterogeneity between European
ancestry and East Asian individuals8,11. GWAS data have pointed
to several biological pathways involved in PD pathogenesis, such
as mitochondrial function, lysosomal function, and endocytosis8,11.
However, a large proportion of target subjects were of European
ancestry, extrapolating these results to other populations such as
Chinese becomes difficult and there is no large GWAS study of PD
in Chinese population yet.
The present study explored the genetic architecture of PD

with the aim of identifying risk loci responsible for its
pathogenesis in the Chinese population. We conducted a GWAS
in a total of 1972 PD cases and 2478 controls using whole-
genome sequencing (WGS), as well as a replication study in 8209
cases and 9454 controls using multiplex PCR sequencing. We
also compared genome-wide significant variants for PD,
reported mostly in population of European ancestry, with our
results of Chinese population. Finally, we estimated the
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heritability of PD, assessed its genetic correlation with other
traits, and established a predictive model to evaluate at-risk
individuals in the Chinese population.

RESULTS
Cohort description and quality control
A total of 22,366 subjects were included in this study: 1980
patients with PD and 2516 matched controls in the GWAS cohort,
plus 8294 cases and 9576 matched controls in the replication
cohort. Details about genotype quality of GWAS and replication
cohorts are provided in Supplementary Table 1 and Supplemen-
tary Table 2. The final subjects included in the statistical analysis
after quality control (Supplementary Table 3) encompassed 1972
cases (the mean age at recruitment, 66.76 ± 7.08 years; the mean
age at onset, 61.88 ± 6.93 years) and 2478 controls (the mean age
at recruitment, 62.32 ± 7.11 years) in the GWAS cohort, and 8209
cases (the mean age at recruitment, 60.23 ± 11.20 years; the
mean age at onset, 57.77 ± 11.95 years) and 9454 controls (the
mean age at recruitment, 64.29 ± 9.68 years) in the replication
cohort. Detailed demographic information is listed in Supple-
mentary Table 4.
To explore the quality of WGS with the medium degree of depth,

54 samples from the GWAS cohort were randomly picked using
Excel and subjected to WGS with a high degree of depth setting,
whereas another randomly picked 39 samples were re-sequenced
with the same WGS as GWAS cohort. Sequencing results were
compared within sample pairs, revealing good genotype concor-
dance between the analysed GWAS variants (Supplementary Fig. 1).
The workflow of this study was showed in Fig. 1.

Genome-wide association analysis
In the GWAS cohort, 6,910,086 autosomal single nucleotide
polymorphisms (SNPs) passed the quality control threshold and
were included in further analyses. Principal component analysis
confirmed a good match between patients with PD and controls
(Fig. 2a, b). A quantile-quantile plot indicated that population
stratification had negligible effects on the statistical results (λ
genomic control = 1.065, LD score intercept = 1.036; (Fig. 2c).
Two known risk loci (NUCKS1/RAB29 and SNCA) exhibited

genome-wide significance (P < 5 × 10−8), and 13 risk loci exhib-
ited suggestive significance (P < 1 × 10−5) in the GWAS analysis.
Of the 13 suggestive risk loci, three were known (LRRK2, FYN, and
VPS13C) and 10 were possibly novel (Fig. 2d; Supplementary Table
5). NUCKS1/RAB29, SNCA, and LRRK2 regions were previously
reported to harbour multiple independent signals, and condi-
tional analysis of our GWAS data revealed probable multiple
signals in LRRK2, but not in NUCKS1/RAB29 and SNCA regions
(Supplementary Table 6). In the LRRK2 locus, three previously
reported risk variants, rs34594498 (LRRK2-A419V), rs33949390
(LRRK2-R1628P), and rs34778348 (LRRK2-G2385R), were found to
be independently associated with PD with suggestive significance
(P < 1×10−5) (Fig. 3).
In the replication cohort, 17 independent risk variants in 15 risk

loci were genotyped and analysed. In the combined analysis, eight
of these SNPs showed associations exceeding the genome-wide
significance threshold (P < 5.0 × 10–8; Table 1), including four
reported GWAS SNPs, three risk variants in the LRRK2 gene and
one newly identified risk variant rs61204179.
The new risk variant (rs61204179) was located in the ninth

intron of the HEATR6 gene. This variant had a minor allele
frequency of 4% in our population and low LD with other
variants in the HEATR6 region (r2 < 0.2 with most variants in the
East Asian individuals of 1000 Genomes Project data, Fig. 4,
Supplementary Fig. 2). Notably, rs61204179 was rare in the
populations of European ancestry, making it a Chinese-specific
PD risk variant, similar to the associated variants (A419V, R1628P
and G2385R) in LRRK2 gene. HEATR6 shows high expression in
multiple brain regions including midbrain (Supplementary Fig. 3)
and was reported to be downregulated in the peripheral blood
of patients with PD12.

Gene-based association analysis
Besides the GWAS of common SNPs, we conducted genome-wide
gene association analysis using GWAS data by MAGMA. MAGMA
relies on converging evidence from multiple genetic variants in
the same gene and can yield novel signals at a gene-based level.
Here, it identified three associated genes (RAB7L1, SLC41A1, and
SNCA), all of which were located in genome-wide significant loci
by the GWAS (Fig. 2e; Supplementary Table 7).

Heritability caculation and 

genetic correlation evaluation 

Replication cohort

8,209 cases vs 9,454 controls   

40 reported variants

(P < 0.05)

GWAS cohort

1,972 cases vs 2,478 controls  

12 independent variants 

(P < 5×10–8)

77 reported GWAS variants

Polygenic risk score analysis

GWAS summary statistics 

17 independent variants in 

15 loci (P < 1×10–5) 

11 variants

 in EAS

92 non-overlapping variants

Exclusion of 2 in MHC 

and 14 with low MAF  
 Add GBA-L444P 

Whole genome sequencing

Targeted next-generation sequencing
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90 variants 

in EUR

1 variants
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Fig. 1 Workflow of the study. EUR European, EAS East Asian, MHC histocompatibility complex region, MAF minor allele frequency.
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Validation of reported GWAS variants
To date, 78 loci and 90 independent variants have been reported
in populations of European ancestry, 11 loci (11 variants) in the
East Asian population, and one locus (one variant) in the Latino
population8–10. Among the 92 independent PD-associated
variants in the 80 non-overlapping loci, a high correlation of
minor allele frequency was observed between the East Asian and
European ancestry populations (r= 0.65, Fig. 5a, b). Fourteen
variants with minor allele frequency < 0.5% in the East Asian
population and two variants located in the major histocompat-
ibility complex region, were excluded from the validation analysis.
Besides, the GBA-L444P variant was added in validation given
the reported genome-wide significant risk variant in GBA gene
(N370S) in European ancestry populations was very rare in the
Chinese population but GBA-L444P was reported to be associated
with PD in Chinese.
Of the 77 reported variants included in our validation analysis,

nine attained genome-wide significance in the combined data, 15
were significant after Bonferroni correction (P < 0.05/77), and 25
had P < 0.05 (a total of 63.6% variants were validated, Fisher’s
exact test P < 2.84 × 10−15). All of the validated variants had the
same effect direction as the reported, and of the 28 non-validated
variants, 24 exhibited the same effect direction as reported
previously (Supplementary Table 8), suggesting that more samples
were needed to further validate these variants (sign concordance
test P < 1.99 × 10−9). Specifically, rs11557080 and rs823118 were
reported to be independent risk variants in the NUCKS1/RAB29
locus in populations of European ancestry, but they appeared in
high LD in our data (r2= 0.94), and conditional analysis showed
that only one signal remained significant (Supplementary Table 8).
Moreover, the estimation of variants effect correlation (r) between
our data and existing data8,9 was 0.82, and the correlation
estimate (rb) was 0.91 when accounting for errors in the variant’s
effects (Fig. 5c, d), suggesting a large proportion of GWAS markers
discovered in Europeans were likely replicable in the Chinese

population. Nevertheless, some differences between the asso-
ciated sites still persist.

Heritability, genetic correlation and MR
Using the genetic data of the GWAS cohort, the estimated
heritability of PD in the Chinese population was 0.140 (se = 0.047)
by LDSC and 0.184 (se = 0.041) by GCTA-GREML, assuming a
global prevalence of 0.5%. These values seemed lower than the
estimate of 0.22 for populations of European ancestry8, but the
heritability remained comparable between two populations given
the relatively large confidence interval of heritability estimates.
Using our GWAS data and publicly available PD-GWAS summary

statistics, we found that the European ancestry and Chinese
populations showed an intermediate genetic correlation (rg =
0.47, se = 0.21), suggesting a certain amount of population
heterogeneity in PD. This result was in line with the validation
outcomes of GWAS variants and further confirmed the need for
genome research on PD among different populations.
We further analysed possible genetic correlations between

Chinese patients with PD and other phenotypes in East Asian
populations. Using publicly available GWAS summary data
originating mainly from the BioBank Japan Project, 157 traits
were analysed, but no significant genetic correlation was found
after Bonferroni correction. However, height, type 2 diabetes,
rheumatoid arthritis, systemic lupus erythematosus, and gamma-
glutamyl transferase showed suggestive association with PD
(P < 0.05) (Supplementary Table 9).
Additional MR analysis between PD and phenotypes with

suggestive genetic correlation refuted any significant causal
relationship (P > 0.05) (Supplementary Table 10).

Polygenic risk score analysis
Using the GWAS cohort as a training dataset for effect size
calculation and the validation cohort as test data, we calculated
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Fig. 3 Regional plot of conditional analysis of reported loci with multiple independent signals. a, b Conditional analysis in NUCKS1/RAB29
region. c, d Conditional analysis in SNCA region. e–h Conditional analysis in LRRK2 region. Reference data of Asian population from 1000
Genomes were used for linkage disequilibrium calculation.
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polygenic risk scores based on three sets of SNPs stratified by
significance level. For 12 genome-wide significant variants, the
proportion of explained genetic liability of PD was 16% based on
our current heritability estimates. Moreover, 12 genome-wide
significant variants (P < 5 × 10–8) and 15 variants with (P < 0.05/77)
explained 20% of PD heritability, while 52 variants with P < 0.05
accounted for 23% of heritability (Fig. 6a). In the weighted
polygenic risk score distribution based on different single
nucleotide variant sets, we observed a 2.8-fold and 3.9-fold
difference in risk between the top and bottom 25% of the test
population (Fig. 6b).

DISCUSSION
We conducted a GWAS and a replication study in a large Chinese
cohort, identified a new PD-related locus, and confirmed multiple
independent risk variants with genome-wide significance in
the LRRK2 locus. In addition, a large proportion of reported GWAS
variants were validated in our data. We constructed polygenic risk
models to better predict the risk of PD and also systematically
assessed the genetic correlation of PD in different populations,
and in relation to other phenotypes among East Asians. Overall,
these analyses may provide new insights on the impact of genetic
variants on the pathogenesis of PD.
SNP arrays and WGS have been shown similarly efficient at

surveying common variants in the genome13. Here, we employed
the WGS method for genotyping our GWAS cohort, because it
captured significant signals with low minor allele frequency, which
were not well imputed in commonly used SNP arrays8,9. This was
the case of the newly identified risk locus in the HEATR6 gene and
multiple independent risk variants located in the LRRK2 region,
supporting the potential use of WGS for future GWASs. On the
other hand, the newly identified locus in the HEATR6 gene could
not be validated in the published PD GWAS datasets of Asian
populations9,14,15 due to the methodology differences. In addition,
the tag SNP of the new risk locus was a rare variant in populations
of European ancestry and, therefore, it could not be validated in
PD GWAS datasets of European ancestry populations either8,15.
Given that most currently used functional annotation databases
are derived from populations of European ancestry16–18, while the
corresponding databases for East Asian populations are still too
narrow in scope19, it is hard to comprehensively explore the
possible regulatory mechanism of this locus. Based on data from
European ancestry populations20–22, there is few genomic
regulatory elements in the region harbouring this locus. HEATR6
encodes the HEAT repeat containing protein 6, which have 37–47
amino acid motifs called HEAT repeats forming repetitive arrays of
short amphiphilic α-helices. While the functions of the HEATR6
remains unclear, HEAT repeat proteins mediate important protein-
protein interactions involved in cytoplasmic and nuclear transport,
microtubule dynamics and chromosome segregation23. Several
HEAT repeat proteins were reported to cause neurological
diseases23–25. HEATR6 showed high expression in multiple brain
regions including midbrain, moreover, Heatr6 were reported to be
altered in neurological diseases26,27 and downregulated in the
peripheral blood of patients with PD12. We speculate the new risk
variant rs61204179 may mediate the risk of PD through HEATR6,
but functional studies are required to further confirm the
relationship between this locus and PD.
Multiple independent risk variants were identified by GWASs in

the LRRK2 region of European ancestry populations8,28, and this
observation was confirmed in Chinese with LRRK2-A419V, LRRK2-
G2385R, and LRRK2-R1628P showing associations independently.
However, the risk variants of LRRK2 exhibited significantly
different incidence across populations. For example, the LRRK2-
G2019S which was identified in European ancestry populations is
very rare in the Chinese population; whereas multiple indepen-
dent variants identified in the present study are rare in theTa
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European ancestry populations7,8. In addition, although the
reported GWAS signal for rs76904798, located in the 5ʹ
untranslated region of LRRK2, was common in both populations,
no significant association was found in the Chinese population,
indicating substantial population heterogeneity in the LRRK2
locus. This finding is of relevance for future studies, which should
further explore PD-related variants in the LRRK2 region, such as
finding more disease-associated variants and fine mapping of the
causal variants across different populations.
We systematically validated the reported GWAS variants and

found that those identified in populations of European ancestry
were well validated in our population. In fact, the correlation of
effect size between European ancestry and East Asian populations
was significantly better than the previously published correlation
(0.82 vs. 0.44)9. The correlation was even higher (0.91) after
applying rb method which estimate the correlation of estimated
SNP effects accounting for estimation errors. Moreover, after the
stratification of variant’s significance, the effects of validated
variants were better correlated between datasets. This result
pointed to the genetic homogeneity of PD between the two
populations and indirectly confirmed the success of our metho-
dology. One of the two risk variants identified in Eastern Asian
have not been validated in our study (SV2C-rs246814, P= 0.49),
despite the strong association of SV2C-rs246814 was observed in
further replication study in both European ancestry population
and pooling dataset of worldwide population29. Another risk
variant was validated in our data (WBSCR17-rs9638616, P= 0.047),
which was consistent with former studies9,29. Future studies are
required to investigate PD among populations inhabiting different
regions of East Asia.
No significant genetic correlation was found between traits

describing the East Asian population and the PD in Chinese
population, however, suggestively significant correlated traits
found in this study (including type 2 diabetes, autoimmune
disorders and height) may be informative for further epidemio-
logical, clinical, and pathophysiological researches30. The PRS
model was constructed in this study, but the overall performance
of PD prediction was limited, and there was no significant
improvement compared with the previous studies.
This study has some limitations. First, although the total sample

size exceeded 20,000, this study had moderate power because the
subjects were divided into GWAS and validation cohorts, resulting
in limited power to detect variants with small or moderate effects.
This may be the reason for the limited number of identified new
loci and the high false-positive rate of nominally significant GWAS
signals. Second, we only validated tag SNPs in the associated loci,

but not in the entire locus, which could result in the loss of
valuable information for fine-mapping based on different LD
structures within populations. Third, the newly identified risk
signal has not been verified by functional studies, and requires
further validation in larger cohorts.
In conclusion, this GWAS using WGS identified PD risk loci in

Chinese population and validated shared genetic factors
among PD from different populations. These findings further
emphasise both the genetic homogeneity and heterogeneity of
PD in disparate populations, and suggested the potential of
WGS in improving our understanding of the disease’s genetic
architecture.

METHODS
Participants
A total of 10,274 patients with PD and 12,092 control subjects free
from neurological disorders were recruited from study groups
participating in the Parkinson’s Disease and Movement Disorders
Multicenter Database and Collaborative Network in China (http://
pd-mdcnc.com)31 and centres across China. The GWAS included
1980 cases with PD and 2516 matched controls due to the costs
of WGS and the numbers of study participants recruited during
the GWAS phase. Another 8,294 cases and 9,576 controls were
included in the replication study. Each patient was diagnosed by
two neurologists specialised in movement disorders according to
either the Movement Disorder Society Clinical Diagnostic
Criteria32 or the United Kingdom Parkinson’s Disease Society
Brain Bank Clinical Diagnostic Criteria33 in recruiting sites. Blood
samples were collected, and genomic DNA was prepared
according to standard procedures. The study was approved by
the ethics committees of Xiangya Hospital of Central South
University and other centres including Xuanwu Hospital of Capital
Medical University, Ruijin Hospital of Shanghai Jiao Tong
University School of Medicine, Affiliated Brain Hospital of Nanjing
Medical University, Union Hospital of Huazhong University of
Science and Technology, the First Affiliated Hospital of Zhengz-
hou University and First Affiliated Hospital of Sun Yat-sen
University. Written informed consent was obtained from the
participants or their legal guardians.

Next-generation sequencing and variants calling
For the GWAS, WGS was performed on the Illumina NovaSeq
6000 sequencing platform with 150-bp pair-end reads, followed
by preparation of an Illumina DNA library using genomic DNA
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sheared to 100–1000 bp. The mean WGS depth was 13× per
individual in the GWAS cohort.
For the replication study, a single multiplex PCR was used to

amplify the amplicons of candidate variants from our GWAS, as
well as variants reported in previous GWASs on European ancestry,
East Asian, and Latino populations8–10, followed by sequencing on
an Illumina platform. The mean depth was 2000× per individual in
the replication cohort.
Variant calling was conducted on all samples using BWA34 and

GATK435. Clean reads were aligned to the GRCh37 human
reference genome (hg19) using the BWA mem tool to produce
SAM files. The SAMtools36 view option was used convert SAM
files into BAM files. MarkDuplicates was used to mark PCR
duplicates with a REMOVE_DUPLICATES parameter setting of
false. The BaseRecalibrator generated a recalibration table using
known dbSNP and 1000 Genomes Project VCF resources.
ApplyBQSR generated the recalibrated final BAM files for
HaplotypeCaller. The gVCF file for each sample was obtained
and combined into joint VCF files using GATK4 GenomicsDBIm-
port and GenotypeGVCFs, following the suggested pipelines. We
calculated the VQSLOD value of each single nucleotide variant
(SNV) and insertion-deletion (INDEL) variant by setting the max-
Gaussian value to 5. SNVs were annotated with ReadPosRank-
Sum, MQRankSum, DP, QD, FS, and SOR; whereas INDELs were
annotated with ReadPosRankSum, DP, QD, and FS. In the
ApplyVQSR filtering step, the true sensitivity level for INDELs
and SNVs was set to 99.0 and 99.6, respectively. All variants that
passed the filter were retained for downstream analyses. We
conducted LD-based genotype refinement for low-confidence
genotypes and missing sites in WGS data using BEAGLE v5.137

with default settings.

Quality control
For individual and variant quality control of WGS data, the data
were recoded into binary PLINK input format using PLINK v1.938.
Variant quality control was accomplished by keeping all
autosomal SNPs with minor allele frequency ≥ 0.01 which may
have sufficient power to detect the associations given the sample
size in GWAS cohort13, while removing variants deviating from
the Hardy-Weinberg equilibrium (P < 1 × 10−4). Individuals and
variants that passed the quality control thresholds were subjected
to further analyses. Individuals were excluded if they showed
conflicting sex assignments between inferred sex and self-
reported sex, deviating heterozygosity/genotype calls (±3 stan-
dard deviations), or cryptic relatedness (identity by descent >
0.15). The remaining samples were assessed for population
outliers and stratification by principal component analysis using
PLINK v1.9, and those that showed divergent ancestry were
excluded. For the replication cohort, variants with low-quality
genotypes (Phred-scaled genotype quality score 30), low call rates
(missing rate > 5%), or departure from Hardy–Weinberg
equilibrium (P < 1 × 10−4) were excluded. Samples with low
genotype call rates (missing rate > 5%) were removed from
further analysis. We also did principal component analysis using
genotyped variants not associating with PD and excluded the
outliers (Supplementary Fig. 4).
We performed WGS with a high degree of depth setting (30×

depth) on 54 GWAS samples which were randomly picked using
Excel from the entire list of control subjects to estimate the
calling accuracy of WGS with medium depth (13× depth).
Moreover, WGS with medium depth (13×) was performed again
on 39 randomly picked GWAS control samples to estimate calling
consistency. We computed calling concordance between
matched samples for genotypes of all GWAS-analysed variants
and non-reference genotypes of GWAS variants using previously
specified formulae39.

Association testing and combined analysis
For GWAS, logistic regression analysis was conducted in PLINK
v1.9 to test the differences in allele dosage between patients
with PD and controls. An additive genetic model adjusted for sex,
age, and population substructure based on the first five principal
components was employed. Conditional analyses were con-
ducted by adding in-locus tag SNP, which was the most
significant variant in our data or reported variant in linkage with
the most significant variant, to logistic regression as covariates
until no variants within the locus reached suggestive significance
(P < 1 × 10−5). SNPs reached suggestive significance within the
corresponding locus in the GWAS, and previously reported
variants in GWASs were included for validation. In the replication
study, logistic regression analyses in PLINK v1.9 were conducted
on genotype dosages with sex, age and first two principal
components as covariates.
To improve the statistical power of the validated variants,

we used meta-analysis to combine the association results from the
GWAS and replication study using METAL40 with an inverse
variance-based model. The extent of heterogeneity was assessed
using I2 and P-values of the Q statistics calculated in METAL41.

Gene-based association analysis
SNP-based P-values from the GWAS were used as inputs for gene-
based analysis of common variants. We used all 19,427 protein-
coding genes from NCBI 37.3 (hg19) gene definitions as the basis
for a genome-wide gene association analysis in MAGMA42. The
MAGMA approach is based on a multiple linear principal
component regression model. By projecting the multivariate LD
matrix of SNPs in a gene estimated from the 1000 Genomes Phase
3 Asian reference population43, the principal components
explaining genetic variation were extracted first. These principal
components were used as predictors of PD under a linear
regression framework. MAGMA then employed Fisher’s test to
compute P-values for association testing. A stringent Bonferroni
correction was applied to account for multiple testing.

SNP-based heritability analysis
We used linkage disequilibrium score regression (LDSC)44 and
univariate genome-wide complex trait analysis- genomic-
relatedness-based restricted maximum-likelihood (GCTA-GREML)45

with default parameters and the same covariates as GWAS to
estimate the heritability of PD. East Asian LD scores were
downloaded from https://github.com/bulik/ldsc. The LDSC
method derives the heritability of PD by regressing an SNP’s
association statistic onto its LD score (the sum of squared
correlations between the minor allele count of the SNP and the
minor allele count of every other SNP). GCTA-GREML methods
estimate heritability by calculating the proportion of variation in
phenotypes explained by common SNPs using individual pheno-
typic and genotypic information.

Genetic correlation and variant effect correlation
POPCORN46 was used to investigate the genetic correlation of PD
between populations of European ancestry and East Asians.
POPCORN uses a Bayesian approach, which assumes that
genotypes are drawn separately from each population and that
effect sizes follow the infinitesimal model. Genetic correlations in
POPCORN were computed in the ‘genetic effect’ mode, which
estimated the correlation based on LD covariance scores and
effect sizes from summary statistics. We used bivariate LDSC to
investigate the genetic correlations of PD with multiple traits and
diseases in East Asian populations based on data from the
BioBank Japan Project (http://jenger.riken.jp/en/result) and the
GWAS catalogue47. Pearson correlation analysis and rb method48

which correct sampling errors in the estimated SNP effects were
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used to estimate the correlation of SNP effects between reported
GWASs and our data.

Mendelian randomisation
Mendelian randomisation (MR) was used to assess the potential
causal role of traits showing significant genetic correlations with
PD. A two-sample MR approach was applied using genetic effect
estimates for SNPs presenting genome-wide significance for PD,
and those for the risk of associated traits. The analysis was
performed using the MendelianRandomization package49 in R
based on two different strategies. According to the inverse
variance weighted (IVW) MR method, which assumed that all SNPs
were valid instrumental variables, conventional linear regression
analysis of Wald ratios for each SNP was undertaken and weighted
by the estimated inverse variance. This method constrains the
regression when βZX and βZY are equal to zero. According to the
MR-Egger regression, horizontal pleiotropy was tested to provide a
causal estimate in the presence of pleiotropy. As in the IVW
method, βZY is plotted against βZX. However, the intercept is not
fixed; therefore, the deviation from the origin provides evidence
for pleiotropic effects in the corresponding direction. In the
absence of unbalanced pleiotropy, if SNPs are viewed individually,
βIV values are distributed symmetrically around the point
estimate, as demonstrated by a funnel plot.

Polygenic risk prediction
Predictive modelling was performed using the polygenic risk score
in the replication samples. Weighted polygenic risk scores were
calculated based on SNP significance in the combined analysis
and their effect size in the GWAS. Areas under the receiver
operating characteristic curve were calculated by comparing the
observed case/control status and the polygenic risk score
calculated using PRSice250 profiling in a standard weighted
allele-dose manner. Equations from Wray and colleagues51 were
used to estimate the proportion of genetic liability accounted by
SNP sets assuming a global prevalence of 0.5%.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The summary data of this GWAS can be accessed after an approved application to
the Open Archive for Miscellaneous Data (OMIX) of National Genomic Data Center
(NGDC). The accession code is OMIX002795.

CODE AVAILABILITY
The related codes and scripts for the study will be made available upon reasonable
request to the corresponding author.
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