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Systems level analysis of sex-dependent gene expression
changes in Parkinson’s disease
Léon-Charles Tranchevent 1, Rashi Halder1 and Enrico Glaab 1✉

Parkinson’s disease (PD) is a heterogeneous disorder, and among the factors which influence the symptom profile, biological sex has
been reported to play a significant role. While males have a higher age-adjusted disease incidence and are more frequently affected
by muscle rigidity, females present more often with disabling tremors. The molecular mechanisms involved in these differences are
still largely unknown, and an improved understanding of the relevant factors may open new avenues for pharmacological disease
modification. To help address this challenge, we conducted a meta-analysis of disease-associated molecular sex differences in brain
transcriptomics data from case/control studies. Both sex-specific (alteration in only one sex) and sex-dimorphic changes (changes in
both sexes, but with opposite direction) were identified. Using further systems level pathway and network analyses, coordinated sex-
related alterations were studied. These analyses revealed significant disease-associated sex differences in mitochondrial pathways and
highlight specific regulatory factors whose activity changes can explain downstream network alterations, propagated through gene
regulatory cascades. Single-cell expression data analyses confirmed the main pathway-level changes observed in bulk transcriptomics
data. Overall, our analyses revealed significant sex disparities in PD-associated transcriptomic changes, resulting in coordinated
modulations of molecular processes. Among the regulatory factors involved, NR4A2 has already been reported to harbor rare
mutations in familial PD and its pharmacological activation confers neuroprotective effects in toxin-induced models of Parkinsonism.
Our observations suggest that NR4A2 may warrant further research as a potential adjuvant therapeutic target to address a subset of
pathological molecular features of PD that display sex-associated profiles.
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INTRODUCTION
Parkinson’s disease (PD) has a worldwide prevalence projected at 12
million by 2040 and no disease-modifying treatments are available1.
Current therapies focus on the replacement of dopamine, but can
alleviate only some of the motor symptoms, are hampered by
severe adverse effects and loss of efficacy over time, and do not
address many of the other heterogeneous symptoms2–5. There is
widespread agreement in the field that PD patients with diverse
clinical features and disease course have different therapeutic needs
and would benefit from more personalized medical approaches6–10.
A striking aspect in the heterogeneity of PD are the pronounced

and multifaceted sex differences observed in previous epidemio-
logical and clinical studies. Both the incidence and prevalence of
PD is approximately 1.5–2 times greater in men than in
women11–16, but female patients present significantly more often
with a phenotype dominated by disabling tremors3,17 and,
irrespective of their body weight, have an almost 3-fold increased
risk to develop treatment-related complications (e.g., involuntary
muscle movements known as dyskinesias)18,19. Moreover, while
males tend to display a lower striatal dopamine transporter
binding17,20–22, females tend to be affected more often by motor
and non-motor symptom fluctuations23–25.
Previous studies have suggested that potential neuroprotective

functions of certain sex-related hormones may contribute to sex
differences in neurologic disorders26–29. However, it is unclear how
exactly they may influence the molecular hallmarks of PD, and
why in spite of generic sex differences in hormone levels, an
almost opposite association between biological sex and disease
risk is observed in PD as compared to other degenerative
disorders, such as Alzheimer’s disease30–32. Life-style and

occupation related differences have been proposed as contribut-
ing factors to PD sex differences, e.g., exposure to PD-associated
toxicants and head trauma are more common among males16, but
these associations are not strong enough to explain the full extent
of the reported disparities. While a variety of meta-analyses of PD
omics data have previously already been conducted33–37, to the
best of our knowledge, similar integrative analyses have not yet
been applied to study molecular sex differences.
In order to contribute to a more detailed molecular-level

understanding of disease-associated sex differences, we therefore
present a comprehensive statistical meta-analysis of PD transcrip-
tomics data from brain tissue samples of post-mortem
case–control studies. Both sex-specific changes, i.e., significant
molecular alterations occurring either only in females or only in
males, and sex-dimorphic changes, i.e., alterations with opposite
direction across both analyses are determined (see “Methods” for
details). Finally, in order to understand the coordination and
regulation of sex-related PD-associated molecular alterations, we
determine pathway- and network activity changes with significant
disease-related sex differences and identify transcription factors
that may play a key role in regulating the observed downstream
changes. The results derived from bulk transcriptomics data are
then further examined and characterized in cell-type-specific
analyses of corresponding single-cell transcriptomics datasets.

RESULTS
Gene-level analysis of PD-associated molecular sex differences
The gene-level statistical meta-analysis, conducted independently
for each biological sex on the substantia nigra (SN) tissue samples
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from twelve transcriptomics datasets (see “Methods”), identified
1146 significantly differentially expressed genes (DEGs) in males
and 118 DEGs in females after multiple testing adjustments (out of
11,959 and 11,975 genes, respectively). Overall, the meta-analysis
allowed us to identify more significantly differentially expressed
genes than when using the individual datasets in isolation. Since
males were over-represented among the samples from the
available datasets, in line with the previously reported higher
relative risk for males of developing PD16, we decided to further
investigate whether the larger number of male-specific DEGs may
have resulted, at least partly, from a higher statistical power of the
associated analysis. We have therefore repeated the meta-
analyses with three equally sized random subsets of male samples
as compared to the female samples. Interestingly, we obtained
similar differential expression patterns when sub-sampling male
samples (see Supplementary Note 1). These results indicate that
the lower number of significant DEGs in females may at least
partly reflect a different disease manifestation and progression,
with a distinct extent of disease-related gene expression variations
in females, in line with the findings from prior studies38–40.

Detailed differential expression statistics for the top-ranked
DEGs, including the base 2 log. fold changes (LFC), false-discovery
rates (FDR) and consistency scores for both males and females, are
presented in Table 1. Expression profiles for selected genes in
representative datasets are presented in Fig. 1. The DEGs are split
into three categories, depending on whether their alterations are
male- or female-specific, or whether they display sex-dimorphic
alterations with an increase/decrease of expression levels in males
and the opposite change in females. In total, we identified 36
female-specific genes (i.e., significantly differentially expressed
between PD and controls in females only with FDR < 0.05, and not
approaching significance in males, based on comparing male and
female π-value rankings41) 539 male-specific genes (i.e., FDR < 0.05
in males and not approaching significance in females) and 37
candidate sex-dimorphic genes (i.e., FDR < 0.05 in at least one sex,
but with opposite signs of the log. fold change, and a minimum
absolute cross-study log. fold change of 0.25 to ensure the
robustness of the difference). Table 1 shows the top ten genes for
each of these categories, and the complete lists of significant sex-
specific and candidate sex-dimorphic DEGs are provided in
Supplementary Table 5.

Table 1. Top sex-specific and candidate sex-dimorphic genes.

Gene Female Cst Female LFC Female FDR Male Cst Male LFC Male FDR

Female-specific genes H2AC6 0.70 0.98 1.22e−04 0.86 0.45 8.70e−01

CA2 0.81 1.10 8.17e−04 0.63 0.62 4.52e−01

H2BC21 0.86 0.75 8.34e−04 0.72 0.43 1.77e−01

CXCR4 0.81 0.92 1.79e−03 0.56 −0.21 1

SLC2A6 0.81 −0.64 1.79e−03 1.00 −0.51 1.75e−01

SALL1 0.72 1.01 2.57e−03 0.74 0.41 9.42e−01

SGSH 0.74 −0.55 4.29e−03 0.84 −0.32 6.90e−01

AMD1a 0.72 0.65 4.65e−03 0.86 0.39 1

PRUNE2 0.62 0.61 5.57e−03 0.74 0.21 1

POGK 0.81 0.61 6.44e−03 0.86 0.35 1.82e−01

Male-specific genes DENR 0.86 −0.42 9.65e−01 0.86 −0.88 9.48e−11

NR4A2 0.86 −0.64 1 0.86 −1.40 1.58e−08

NELL2 0.89 −0.82 1 0.89 −1.30 2.09e−08

RAB6B 0.63 −0.42 9.10e−01 0.63 −0.82 6.50e−07

GNG3 0.86 −0.66 1 0.86 −1.23 1.72e−06

SNCA 1.00 −0.36 1 1.00 −0.82 1.92e−06

KIF3C 0.89 −0.33 1 0.89 −0.83 6.00e−06

DYNC1I1 1.00 −0.50 9.31e−01 1.00 −0.94 6.35e−06

REEP1 0.86 −0.58 1 0.86 −1.22 8.22e−06

DMXL2 1.00 −0.53 9.56e−01 1.00 −1.00 8.46e−06

Sex-dimorphic genes EFNA1 0.62 −0.32 1 0.89 0.76 9.33e−05

ARMCX2 0.60 0.34 1 0.72 −0.61 3.69e−04

SH3TC1 0.62 −0.34 1 0.73 0.80 7.54e−04

RUSC1 0.60 0.25 1 0.74 −0.67 8.08e−04

RGS2 0.77 0.25 1 0.74 −0.65 2.42e−03

MYD88 0.66 −0.28 1 0.63 0.48 3.16e−03

IFITM2 0.81 −0.42 1 0.71 0.72 3.29e−03

ID3 0.68 −0.37 9.56e−01 0.63 0.87 4.65e−03

CD14 0.66 −0.49 1 0.63 1.39 5.37e−03

SERPINA1 0.76 −0.65 1 0.63 1.27 6.64e−03

Top ten female-specific (top), male-specific (center) and candidate sex-dimorphic genes (bottom) obtained after the meta-analysis of substantia nigra
Parkinson’s disease datasets. Functional annotations associated with these genes are found in Supplementary Table 9.
Cst Consistency score, i.e., the weighted proportion of the datasets supporting the cross-study log. fold change, LFC cross-study log. fold change, i.e., the
weighted average base 2 log. fold change across the relevant datasets, FDR false-discovery rate, i.e., the p value adjusted for multiple testing.
aGene with a potential confounder variable association (PMI/RIN), see details in Supplementary Note 2.

L.-C. Tranchevent et al.

2

npj Parkinson’s Disease (2023)     8 Published in partnership with the Parkinson’s Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;



The meta-analysis used bulk transcriptomics data, and the
relative proportions of cell types may therefore differ between the
compared sample groups. Prior studies have shown that
differential gene expression patterns derived from PD bulk
transcriptomics datasets of cortical tissues can be confounded
by cell type composition differences42,43. To estimate how this
could affect our differential analysis, we analyzed the differential
expression profiles of 38 selected cell type markers corresponding
to 5 distinct brain cell types (more details about the markers can
be found in Supplementary Note 1, Supplementary Table 13, and
Supplementary Figs. 3–8). We observe that TH, a commonly used
marker for dopaminergic neurons (DA), is the only cell-type
marker significantly differentially expressed between patients and
controls. This matches with prior expectations, as Parkinson’s
disease is associated with a progressive loss of dopaminergic
neurons. Since none of the other cell-type markers is differentially
expressed, this suggests that the differential expression observed
for other genes is unlikely to be driven significantly by differences
in cell-type proportions (see also the complementary single-cell
transcriptomics analyses below). In addition, we checked whether

substantia nigra specific eQTLs from the GTEx database44 overlap
with both the identified sex-associated DEGs and PD-associated
GWAS variants, but this was not the case (see Supplementary
Note 1).
Overall, many of the genes with significant sex-dependent PD-

associated alterations are involved in cellular processes and
organelles previously described to display pathological alterations
in PD. In particular, they include genes involved in dopamine
metabolism (NR4A2), lysosomal genes (CXCR4, SGSH), and mito-
chondrial genes (NDUFA10, CA2). Moreover, they cover genes
previously implicated in PD relevant phenotypes such as dementia
(CXCR4) and neurodegeneration (MAPK1) (see Discussion section
for details on prior functional implications of these genes in PD
and molecular sex differences).

Pathway-level analysis of PD-associated molecular sex
differences
To interpret sex-dependent molecular alterations in PD at the level
of global shifts in cellular pathway and process activity, the
significant DEGs derived from the statistical meta-analyses were

Fig. 1 Expression levels of selected differentially expressed genes in representative datasets. The selected genes are CA2 (top, female-
specific), NR4A2 (middle, male-specific), and EFNA1 (bottom, candidate sex-dimorphic). Each subplot contains four boxplots corresponding to
the four categories of interest: female controls (light blue), female PD patients (dark blue), male controls (light green) and male PD patients
(dark green). The data used to produce the boxplots is the pre-processed transcriptomics data. Each boxplot is represented by the median,
two hinges (representing the first and third quartiles) and two whiskers (extending up to 1.5 × inter-quartile range from the hinges).
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further investigated using functional enrichment analyses across
multiple pathway databases. For both the male and female
analyses, we specifically analyzed pathway associations of the
DEGs tagged as either sex-specific or sex-dimorphic. Selected
enriched biological processes from the Gene Ontology (GO),
Reactome, and Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases are presented in Table 2. Supplementary Tables 6 and 7
contain the complete pathway ranking results.
The pathway analysis results for the male-specific DEGs

highlighted significantly enriched alterations in particular in
mitochondria and energy metabolism related processes, such as
proton-transporting two-sector ATPase complex (GO:0016469,
FDR= 4.8e−2), oxidative phosphorylation (hsa00190, FDR= 1.4e
−2) and Citrate cycle (hsa00020, FDR= 1.7e−2). These results are
in line with prior observations of sex-specific differences in
mitochondrial function (see refs. 45–47 and the “Discussion” section
for the gene-level analyses) and the previous implication of
mitochondrial impairment in PD48,49. Moreover, cellular processes
related to synapses and associated signaling reactions were
significantly enriched, including the synaptic vesicle cycle pathway
in the KEGG database (hsa04721, FDR= 4.3e−3).
Given the lower number of significant female-specific DEGs, the

analysis of the female-specific genes did not identify any
significant functional enrichment after adjustment of the sig-
nificance scores for multiple hypothesis testing. However, the top
nominally significant functional gene sets are mostly associated
with the inflammatory response, and more specifically with
chemokine signaling, including processes such as Chemokine
signaling pathway (hsa04061, FDR= 7.4e−2) and Chemokine
receptors bind chemokines (R-HSA-380108, FDR= 8e−2). No
significant overlap was observed between the pathways with
female DEGs and male DEGs, suggesting that instead of affecting
different genes in the same pathways, sex-specific changes tend
to affect diverse pathways. Given a smaller number of female
samples in the present meta-analysis, follow-up studies with larger
numbers of female biospecimens are warranted to determine
whether an enrichment of female-specific genes may be
detectable in further cellular processes.
As a representative example illustration for coordinated sex-

dependent expression alterations occurring in a cellular process,
we show male and female differential expression profiles for the
KEGG TNF signaling pathway in Fig. 2, where we observe that
downstream targets are often associated with dimorphic differ-
ential expression patterns.

Overall, the pathway analyses revealed a significant enrichment
of male-specific PD-associated DEGs in multiple processes
previously implicated in PD, highlighting different top-ranked
pathways for male and female DEGs. While male-specific DEGs
were mainly over-represented in mitochondrial and energy
metabolism related pathways, female-specific DEGs only showed
nominally significant associations with inflammation and immune
response related processes. Further detailed results from the
functional enrichment analyses are described in Supplementary
Note 1.

Regulatory network analysis
In order to identify key transcription factors (TFs) that control
many of the observed downstream sex-dependent expression
changes in PD, the sex-specific DEGs were further investigated
using target expression levels to estimate TF activity levels (see
“Methods”). In total, we identified 18 TFs whose activity was
estimated to differ between males and females. We observed that
13 of them displayed fold-changes across the male and female
analyses which were consistent with the sex-dependent changes
of their downstream targets. The top 10 selected TFs are
presented in Table 3, the complete results are shown in
Supplementary Table 8. We also reconstructed the regulatory
network around these selected transcription factors to highlight
specific regulatory mechanisms (see Fig. 3 and Supplementary Fig.
9). Interestingly, several of the transcription factors predicted to
control sex-dependent gene regulatory mechanisms are members
of the statin family (STAT3, STAT1) or members of the NFκB
complex (NFKB1, REL, RELA and RELB; see the discussion in section
“Analysis of key transcription factors and molecular sub-
networks”).

Cell-type-specific transcriptomic data analyses
The post-mortem substantia nigra samples considered in this study
cover multiple different cell types, including dopaminergic
neurons, astrocytes, oligodendrocytes and their progenitors, and
microglial cells, among others50–53.
To investigate cell-type specific alterations, we therefore analyzed

two single-cell transcriptomics datasets derived from post-mortem
substantia nigra samples of PD patients and controls, performing
dedicated differential expression and functional enrichment ana-
lyses for each cell type and on each dataset (see “Methods”). While
the significantly smaller sample sizes compared to the bulk

Table 2. Functional terms representative of the results of the functional enrichment analyses.

Pathway identifier Pathway name Female gene ratio Female FDR Male gene ratio Male FDR

Females hsa04061 Viral protein interaction with cytokine and cytokine
receptor

3/17 7.42e−02 1/283 9.93e−01

hsa04062 Chemokine signaling pathway 3/17 1.71e−01 9/283 7.23e−01

R-HSA-380108 Chemokine receptors bind chemokines 3/25 8.00e−02 – –

GO:0045236 CXCR chemokine receptor binding 2/35 1.62e−01 – –

GO:0006470 Protein dephosphorylation 5/34 2.25e−01 16/547 8.43e−01

Males GO:0016469 Proton-transporting two-sector ATPase complex – – 8/557 4.82e−02

hsa00020a Citrate cycle (TCA cycle) – – 7/283 1.68e−02

hsa04721 Synaptic vesicle cycle – – 12/283 4.30e−03

hsa00190 Oxidative phosphorylation 1/17 3.60e−01 14/283 1.44e−02

GO:0047496 Vesicle transport along microtubule – – 9/547 3.55e−02

For each gender, only the differentially expressed genes that are either gender-specific or gender-dimorphic are kept. The enrichment analysis was performed
using a classical threshold-based approach. For each functional term, the results for both male and female analyses are displayed when available.
Gene ratio the number of DEGs annotated with the specific ontology term/the number of DEGs annotated with any term of that ontology, FDR false discovery
rate, dashes indicate missing data.
aPathway whose enrichment depends on genes with a potential confounder variable association (PMI/RIN), see details in Supplementary Note 2.

L.-C. Tranchevent et al.

4

npj Parkinson’s Disease (2023)     8 Published in partnership with the Parkinson’s Foundation



transcriptomic data analysis limited the number of detectable
significant changes, the pathway analysis results highlighted sex-
associated differential activities in mitochondrial processes, apopto-
sis and cytokine signaling, consistent with the results of the bulk
analysis. These changes were particularly pronounced in oligoden-
drocytes and astrocytes, which may either suggest that these could
be the main cell types affected by sex-dependent changes (see
details in Supplementary Note 1 and Supplementary Tables 14−16)
or reflect a greater power to detect variations in oligodendrocytes,
since they represent 46%, and 51% respectively, of all cells in the
two scRNA datasets. Moreover, we applied a deconvolution analysis
to the bulk RNA-sequencing dataset (NBB), which confirmed the
above-mentioned cell proportions. However, the same analysis is
not feasible for the microarray datasets considered in this study (see
details in Supplementary Note 1).

DISCUSSION
As a first general observation of the meta-analysis, many of the
identified sex-specific and candidate sex-dimorphic genes are
members of cellular processes previously implicated in PD
pathogenesis and progression. In particular, the significant sex-
dependent alterations affect dopamine metabolism (NR4A2),
mitochondrial (NDUFA10, CA2) and lysosomal processes (CXCR4,
SGSH), whose pathological alterations have been confirmed by
several prior studies as common molecular hallmarks of
PD48,49,54–56. However, the corresponding genes have previously
not been associated with sex differences in the disease. Generic
hormone-dependent sex differences have been reported for
NR4A2 expression, but they were only studied in white adipose
tissue and not in the context of neurologic disorders57. Similarly,
for CXCR4, estrogen was described to increase mRNA and protein

Fig. 2 Overlay of the differential expression statistics on part of the map for the TNF signaling pathway. Each gene box has colors
reflecting the cross-study log. fold change in the differential expression analyses for the female (left) and male analyses (right). Up- and down-
expression in PD patients are respectively indicated by the orange and green color scales. The pathway map has been extracted from the
KEGG database and the rendering was obtained using the software Pathview.

Table 3. Top ten transcription factors enriched in differentially expressed target genes.

Regulon Transcription factor enrichment Differential expression

Evidence level Female predicted activity Male predicted activity Females Males

Cst LFC FDR Cst LFC FDR

NFKB1 A −2.06 6.60 0.81 0.25 4.48e−01 0.87 0.42 6.18e−03

RELA A −1.16 6.01 0.88 0.29 9.00e−01 0.89 0.44 4.85e−01

STAT3 A −1.30 5.73 0.85 −0.29 1 0.63 0.41 1.83e−01

STAT1 A 0.58 6.83 0.70 −0.42 6.93e−01 0.73 −0.43 4.09e−01

POU2F2 C −2.02 4.19 0.62 0.13 1 0.59 0.36 1

CEBPA A −1.56 4.59 1.00 0.42 8.80e−01 0.52 0.41 8.43e−01

FOXO4 A −2.49 2.62 0.55 0.51 6.82e−02 0.88 0.41 2.58e−01

KLF6 C 0.68 5.67 0.55 0.09 1 0.89 0.33 1.52e−01

RELB C −0.49 4.49 0.72 −0.28 1 0.89 0.30 9.08e−01

BATF C −1.60 3.36 0.91 −0.46 1 0.74 0.54 4.67e−01

The columns contain the results of the enrichment analysis (left) and the differential expression analysis (right). Functional annotations associated with these
genes are found in Supplementary Table 9. The Omnipath/Dorothea evidence levels A, B, and C, respectively, represent high, likely, and medium confidences,
see Figure 5A in ref. 155 for more details.
Cst Consistency score, LFC log. fold change, FDR false discovery rate.

L.-C. Tranchevent et al.

5

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2023)     8 



levels, but this observation was limited to endometrial epithelial
cells58.
No prior report of sex-specific differences were identified for the

other top-ranked significant genes; however, an influence of

biological sex on mitochondrial and lysosomal function in general
is in line with the results from previous in vitro and in vivo studies
across multiple cell types, covering data from healthy adult
humans as well as various animal models45–47,59–62. Sex
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differences in the regulation of the autophagosome–lysosome
system in particular have also been proposed to modulate the
severity of neurodegenerative disorders, because prior studies
suggest that women have a lower basal autophagy61.
Among the sex-associated DEGs with previously described

regulatory functions in PD, the transcription factor NR4A2 (Nuclear
Receptor Subfamily 4 Group A Member 2; synonym: NURR1)
stands out due to its key regulatory role in the maintenance of
dopamine metabolism63 and inflammatory gene expression in
glial cells64. As a member of the steroid-thyroid hormone-retinoid
receptor superfamily, it controls the expression of many essential
genes for the development of meso-diencephalic dopaminergic
(mdDA) neurons, such as SLC6A3, SLC18A2, TH and DRD2. For all
these genes, significant decreased expression values were
observed, which are consistent with the upstream decrease in
NR4A2. In addition, NR4A2 down-regulation is significantly
associated with adult human brain aging and has been demon-
strated to increase the expression of the known PD-associated
gene alpha-synuclein65,66. In the transcriptomics meta-analysis
presented here, NR4A2 generally displays lower expression in PD
patients than in matched controls, but the expression change is
significantly more pronounced in males than in females (females:
LFC=−0.6, FDR= 1; males: LFC=−1.4, FDR= 1.6e−8).
Expression and abundance alterations of NR4A2 have been

associated with PD-like phenotypes and adult aging in both
human and animal studies. Specifically, homozygous NR4A2
knockout mice displayed Parkinsonism-like molecular phenotypes
in PD-associated brain regions67, and heterozygous knockout mice
were characterized by reduced locomotor activities68 and lower
brain dopamine levels69.
Interestingly, a recent study showed that a synthetic ligand that

activates NR4A2 is neuroprotective in a mouse model of MPTP-
Induced Parkinsonism, suppressing loss of dopaminergic neurons
in the substantia nigra pars compacta and DA terminals in the
striatum64. A further study found that activating compounds for
NR4A2 prevent neurotoxin (6-OHDA)-induced death in primary DA
neurons and rat PC12 cells, and significantly ameliorate behavioral
deficits (rotation behavior toward the lesion side) in a 6-OHDA
lesioned rat model of PD without detectable dyskinesia-like side
effects70. NR4A2 heterodimerizes with Retinoid X receptor alpha
(RXRα) in midbrain dopaminergic neurons, and synthetic ligands
binding to the RXRα binding pocket were reported to confer
neuroprotection in C57BL/6 mouse models using different toxins
(6-OHDA, MPTP)71. Overall, these prior findings suggest that both
genetic, environmental and sex-associated influences on NR4A2
activity may be involved in modulating the risk and severity of PD.
Given the prior evidence for the druggability of NR4A2, the
beneficial effects of its activation in PD model systems, and the
sex-dependent changes among its downstream target genes, the
protein may warrant further investigation as target for pharma-
cological modulation of a subset of pathological molecular
changes in PD that display sex-associated activity profiles.
A further gene of interest with PD-associated regulatory

functions among the identified sex-dependent DEGs is CA2
(Carbonic Anhydrase 2). It encodes an enzyme that catalyzes the
reversible hydration of carbon dioxide, and is involved in
mitochondrial pH regulation. Increased CA2 levels in mitochondria
have previously already been associated with neurodegeneration
and aging. Specifically, an age-dependent increase of tissue-

specific carbonic anhydrases in mitochondria has been observed
in mouse brain samples, in particular in the Purkinje cell
degeneration (pcd5J) mouse model72. The same study also
showed that the exposure of C. elegans to CA2 results in a dose-
dependent shorter lifespan. Interestingly, many dopaminergic
small molecule compounds (i.e., compounds with structure similar
to the endogenous neurotransmitter dopamine, which are often
used in the treatment of PD) are inhibitors of human carbonic
anhydrases, such as CA273, which may result in compensatory
expression alterations in PD. Disambiguation between direct
disease-associated effects and treatment effects on CA2 expres-
sion will require further studies on drug-naïve patients. Regarding
the observed sex differences, in the present meta-analysis, the
over-expression of CA2 in PD patients compared to matched
controls is significantly stronger in females than in males (females:
LFC= 1.1, FDR= 8.2e−4; males: LFC= 0.6, FDR= 0.5). No prior
studies reporting sex differences in CA2 levels in the brain could
be identified; however, in prostate tissue from rats, a differential
regulation of CA2 by the hormones androgen and estrogen has
been reported74.
Finally, the most significant candidate sex-dimorphic gene

identified in the meta-analysis is EFNA1 (Ephrin A1). This gene
from the ephrin family binds to multiple ephrin-related receptors
to mediate developmental events, in particular as part of nervous
system development75. Interestingly, EFNA1 was shown to
mediate dopaminergic neurogenesis and angiogenesis in a rat
model of PD, and its activation proposed as a potential target for
the treatment of neurodegenerative diseases76. In the meta-
analysis, EFNA1 is significantly over-expressed in male PD patients
compared to controls, whereas female patients display a slight,
non-significant under-expression (females: LFC=−0.3, FDR= 1;
males: LFC= 0.8, FDR= 9.3e−5). No previous reports on sex
differences in EFNA1 gene expression in the brain were identified.
In summary, the meta-analysis identified genes with statistically

significant sex-specific or sex-dimorphic expression changes in PD
samples compared to controls, including genes previously
implicated in the regulation of dopamine metabolism, mitochon-
drial or lysosomal functions in the context of PD, and genes
associated with general neurodegeneration or aging. An overview
of the sex-dependent and PD-associated expression profiles for
the three genes of interest discussed above, NR4A2, CA2 and
EFNA1, in representative transcriptomics datasets is presented in
Fig. 1.
As a main result of the pathway analyses, we observed that

DEGs which are either male-specific or sex-dimorphic are over-
represented in mitochondrial and energy metabolism related
pathways. Considering our results together with previous obser-
vations for other diseases involving mitochondrial dysfunction,
such as Leber’s hereditary optic neuropathy (LHON), which also
display a higher prevalence in males than in females as described
for PD, this could indicate a potential generic increased
vulnerability of males to mitochondrial impairments. This matches
with findings from prior studies for healthy individuals showing a
higher activity of mitochondrial respiratory complexes in females
compared to males77. Furthermore, in this context, matrilineal
inheritance of mitochondrial DNA (mtDNA) has previously been
proposed to lead to a male-female asymmetry in the expected
severity of mitochondrial diseases, because natural selection of
mitochondria occurs only in females, and mitochondrial mutations

Fig. 3 Visualization of the regulatory sub-networks centered around selected transcription factors. The transcription factors were selected
based on the over-representation of their known target genes among the differentially expressed genes, favoring the factors whose predicted
activity differs between females and males. Only the target genes with a minimum FDR (across the male and female analyses) below 0.01 are
included. Both networks share the same content and layout, but the nodes are colored such that they reflect the cross-study log. fold change
for the female (a) and male (b) analyses, respectively. The selected transcription factors are represented as ellipses, whereas the other genes
are represented as boxes. A larger visualization of the network including more target genes (with a minimum FDR between 0.01 and 0.05) in
the surrounding sub-network is presented in Supplementary Fig. 9).
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are therefore expected to result more frequently in deleterious
effects in men than women78. While damage in mtDNA has
previously been proposed to be linked with PD and other diseases
involving mitochondrial dysfunction79,80, the specific role of
mtDNA in idiopathic PD is still unclear and conflicting results
have been obtained from studies on mtDNA variation in PD81.
Hormones, such as estrogen, also have important roles in the
regulation of mitochondrial biogenesis and function82, and should
therefore also be considered as potential contributing factor to
sex-differences in mitochondrial function. Follow-up studies will
be required to assess the specific influences of these different
candidate factors on mitochondria-related sex differences in PD.
The most significant transcription factors identified in the

network analysis are involved in inflammatory and immune
response related processes (see Supplementary Table 9). A
representative example is STAT3 (Signal Transducer and Activator
Of Transcription 3), which shows an non-significant increased
expression in male patients (LFC= 0.41, FDR= 1.8e−1) and a non-
significant decrease in female patients (LFC=−0.29, FDR= 1). Its
target genes are enriched among the male DEGs (predicted
activity= 5.73), and not among female DEGs (predicted activity=
−1.3), in agreement with its known activating effect on its targets.
STAT3 is known to play a key regulatory role in determining the
balance between astrogliogenesis and neurogenesis in brain
neuroinflammation, and is activated in response to the pro-
inflammatory cytokines IL-1β and TNF-α83. Multiple functional
involvements of STAT3 in PD-associated processes have previously
been described, including the modulation of astrogliosis84–87,
microglia activation88–91, and mitochondrial protein expres-
sion92,93. Interestingly, STAT3 has been proposed as a potential
drug target for neurodegenerative disorders, because its suppres-
sion during brain inflammation was found to promote neurogen-
esis and inhibit astrogliogenesis83.
Apart from cytokines, steroid hormones have also been

described to influence STAT3 response94, and correspondingly,
STAT3 activity has already been associated with sexual dimorph-
ism in different organs, including the brain92,95. Moreover, STAT3
activity correlates with clinical descriptors in a sex-dependent
manner for different medical conditions, including brain cancer96

and inflammatory disorders of different organs97–102.
Among the other top-ranked TFs identified in the regulatory

network analysis (see the top ten in Table 3) three of the five
members of the NF-κB family are also included: NFKB1, RELA and
RELB. The targets of these three TFs are all enriched among the
DEGs for males (predicted activity >4.4) and not for females
(predicted activity <−0.4). Among the TFs themselves, one gene,
NFKB1, also displays significantly increased expression in male
patients (LFC= 0.42, FDR= 6.2e−3) and not in female patients
(LFC= 0.25, FDR= 4.5e−1). The other two genes do not exhibit
significant changes, which is in line with the common observation
that TFs tend to display smaller alterations than their downstream
targets, and the activity of these targets often provides a more
robust indication of activated or deactivated regulatory
mechanisms.
Due to its central role in the regulation of inflammation-

associated processes, the NF-κB pathway has previously also been
investigated in the context of PD. Multiple sub-units of the NF-κB
complex were found to be over-expressed in the substantia nigra
of PD patients103,104, where they are thought to enhance
neuroinflammation105,106. In model organisms, NF-κB activity
correlates with the severity of PD-like symptoms and relevant
cellular phenotypes, including mitochondrial homeostasis107,108.
Therefore, NFKB1 has also been proposed as a potential drug
target for PD104,109. Regarding the potential mechanisms linking
NF-κB alterations to PD, previous studies have shown that NFKB1 is
regulated by the PRKN gene (Parkin), which harbors mutations
associated with familial forms of PD110, and that NFKB1 activity is
also modulated by STAT3111 (see the discussion of STAT3 above).

NF-κB activity differs between males and females under a
variety of physiological conditions in different organs112–114,
including the brain115. In a cellular model, it was observed that
NFKB1 activation protects glutamatergic neurons against oxidative
stress-induced neuronal death in a sex-dependant manner (with
superior protection of neurons from female donors)115. In the
context of brain disorders, genomic variants of the NF-κB sub-unit
RELA have been associated with schizophrenia in males116, but to
the best our knowledge, NF-κB family members have previously
not been linked specifically to sexual dimorphism in PD.
Finally, we note that NFKB1 inhibits the expression of NR4A2117,

in line with NFKB1’s increased expression in male patients and the
male-specific decrease in its downstream target genes. Similarly,
the network in Fig. 3 also contains EFNA1, the top candidate sex-
dimorphic gene, which is regulated by STAT3118,119.
This study has the following limitations: First, while the

statistical power was sufficient to identify differentially expressed
genes in both males and females after multiple testing correction,
only a limited number of relevant samples were available to
detect significant changes for smaller effect sizes, in particular for
the female analysis. In total, our substantia nigra meta-analysis
used 198 samples (after data processing and filtering). This is in
particular impacting our definition of candidate sex-dimorphic
genes, which is mainly based on effect size differences. Follow-up
studies with greater statistical power and a more balanced
representation to detect sexual dimorphism will have the
potential to show statistical significance for a larger number of
variations with small effect sizes. Moreover, the incomplete
availability of metadata for most datasets limited our ability to
filter out all potential effects of confounding factors. For instance,
RNA integrity numbers (RIN) and post-mortem intervals (PMI) are
available for only one, respectively two, of the datasets used for
the main meta-analysis. Considering this constraint, we conducted
dedicated confounder correlation analyses on these datasets (see
Supplementary Note 1 and Supplementary Table 10), which
suggest only limited influences of PMI/RIN on the presented
results. Further follow-up analyses on larger-scale, fully annotated
datasets (i.e., with complete metadata) will be required for
additional independent validation of these results. Another
limitation is linked to the technology used to measure the
transcriptomics profiles (mostly microarrays and bulk RNA-
sequencing). It has been demonstrated that cell type proportions
can influence differential analyses in many different tissues,
including brain tissues42,43. We conducted dedicated cell-type
marker analyses to assess these potential influences in our meta-
analysis, but cannot entirely rule out the possibility that cell type
proportions differ more significantly between PD patients and
healthy controls in the substantia nigra than these initial analyses
suggest. Further research using single-cell technologies and large
sample sizes will be required to better assess the potential role of
differential cell-type proportions. A main strength of the applied
methodology is that it integrates information from multiple
different cohorts, experimental platforms and data types, and
aggregates information from individual genes using pathway and
network analyses. Thus, it provides both a transcriptome-wide
ranking of gene-level sex-dependent alterations in PD and a
global overview of the cellular processes impacted by these
changes.
Follow-up studies will also be needed to more comprehensively

characterize and confirm the mechanisms by which NR4A2 and
other regulatory genes control or modulate the identified
molecular sex differences in PD. These could include targeted
in vitro and in vivo perturbation experiments of NR4A2 and other
regulators with sex-dependent activity, such as CA2 and EFNA1, to
investigate their impact on PD molecular phenotypes in disease
models for both males and females. If the druggability, sex-
dependency, and neuroprotective roles of NR4A2 or other
candidate targets can be further substantiated, this could pave
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the way for subsequent preclinical investigations of adjuvant
pharmacological strategies to reduce or alleviate sex-dependent
molecular pathology in PD.

METHODS
An overview of the entire processing and analysis workflow is
presented in Fig. 4. Briefly, relevant Parkinson’s disease transcrip-
tomics datasets were collected from public data repositories120–136

and complemented by a new dataset generated through RNA
sequencing (RNA-seq) of samples from the Netherlands Brain
Bank. All datasets were pre-processed and analyzed in order to
detect significant transcript abundance differences between
patients and controls (separately for males and females).
Integrated differential expression statistics and rankings for each
sex were obtained using a meta-analysis of all datasets. The genes
with PD-associated expression alterations that differ significantly
between males and females were further investigated using
cellular pathway and network analyses. These analyses of bulk
transcriptomic data were complemented by independent analyses
of single-cell transcriptomics datasets, in order to further confirm
the main identified pathway alterations and characterize their cell-
type specificity. The following sections describe the methodolo-
gies for the data collection, processing, and downstream analyses.

Sample preparation
Post-mortem human brain samples were obtained from The
Netherlands Brain Bank, Netherlands Institute for Neuroscience
(Amsterdam, The Netherlands). The tissue samples were homo-
genized (6875D Freezer/Mill Spex –Instrument Solutions Benelux
BV). Fifty mg amount of sample was used for RNA isolation using
the inhouse Tecan robot using AllPrep DNA/RNA/Protein kit
(Qiagen) as mentioned before137. One μg of total RNA was used
for library preparation using TruSeq stranded mRNA library
preparation kit (Illumina) as per the protocol provided by the
manufacturer. Briefly, the mRNA pull down was done using the
magnetic beads with oligodT primer. To preserve the strand
information, the second strand synthesis was done such that
during PCR amplification only first strand was amplified. The
libraries were quantified using Qubit dsDNA HS assay kit
(Thermofisher) and the size distribution was determined using

Agilent 2100 Bioanalyzer. Pooled libraries were sequenced at a the
LCSB sequencing platform using NextSeq500. This dataset was
integrated with pre-processed and quality-controlled transcrip-
tomics data from public data repositories using a meta-analysis to
increase the statistical power to detect expression changes and to
ensure the robustness of the findings across data from different
studies.

Data collection
Relevant public transcriptomics datasets were identified through
keyword-based searches in omics data repositories and literature
databases. In particular, ArrayExpress (RRID: SCR_002964)138, Gene
Expression Omnibus (GEO, RRID: SCR_005012)139, BioProject (RRID:
SCR_004801)140 and relevant resources such as the Parkinson’s
Progression Markers Initiative (PPMI)141, PubMed (RRID:
SCR_004846) and Google Scholar (RRID: SCR_008878) were
queried using the following keywords: “parkinson,” “substantia
nigra,” and “dopaminergic” in combination with “transcriptomics,”
“microarray,” and “RNA-seq.” The list of all online resources,
together with the associated queries is provided in the
Supplementary Table 1.
The retrieved datasets were further filtered by considering only

human transcriptomics datasets (i) covering at least five thousand
genes, (ii) focusing on both idiopathic PD patients and controls,
and (iii) with at least ten samples. Only datasets analyzing the
midbrain region substantia nigra, dopaminergic neurons from the
substantia nigra or induced pluripotent stem cells derived
dopaminergic neurons were retained. Two of the retrieved
datasets (GSE42966 and GSE43490) were merged into a single
dataset (Moreira) because they were generated by the same
research group, from the same cohort, and shared most of their
samples (13 and 15 samples each, 18 unique samples in total).
Other types of brain tissues, such as the cortex or putamen were
covered by an insufficient number of datasets to be further
considered for a meta-analysis. The 20 selected transcriptomics
datasets include 428 samples in total and were derived from 12
different measurement platforms120–136. Datasets focusing only on
familial PD cases were not considered. Twelve, three and three
datasets, respectively, covered the substantia nigra (SN), dopami-
nergic neurons from the substantia nigra (DA) and induced
pluripotent stem cells derived dopaminergic neurons (iPSC-DA).
The remaining two datasets are single-cell transcriptomics
datasets (10× Genomics/Chromium) derived from substantia nigra
samples from PD patients and controls (SC-SN), used to confirm
key pathway alterations observed in the bulk transcriptomics data
and to characterize their cell-type specificity. All datasets are
described in further detail in Supplementary Tables 1–4.
We also ensured that there was no duplicate sample across the

different datasets (i.e., samples derived from the same patient). By
analyzing the dataset metadata, we identified two datasets with
potential duplicates (GSE8397 and GSE26927), i.e., samples
derived from the same brains stored at the UK Parkinson’s
Disease Society Tissue Bank at Imperial College London. We
therefore removed the five potential duplicated samples from the
dataset GSE8397 prior to performing the meta-analysis.
For each platform, probe/transcript annotations, such as the

chromosomal location and the corresponding gene names were
retrieved from the Ensembl database (RRID: SCR_002344)142,
whenever possible, and otherwise from the metadata provided
with the dataset, and then matched using current Ensembl
annotations for consistency (v102, Nov. 2020).
The original clinical annotations were extracted from the

metadata obtained along with the datasets. Additional descriptors
were provided by the data generators and missing values were
predicted when possible (see next section).

Fig. 4 Global workflow of the analysis. A Relevant PD transcrip-
tomics datasets were collected from public transcriptomic data
repositories and complemented by an RNA-seq dataset generated
in-house using samples from the Netherlands Brain Bank (see
section “Data collection”). All datasets were curated and pre-
processed (Clin: clinical data; Exp: experimental data; see “Meth-
ods”). B Two linear models were created to detect the genes
differentially expressed between PD patients and controls, respec-
tively for females (ΔF, top, blue) and males (ΔM, bottom, green).
C For each model, a consensus was obtained through a meta-
analysis across all datasets, favoring the genes with robust and
reliable differential expression patterns. D Differentially expressed
genes were then split into (i) female-specific genes (GF−spe, blue), (ii)
male-specific genes (GM−spe, green) and (iii) candidate sex-
dimorphic genes, whose directionality of the change differs
between males and females (Gdim, turquoise). E Functional enrich-
ment of the selected differentially expressed genes to detect which
biological processes are impacted. F Regulatory network analysis of
the full set of genes, using experimentally validated interactions
collected from multiple resources.
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Missing value imputation
For some datasets, clinical descriptors, such as disease status,
biological sex and age, were not available for all samples.
Contacting the data generators allowed us to obtain 15 additional
annotations for 14 samples. However, there were still missing
values and we therefore investigated whether these could be
predicted.
For eight samples across three datasets, the biological sex could

not be retrieved. We therefore estimated these missing values by
considering the expression levels of genes located on sex
chromosomes. For each dataset, we selected loci that best
discriminate between males and females on training data (i.e.,
samples associated with male or female patients), and used only
these loci to make predictions for the samples for which no
annotations were available. When using a leave-one-out cross-
validation scheme, the predicted values matched with the already
known annotations for two of the three datasets (accuracy was
100% and 85%, respectively, for GSE24378 and GSE20163),
suggesting that, for these datasets, reliable predictions can be
made for the few samples with missing annotations. This allowed
us to update the clinical data with the predicted biological sex for
five out of eight samples with missing information. However, for
the remaining dataset with three sample annotations missing, the
expression levels from sex chromosome genes did not provide
sufficiently reliable estimations of the biological sex (accuracy for
GSE20141 was 73%). Therefore, for this dataset, the three samples
with unknown sex were simply removed. For some datasets,
reliable predictions could be made, and potential annotation
errors were detected (samples annotated as female but predicted
to be male or vice versa) but these were not corrected.
Regarding age, the predictions derived from models based on

the R package missRanger were not considered accurate enough
to be considered. More precisely, and using a leave-one-out cross-
validation scheme, the average RMSE (root mean square error) for
the three datasets with missing ages was 11.3 years (values
between 9.8 and 12.5). This means that the average difference
between the real and predicted age was above 11 years, which
was not considered acceptable given the important influence of
age on expression data.

Detecting experimental batches
The expression metadata was analyzed in order to detect the
experimental batches. For the datasets extracted from the Gene
Expression Omnibus (GEO) database (RRID: SCR_005012), the
retrieved batches were harmonized with annotations from the
Gemma database (RRID: SCR_008007)143.
For each dataset, we then checked whether there could be a

potential batch artifact. Datasets with small batches (less than four
samples) or with many batches (more than four) were not further
investigated because it is difficult to take the batch effect into
account without introducing some bias. For the remaining
datasets, the experimental batches were included as covariate in
the differential analysis. The summary of this analysis is presented
in Supplementary Table 2.

Age matching
The Parkinson’s disease cohorts usually contain age-matched
patients and controls, however males and females might not
always be age-matched as well, which is equally important in our
study. We therefore investigated the age differences between (i)
patients and controls, (ii) males and females and (iii) all four
categories (female controls, female patients, male controls and
male patients).
The results for all datasets are summarized in Supplementary

Fig. 1. We observe a significant difference between the patient
and control age values. This difference is less than five years for

only four of the sixteen datasets (for two datasets, age is
completely missing) and less than ten years for ten datasets. A
similar situation is observed between males and females although
there are some variations per dataset. The age distribution for the
four categories of interest are plotted in Supplementary Fig. 1 for
three representative datasets. The general trend is that patients
are older than controls and males are younger than females. This
motivated us to compare patients and controls for each sex
independently instead of comparing the four categories of
interest all at once with a more complex limma model (another
motivation is that several datasets contain enough female samples
but not enough male samples or vice versa). This also motivated
us to include age as a covariate in the differential expression
analysis when possible (see Supplementary Table 3 for more
details about the linear models).

Bulk data processing
For microarray datasets, a quality control analysis of the data was
conducted using the R package ArrayQualityMetrics (v3.42.0, RRID:
SCR_001335)144 prior to the raw data pre-processing in order to
remove outlier samples. This package performs sample outlier
detection analysis using three main methods. Any sample that
was flagged as an outlier at least twice out of the three checks was
removed from the analysis. In total, four samples from three
datasets were removed according to these standard filtering
criteria.
Affymetrix microarray datasets were then pre-processed using

the Affymetrix PowerTools suite with the GC-RMA algorithm
(v1.20.0)145. In general, the signal was summarized at the probe
level, except for exon arrays, where a transcript level summary was
computed. Illumina and Agilent microarray datasets were pre-
processed using manufacturer-specific R software packages
(beadarray v2.36.1 and limma v3.42.2)146,147.
The in-house generated RNA sequencing data was processed

using the alignment-free quantification software Kallisto (v0.46)148

and the homo sapiens Ensembl v96 transcriptome, and then
normalized by total read counts and mean-variance relationship
estimation using voom149). For the RNA-sequencing data derived
from GSE110717, only pre-processed data was available, and this
dataset was therefore directly post-processed after quality control.
The post-processing always included the removal of samples

from conditions other than idiopathic PD and healthy controls, of
lowquality genetic probes, and of genetic probes/transcripts with
zero variance. The heteroscedasticity of the measured signal
intensities was plotted for all datasets and if variance-dependent
signal intensities were observed, a variance stabilizing normal-
ization was applied (R package vsn v3.54.0150,151).
The quality control analyses using ArrayQualityMetrics were

repeated after completing these processing steps. Three addi-
tional samples were removed at this stage, according to the
criteria described above, including two with sample quality
metrics that were already close to the outlier thresholds in the
initial quality control. After these preprocessing steps, the 18
filtered datasets contained in total 331 from the original
346 samples. Supplementary Table 1 contains a flow diagram
that summarizes the number of datasets/samples that are kept
after each preprocessing step, together with summary statistics on
the demographics (e.g., disease status, sex, age).

Removing irrelevant probes/transcripts
The lists of probes and transcripts were cleaned prior to the
differential expression analyses in order to focus only on relevant
entities. Probes and transcripts were selected using the same
criteria but these are mostly relevant for probes as transcripts are
in general well defined and associated with a single gene. First,
probes associated with five genes or more were discarded as we
wanted to focus on signals that are specific enough to be easily
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interpreted. Second, we also discarded the probes that match
more than one gene if there also exists another probe that
matches a subset of these genes (e.g., a probe that matches both
gene A and gene B will be removed if there is another probe that
matches only A or only B). Complex cases of probes matching
overlapping sets of genes were removed as their interpretation
would have been difficult (e.g., two probes matching respectively
genes A+B and genes A+C will be removed regardless of the
existence of probes matching only gene A or only gene B or only
gene C).

Differential expression analyses
Two differential expression analyses were performed on each
dataset individually, using only female or male samples, to identify
transcripts that display significant sex-dependent differences
between Parkinson’s disease patients and controls.
For the processed bulk datasets, these differential analyses were

conducted using the R package limma (v3.42.2, RRID:
SCR_010943), which relies on linear models147. Available clinical
covariates were included in the models in order to correct for
potential confounders and biases and detect only the disease-
associated biological alterations of interest. These covariates cover
experimental batches, age and sample pairing information.
Experimental sample batches were included as variable in the
model when they confounded with the clinical outcomes and
sufficient numbers of samples per batch enabled an estimation of
possible batch effects (at least 4 samples per batch and maximum
4 batches in total, see section “Detecting experimental batches”).
Information on the age of the subjects was also included in the
model, whenever available, since ages were often not perfectly
matched between patients and controls. The GSE8397 dataset
contained two biological replicate samples per subject and the
corresponding sample pairing information was also integrated
into the model design. The configuration used for each linear
model and for each dataset is described in more detail in the
Supplementary Table 3.

Dataset weights
The datasets were associated to weights in the meta-analysis.
These weights represent a level of confidence and, as such, are
derived from the number of samples for the current analysis based
on the assumption that datasets with more samples are associated
with larger, aka better detection powers and their differential
expression analyses should therefore weight more in the meta-
analysis. Only relevant samples are taken into account so that, for
instance, the number of male samples is not considered for all
female analyses. More precisely, the weights are derived from the
lowest number of samples across the relevant patient categories
(i.e., for a female analysis, this would mean the smallest between
the number of female patients and the number of female
controls). The weights are computed using an adaptation of the
formula by Marot and Mayer (Eq. (1))152.

ωd;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nd;sP
δ2Δnδ;s

r

with nδ;s ¼ minðjpatientsδ;sj; jcontrolsδ;sjÞ
(1)

with ωd,s the weight of dataset d for sex s, Δ the set of all omics
datasets, patientsδ,s and controlsδ,s respectively the sets of patients
and controls in dataset δ for sex s.

Data integration
The statistical results for the differential expression analyses of the
individual transcriptomics datasets were integrated using a meta-
analysis across all pre-filtered datasets derived from the same
tissue. For genes covered by multiple probes/transcripts, it was
necessary to define the most relevant entity to select for the meta-

analysis. We decided to select the probe/transcript with the
highest average expression across the considered datasets since
low-signal is associated with lower reliability. This means that, for a
given gene, it is possible that two distinct probes/transcripts are
selected for the male and female analyses. The list of the 211
genes for which this happens in at least one dataset can be found
in Supplementary Table 5. These genes were not considered
further in the present study. Prior to the meta-analysis, each gene
is therefore associated with a base 2 log. fold change and a
nominal p value per dataset.
Next, for each gene, the consensus activity shift (i.e., up- or

down-expression) was determined through a weighted voting
scheme, where the weights reflect the relative number of samples
per dataset. Nominal p value significance scores obtained from the
differential expression analyses on the individual datasets were
then integrated using the weighted meta-analysis approach by
Marot and Mayer152, again using weights corresponding to the
relative number of samples per dataset. For each gene, the meta-
analysis focused on the datasets with log. fold change consistent
with the overall direction of the estimated cross-study log. fold
change (see above) to ensure that the integrated p values
represent gene activity shifts in the same direction. Finally, the
resulting integrated meta-analysis p values were adjusted for
multiple hypothesis testing using the Benjamini and Hochberg
method153. The male and female analyses were run separately,
adjusting however the nominal p values once using both sets of
genes. A gene was considered significantly differentially expressed
if the false-discovery rate was below 0.05.
We wanted to focus our meta-analysis on genes with a reliable

signal. We therefore computed, for each gene, a reliability score by
summing up the weights of the datasets for which the gene was
present and dividing that value by the sum of all weights. If a
given gene has no missing value, its reliability score is 1, if all
values are missing, it is 0. In our case, genes whose reliability
scores were below 2/3 were not considered further (i.e.,
representing a maximum of 33.34% missing values if all datasets
were to have the same weights). This filter was implemented after
the meta-analysis since it might not be fully p value independent.
Additionally, apart from providing information on significance as
main ranking criteria, we determined a cross-study estimate of the
log. fold change for each gene by computing a weighted average
of the log. fold changes that are consistent with the consensus
activity shift. We also wanted to distinguish between genes that
are consistently found to be differentially expressed (i.e., reported
as up-expressed in 100% of the datasets) and genes with less clear
patterns (i.e., reported as up-expressed in 51% of the datasets). A
consistency score was established by computing the weighted
percentage of datasets that report a log. fold change in the same
direction than the cross-study log. fold change. Only genes with at
least 60% consistency were taken into consideration for further
analysis. In the evaluation of results, the reader should take into
consideration both the final integrated significance score and the
consistency score (see Tables 1 and 3 as well as Supplementary
Tables 5, 11, and 12).

Sex-specific and candidate sex-dimorphic genes
Next, the significantly differentially expressed genes (DEGs) with
FDR < 0.05 in at least one analysis were categorized into female-
specific, male-specific and candidate sex-dimorphic genes accord-
ing to their differential expression profiles in males and in females.
The overall process is described as a decision chart in
Supplementary Fig. 2.
Due to the difference in detection power between the male and

female analyses, the corresponding FDR values have different
distributions (male FDR values are a lot smaller than female FDR
values). This means that a categorization based only on FDR values
will identify most male DEGs as male-specific and only few female
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DEGs as female-specific. We therefore decided to use a rank based
strategy to define sex-specificity. More precisely, we have defined
a sex-specificity index that is based on the rank ratios of the gene
π-values41 (see Eq. (2)).

Speg ¼ rank ratioðπF;gÞ � rank ratioðπM;gÞ
with πs;g ¼ �log10ðp̂s;gÞ ´ absðLFCs;gÞ

with p̂s;g ¼ p� ϵ if p ¼ 1;

p otherwise.

� (2)

with Speg the sex-specificity score of gene g, πs,g the π value of
gene g for sex s, LFCs,g and ps,g, respectively, the log. fold change
and nominal p value of gene g obtained in the analysis for sex s.
To avoid ties in the rank ratios, we introduced p̂s;g (to avoid setting
πs,g to 0 when ps,g is equal to 1) and relied on the nominal p value
instead of the FDR.
Sex-specific DEGs were defined as genes that were only

significantly differentially expressed in males (FDR < 0.05), but
not approaching significance in females, or vice versa (based on
their sex-specificity score Spe, see decision chart in Supplementary
Fig. 2). The rationale was to avoid calling sex-specific a gene that is
significant in males and close to significant in females (or vice
versa), which would result in spurious assignments of sex-
specificity. Candidate sex-dimorphic DEGs were defined as those
with an opposite direction of the change between PD and control
samples across males and females (up in one case and down in
the other, as determined by the signs of the log. fold changes, and
at least one of them showing statistically significant alteration)
and requiring the genes to have a minimum absolute cross-study
log. fold change >0.25 in both cases to ensure robustness
(preventing misinterpretation of gene expression changes with
small absolute effect sizes). Genes that showed consistent
changes across the analyses, i.e., that were significantly differen-
tially expressed for both males and females with the same
direction of the change, were not further considered for
subsequent sex-related analyses (for the interested reader, we
provide a list of these shared genes in Supplementary Table 5).

Cellular pathway and process analyses
Sex-dependent PD-associated cellular pathway and process
alterations were determined using Fisher’s exact test to quantify
the significance of the over-representation of sex-specific or sex-
dimorphic DEGs among the members of each considered path-
way. All genes associated with a reliable profile (i.e., not having
more than 33.34% missing values) were used to build a relevant
background. The resulting p value significance scores were then
adjusted for multiple hypothesis testing according to the method
by Benjamini and Hochberg. The pathway analysis was imple-
mented using the clusterProfiler R package (v4.2.0, RRID:
SCR_016884)154.

Regulatory network analysis
Sex-dependent changes in gene regulatory sub-networks were
identified in two steps. First, an enrichment analysis method was
used to determine the transcription factors whose known target
genes are over-represented among the DEGs. The enrichment is
considered as a proxy of the transcription factor activities. It was
computed using the strategy defined in Dorothea155 and
implemented in the software Funki156, and the analysis was
performed independently for male and female DEGs. The
difference between the predicted activity for the sex-specific
analyses was then used to identify the most relevant transcription
factors involved in the control of downstream sex-dependent
expression changes (i.e., transcription factors whose targets are
enriched in one sex and relatively underrepresented in the other).
Regulatory interactions between the transcription factors of

interest and the differentially expressed genes were extracted

from two repositories, MetaCore GeneGo and OmniPath/Dor-
othea155,157 (OmniPath/Dorothea version of the 2022/09/01,
GeneGo version of the 2022/09/01, RRID: SCR_008125). Gene
names were unified through matching to official gene names from
Ensembl (v107, Jul2022). The regulatory consistency of the
interactions was further checked and interactions associated with
inconsistent gene expression log. fold changes were filtered out
(i.e., activated targets must show the same direction of change as
the source gene, inhibited targets must show an opposite
direction of change). Network visualizations presented in Fig. 3
and Supplementary Fig. 9 were created using Cytoscape158.

Single-cell transcriptomics data analyses
Two single-cell RNA-seq datasets derived from substantia nigra
samples of PD patients and controls were analyzed to confirm the
main pathway analysis findings from the bulk transcriptomics
analysis, and to study the cell-type specificity of sex-dependent
disease-associated alterations. Both datasets were pre-processed
and quality-filtered using the R software package Seurat
(v3.2.0)159. Cells for which more than 10% of the counts mapped
to ribosomal genes were removed after confirming that they also
had lower numbers of total counts. In addition, outlier cells
associated with less than 200 or more than 10,000 detected genes
were also removed. The data was then normalized by applying the
SC transform method160, using the mitochondrial gene/ribosomal
gene/ribosomal RNA proportions, cell cycle estimates and patient
age as covariates, whenever the relevant variables were available.
For datasets with existing metadata, the original cell cluster

annotations corresponding to the different cell types were used,
and otherwise, cell clusters were determined as follows. First, a
PCA was run to extract the 50 most variable components. These
were then used to create a cell-cell association network and
identify cell clusters in this network using the enhanced Louvain
algorithm (using multilevel refinement, with a resolution of 0.3,
500 different repetitions and maximum 500 iterations per
repetition)161. Finally, the expression of known cell markers was
used to estimate the most probable cell type for each cluster (see
Supplementary Note 1). For each cell cluster, a differential
expression analysis was performed separately for males and
females using a Poisson distribution model162. Due to the limited
number of available single-cell RNA-seq datasets, no integrative
meta-analysis was performed, and the differentially expressed
genes for each dataset were further investigated in separate
functional enrichment analyses.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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