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Detecting Parkinson’s disease and its cognitive phenotypes via
automated semantic analyses of action stories
Adolfo M. García 1,2,3,4,5,12✉, Daniel Escobar-Grisales 6,12, Juan Camilo Vásquez Correa7, Yamile Bocanegra8,9, Leonardo Moreno10,
Jairo Carmona9 and Juan Rafael Orozco-Arroyave 6,11✉

Action-concept outcomes are useful targets to identify Parkinson’s disease (PD) patients and differentiate between those with and
without mild cognitive impairment (PD-MCI, PD-nMCI). Yet, most approaches employ burdensome examiner-dependent tasks,
limiting their utility. We introduce a framework capturing action-concept markers automatically in natural speech. Patients from
both subgroups and controls retold an action-laden and a non-action-laden text (AT, nAT). In each retelling, we weighed action and
non-action concepts through our automated Proximity-to-Reference-Semantic-Field (P-RSF) metric, for analysis via ANCOVAs
(controlling for cognitive dysfunction) and support vector machines. Patients were differentiated from controls based on AT (but
not nAT) P-RSF scores. The same occurred in PD-nMCI patients. Conversely, PD-MCI patients exhibited reduced P-RSF scores for
both texts. Direct discrimination between patient subgroups was not systematic, but it yielded best outcomes via AT scores. Our
approach outperformed classifiers based on corpus-derived embeddings. This framework opens scalable avenues to support PD
diagnosis and phenotyping.
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INTRODUCTION
The quest for cognitive markers of Parkinson’s disease (PD)
highlights the usefulness of assessing action concepts—mainly
verbs denoting bodily movement, such as run, jump, applaud, and
dance1. Indeed, their processing hinges on motor brain net-
works2–4 and is influenced by the speed and precision of bodily
actions5,6. Since PD compromises these neural circuits and
behavioral dimensions, action concepts have been proposed as
a robust target to identify patients and differentiate between
phenotypes1. However, most evidence comes from burdensome,
examiner-dependent, non-ecological tasks, limiting the frame-
work’s sensitivity, scalability, and clinical utility1,7–9. To overcome
such caveats, this machine learning study leverages automated
semantic analysis of action and non-action stories by healthy
controls (HCs) and early PD patients, including subgroups with
and without mild cognitive impairment (PD-MCI, PD-nMCI).
Affecting over 6 million people, PD is the most prevalent and

fastest-growing movement disorder worldwide10. Patients are
typified by primary motor impairments and diverse cognitive
symptoms, mainly linked to frontostriatal degeneration11. Despite
their usefulness, gold-standard clinical, imaging, and biospecimen
tests often prove invasive, costly, and/or unspecific to reveal
disease-specific signatures11. A thriving complement comes from
tasks tapping action concepts, as defined above. Indeed, in varied
PD cohorts, this approach has revealed early, category-specific,
and disease-differential deficits9,12, related to canonical brain
alterations9,13,14 and sensitive to medication status15—for a
review, see Birba et al.1. Moreover, assessments of action concepts
can robustly discriminate between persons with PD-MCI and PD-

nMCI: whereas action-concept deficits occur alongside non-action
concept deficits in the former group, they prove selective in PD-
nMCI patients7,16, who account for roughly three-fourths of the
population17–19.
Yet, most evidence comes from highly controlled tasks that

prove lengthy (lasting up to 25min), unnatural (e.g., requiring fast
decisions over random sequences of context-free stimuli), and/or
based on fallible examiner-dependent scoring1. Promisingly,
incipient machine learning studies indicate that automated
capturing of action semantics in (semi)spontaneous discourse
can identify early-stage PD patients and discriminate between
subgroups (e.g., based on dopamine bioavailability) in a natur-
alistic, objective, cost-effective, and patient-friendly setting8,20.
However, none of these reports employed a paradigm strategically
designed to elicit action concepts in unfolding speech, let alone
while exploring their sensitivity to distinct disease phenotypes. A
fruitful path for clinical PD research thus emerges at the crossing
of behavioral neurology, cognitive neuroscience, and natural
language processing.
Here we examined whether automated discourse-level analysis

of action semantics can (i) identify PD patients in a cognitively
heterogeneous cohort and (ii) differentiate between PD-MCI and
PD-nMCI individuals. Early-stage patients and HCs read and
immediately retold two matched, validated stories: an action text
(AT, rich in movement descriptions) and a non-action text (nAT,
focused on non-motoric events)4,7–9,21,22. For each text, we
extracted semantic features via latent semantic analysis (LSA)
and implemented a Proximity-to-Reference-Semantic-Field (P-RSF)
metric, capturing the weight of action and non-action concepts
across retold texts. We then used inferential statistical models
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(ANCOVAs, controlling for cognitive symptom severity) and
support vector machine (SVM) classifiers to assess whether
patients and HCs could be discriminated via semantic information.
Moreover, we performed additional analyses based on corpus-
derived word embeddings as a benchmark to gauge the
robustness of our metric. Finally, exploratory correlations were
performed between P-RSF scores and an index of motor symptom
severity. The pipeline is depicted in Fig. 1.
We advanced three hypotheses and an exploratory question.

First, in line with the literature1, we predicted that patients in the
overall cohort would be robustly identified through AT (but not
nAT) retelling (i.e., via action semantic fields). Second, building on
the previous work7,16, we hypothesized that such a selective AT
pattern would be replicated in the PD-nMCI subgroup. Third,
considering the same antecedents7,16, we anticipated that PD-MCI
patients would be discriminated through semantic patterns in
either text. Finally, we inquired whether any text could directly
discriminate between PD-nMCI and PD-MCI patients. By testing
these predictions, we aim to open new objective, affordable, and
ecological avenues towards scalable markers of PD.

RESULTS
All PD patients vs. all HCs
Comparisons between all PD patients and all HCs (Fig. 2a, top
inset) revealed significantly lower P-RSF values for the former
group in the AT [F(1,76)= 10.55, p= 0.002, ηp2= 0.12], alongside
non-significant between-group differences in the nAT
[F(1,76)= 2.92, p= 0.092, ηp

2= 0.03]. Similarly, classification
between PD patients and HCs was robust for the AT (AUC= 0.80,
accuracy= 72.5%) and near chance for the nAT (AUC= 0.60,
accuracy= 58.8%)—Table 1 and Fig. 2a (lower insets).

PD-nMCI patients vs. HCs
Compared with HCs, PD-nMCI patients exhibited lower P-RSF
scores in the AT [F(1,44)= 4.27, p= 0.04, ηp2= 0.08], but not in the
nAT [F(1,44)= 3.387, p= 0.072, ηp2= 0.07]—Fig. 2b, top panel.
Classification between participants in these groups was successful
upon considering P-RSF values from the AT (AUC= 0.93,
accuracy= 85%), whereas the nAT yielded chance-level outcomes
(AUC= 0.55, accuracy= 48.3%)—Table 1 and Fig. 2b (lower
insets).

PD-MCI patients vs. HCs
P-RSF values in the AT were also higher for PD-MCI patients than
for HCs [F(1,28)= 4.47, p= 0.04, ηp

2= 0.14], there being no
significant group differences in the nAT [F(1,28)= 0.69,
p= 0.414, ηp2= 0.02] –Fig. 2c, top inset. In this tandem, good
classification scores were obtained for both the AT (AUC= 0.90,
accuracy= 82.5%) and the nAT (AUC= 0.80, accuracy= 72.5%)—
Table 1 and Fig. 2c (lower insets).

PD-nMCI vs. PD-MCI patients
Comparisons of P-RSF scores between both patient groups
revealed non-significant differences for the AT [F(1,36)= 1.69,
p= 0.20, ηp

2= 0.05] and the nAT [F(1,36)= 0.007, p= 0.93,
ηp

2= 0.01]—Fig. 2d, top inset. Yet, classification results were
more robust for the AT (AUC= 0.82, accuracy= 69.5%) than for
the nAT (AUC= 0.53, accuracy= 61.5%)—Table 1 and Fig. 2d
(lower insets).

Classification based on corpus-derived verb-to-verb semantic
distance
Classification outcomes based on GloVe-derived distances
between participants’ verbs and those in the original stories were

systematically lower than those obtained with the P-RSF metric
(Table 2). This was true for the classification of all PD patients vs. all
HCs (AT: AUC= 0.61, accuracy= 46.8%; nAT: AUC= 0.57, accu-
racy= 57.4%), PD-nMCI patients vs. HCs (AT: AUC= 0.62, accu-
racy= 59.2; nAT: AUC= 48.6, accuracy= 52.5%), PD-MCI patients
vs. HCs (AT: AUC= 0.58, accuracy= 57.5; nAT: AUC= 0.75,
accuracy= 67.5), and PD-nMCI vs. PD-MCI patients (AT: AUC=
0.59, accuracy= 63.3%; nAT: AUC= 0.59, accuracy= 60.5%).

Classification based on overall semantic structure
Classification outcomes based on GloVe word embeddings were
also lower than those obtained with the P-RSF metric (Table 3).
This was true for the classification of all PD patients vs. all HCs (AT:
AUC= 0.54, accuracy= 60.62%; nAT: AUC= 0.57, accuracy=
62.06%), PD-nMCI patients vs. HCs (AT: AUC= 0.68, accuracy=
65%; nAT: AUC= 0.63, accuracy= 62.5%), PD-MCI patients vs. HCs
(AT: AUC= 0.65, accuracy= 67.5%; nAT: AUC= 0.78, accuracy=
67.5%), and PD-nMCI vs. PD-MCI patients (AT: AUC= 0.63,
accuracy= 59.3%; nAT: AUC= 0.68, accuracy= 66.5%).

Exploratory correlation analyses
Exploratory correlation analyses revealed that P-RSF scores from
the AT and the nAT were not significantly associated with UPDRS-
III scores in any group (Table 4).

DISCUSSION
We developed an automated framework to capture semantic
markers of PD and its cognitive phenotypes through AT and nAT
retelling. The weight of action and non-action concepts in each
retold story was quantified with our P-RSF metric, compared
between groups through ANCOVAs, and used to classify between
patients and HCs via machine learning. P-RSF scores from AT (but
not nAT) retelling robustly discriminated between PD patients and
HCs. Subgroup analyses replicated this pattern in PD-nMCI
patients but not in PD-MCI patients, who exhibited reduced
P-RSF scores for both AT and nAT retellings. Also, though not
systematic, discrimination between PD-nMCI and PD-MCI was
better when derived from AT than nAT retellings. Moreover, our
approach outperformed classifiers based on corpus-derived word
embeddings. Finally, no significant associations emerged between
P-RSF and UPDRS-III scores. These findings have translational
implications, as discussed next.
Comparisons between the overall PD and HC groups revealed

significantly lower P-RSF scores for the AT in the patients, with
non-significant differences for the nAT. This points to a selective
impariment in evoking action-related events, as previously
observed through lexical decision12, semantic similarity judg-
ment12, picture naming13, and text comprehension9 tasks. Of note,
present results were covaried for MoCA and IFS outcomes as
indices of cognitive symptom severity. This replicates the finding
that action-concept deficits in PD7 and other disorders with
motor-network disruptions4 are not driven by domain-general
cognitive dysfunctions, but rather constitute sui generis
disturbances.
In the same vein, classification between patients and HCs via

P-RSF scores was robust for AT retellings (AUC= 0.80, accuracy=
72.5%) and near-chance for nAT retellings. While previous
machine learning studies on PD have reported action-concept
alterations in (semi)spontaneous discourse8,20, our study shows
their selective occurrence relative to non-action semantic fields.
Such a pattern supports the disrupted motor grounding hypoth-
esis, which posits that if action concepts distinctly recruit motor
mechanisms in HCs2,3, then they should be differentially impaired
in persons with motor-system disruptions1. Indeed, action-concept
processing in PD has been linked to alterations in regions
subserving movement initiation and observation, such as the
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Fig. 1 Analysis pipeline. a Participants read and immediately retold an AT and an nAT. b P-RSF scores were extracted from each subject’s AT
and nAT retelling. c Statistical between-group comparisons were made via ANCOVAs, covarying for MoCA and IFS scores. d Classification
analyses were based on support vector machines, with results represented via receiver operating characteristic (ROC) curves, confusion
matrices, and distribution plots of P-RSF scores. These analyses were applied to discriminate between (i) all PD patients and all HCs, (ii) PD-
nMCI patients and HCs, (iii) PD-MCI patients and HCs, and (iv) PD-nMCI and PD-MCI patients. AT action text, nAT non-action text, ANCOVA
analysis of covariance, MoCA Montreal Cognitive Assessment, IFS INECO Frontal Screening, P-RSF Proximity-to-Reference-Semantic-Field, PD
Parkinson’s disease, PD-MCI Parkinson’s disease with mild cognitive impairment, PD-nMCI Parkinson’s disease without mild cognitive
impairment.
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primary motor cortex14 and the extrastriate body area9, which are
distinctively compromised in this population23. Our approach
offers new possibilities towards the probabilistic detection of
persons with PD.
Yet, action-semantic measures may not be equally sensitive

across the disease’s cognitive phenotypes. Reduced P-RSF scores
for AT retelling were selective only in PD-nMCI patients. In this
subgroup, subject-level classification increased substantially
(AUC= 0.93, accuracy= 85%), contrasting with the chance-level
classification obtained through nAT outcomes. Contrariwise, PD-

MCI patients were robustly discriminated from HCs based on
P-RSF scores from both AT and nAT retelling. This aligns with text
comprehension7 and picture-naming16 studies showing that
action-concept deficits emerge selectively in PD-nMCI but are
accompanied by non-action-concept impairments in PD-MCI. Such
evidence reinforces the distinct link between action-concept
processing and motor-system impairment in PD: in mainly motoric
phenotypes (i.e., PD-nMCI), we propose, AT retelling becomes
distinctly compromised, arguably due to the distinct reliance of
action concepts on more focally compromised motor

Fig. 2 Statistical comparison between groups in each tandem (top insets) and classification results using action texts (lower insets). a All
PD patients vis-à-vis all HCs. b PD-nMCI patients vis-à-vis HCs. c PD-MCI patients vis-à-vis HCs. d PD-nMCI vis-à-vis PD-MCI patients. AT action
text, nAT non-action text, P-RSF Proximity-to-Reference-Semantic-Field, PD Parkinson’s disease, PD-MCI Parkinson’s disease with mild cognitive
impairment, PD-nMCI Parkinson’s disease without mild cognitive impairment.
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mechanisms9,13,14. Conversely, when patients’ motoric deficits are
accompanied by widespread cognitive disturbance (i.e., PD-MCI),
diverse semantic fields would become affected, arguably because
multimodal conceptual processing recruits diverse brain regions
that support myriad cognitive functions2,24 and which may be
specifically atrophied in PD-MCI25. Although the neural signatures
of semantic processing differences between PD-nMCI and PD-MCI
remain poorly understood, this conjecture aligns with present and
previous findings, paving the way for new investigations.
Yet, direct contrasts between patient subgroups yielded less

consistent results. On the one hand, ANCOVAs failed to reveal
significant differences in either text. However, P-RSF scores from
the AT surpassed those from the nAT in classifying patients with
and without MCI, with above-chance accuracy (69.5%) and a solid
AUC value (0.82). Thus, our approach may prove more sensitive to
discriminate between phenotypes in probabilistic subject-level
terms than at the group level. Previous discourse-level evidence
indicates that action-concept measures can discriminate between

PD patients on and off medication8. Though inconclusive, our
study suggests that examinations of this domain may also be
worth pursuing to discriminate between patients with different
cognitive profiles. This would be a relevant effort, since standard
screening instruments, such as the Mini-Mental State Examination,
are bound to ceiling effects and often fail to capture cognitive
dysfunction in PD26. Given that dementia symptoms may be
unnoticed in over half of PD patients27, our semantic framework
may be combined with other approaches, such as motor speech
assessments28, to establish phenotypic distinctions within the
overall patient population.
Also, the P-RSF metric systematically outperformed classifiers

based on GloVe embeddings. First, this was the case when such
embeddings were used to calculate distance between verbs in the
retellings and in the original texts. This is likely so because P-RSF
uses LSA, yielding vectors based on our original texts’ bag of
words. As such, our approach considers the frequency and co-
occurrence patterns of the AT and the nAT, systematically
designed to capture the action vs. non-action opposition while
being controlled for over 20 psycholinguistic variables9. Con-
versely, GloVe embeddings result from a model trained with a
large corpus that targets no specific hypothesis-driven semantic
category. Thus, words’ semantic spaces are created by reference

Table 1. Machine learning results for each group tandem based on
the P-RSF metric.

Accuracy Sensitivity Specificity F-score

All PD patients vs. all HCs

Action text 72.5 80.0 65.0 72.2

Non-action text 58.8 57.5 60.0 57.7

PD-nMCI patients vs. HCs

Action text 85.0 96.7 73.3 84.2

Non-action text 48.3 41.6 55.0 41.8

PD-MCI patients vs. HCs

Action text 82.5 95.0 70.0 78.7

Non-action text 72.5 75.0 70.0 66.7

PD-nMCI vs. PD-MCI patients

Action text 69.5 75.0 65.0 67.6

Non-action text 61.5 60.0 63.3 58.7

HCs healthy controls, PD Parkinson’s disease, PD-nMCI Parkinson’s disease
without mild cognitive impairment, PD-MCI Parkinson’s disease with mild
cognitive impairment.

Table 2. GloVe embeddings: classification based on corpus-derived
verb-to-verb semantic distance.

Accuracy Sensitivity Specificity F-score

All PD patients vs. all HCs

Action text 46.8 88.3 29.0 44.6

Non-action text 57.4 45.0 62.7 51.4

PD-nMCI patients vs. HCs

Action text 59.2 65.0 53.3 55.7

Non-action text 52.5 28.3 76.7 47.5

PD-MCI patients vs. HCs

Action text 57.5 30.0 85.0 48.7

Non-action text 67.5 55.0 80.0 61.7

PD-nMCI vs. PD-MCI patients

Action text 63.3 20.0 90.0 48.0

Non-action text 60.5 40.0 71.7 50.3

HCs healthy controls, PD Parkinson’s disease, PD-nMCI Parkinson’s disease
without mild cognitive impairment, PD-MCI Parkinson’s disease with mild
cognitive impairment.

Table 3. GloVe embeddings: classification based on overall semantic
structure.

Accuracy Sensitivity Specificity F-score

All PD patients vs. all HCs

Action text 60.62 53.33 64.67 54.78

Non-action text 62.06 46.67 68.00 54.19

PD-nMCI patients vs. HCs

Action text 65.00 65.00 65.00 62.45

Non-action text 62.50 68.33 56.67 56.87

PD-MCI patients vs. HCs

Action text 67.50 60.00 75.00 60.67

Non-action text 67.50 60.00 75.00 64.33

PD-nMCI vs. PD-MCI patients

Action text 59.33 25.00 83.33 44.15

Non-action text 66.50 50.00 80.00 60.14

HCs healthy controls, PD Parkinson’s disease, PD-nMCI Parkinson’s disease
without mild cognitive impairment, PD-MCI Parkinson’s disease with mild
cognitive impairment.

Table 4. Exploratory correlations between P-RSF scores and UPDRS-III
scores.

Correlations
between P-RSF
scores on the AT
and UPDRS-III scores

Correlations
between P-RSF
scores on the nAT
and UPDRS-III scores

r-value p-value r-value p-value

All PD patients −0.171 0.29a −0.163 0.31b

PD-nMCI patients 0.147 0.49a 0.029 0.89b

PD-MCI patients −0.056 0.84b −0.184 0.49a

DUPDRSIII part III of the Unified Parkinson’s disease Rating Scale, PD
Parkinson’s disease, PD-nMCI Parkinson’s disease without mild cognitive
impairment, PD-MCI Parkinson’s disease with mild cognitive impairment.
aBased on Pearson’s correlations, given the data distribution.
bbased on Spearman’s correlations, given the data distribution.
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to multiple topics rather than predefined semantic fields informed
by previous findings.
Moreover, the P-RSF metric offered better classification than

analyses based on the texts’ overall semantic structure (also
obtained via GloVe). This reinforces the view that semantic
abnormalities in PD are mainly driven by action concepts. Indeed,
while PD patients are consistently affected in this category1, they
evince no major alterations in more general semantic measures,
including processing of abstract12 and social concepts9, semantic
granularity29, and ongoing semantic variability29, among others.
Note, also, that the P-RSF metric allows identifying specific
semantic memory domains that are compromised and spared,
favoring interpretability. Taken together, these observations attest
to the distinct usefulness of our methodological framework.
Finally, exploratory correlation analyses for each text in each

group revealed non-significant associations between P-RSF scores
and UPDRS-III scores. This suggests that patients’ action semantic
alterations were not proportional to their degree of motor
impairment. This finding replicates previous studies reporting null
associations between UPDRS-III scores and performance in other
action-concept tasks, including lexical decision30, picture nam-
ing16, verb generation31, and action fluency32. Tentatively, this
suggests that semantic abnormalities in PD hold irrespective of
motor symptom severity, reinforcing the critical role of cognitive
dysfunction in determining whether concept-level alterations are
confined to the action domain or general to other semantic
categories7,16.
It is worth stressing that present results were obtained with

naturalistic tasks and automated methods. Action-semantic
deficits are well-established in the PD literature1, but they are
typically captured through burdensome tasks that are rarely, if
ever, found in real life. For example, participants have been asked
to decide whether successive letter strings constitute real words12,
name or associate decontextualized pictures16, or press buttons
with particular hand positions after sentence listening33. Such
settings may prove tiring, frustrating, and cognitively taxing,
compromising data quality, task completion, and ecological
validity. Moreover, performance in several relevant tasks, such as
fluency34 and picture naming16, is established by examiners, who
must single-handedly decide whether each response meets
correctness criteria. Ensuing scores may thus be prone to inter-
rater variability, potentially undermining reliability. Automated
analysis of free speech overcomes these issues, offering a patient-
friendly, ecologically valid, and objective framework to collect
clinically usable data. In particular, our approach, rooted in a
strategic task and a theory-driven metric, combines the sensitivity
of action-semantic assessments for PD with the clinical potential
of automated discourse analysis. Further work in this direction
could hone the translational relevance of linguistic assessments in
the quest for early markers of PD.
Our study is not without limitations. First, our sample size was

moderate, especially in the subgroup analyses. Although previous
natural discourse studies on PD8,20,35 and other neurodegenera-
tive disorders29 have yielded robust results with similar and
smaller groups, replications with more participants would be
needed. Relatedly, results stemmed from the distance between
the original texts’ verbs and the ones produced by participants in
each training fold, meaning that they might change if new
participants were tested and produced verbs that were not
present in such folds. Hence, our models should be enriched with
larger samples (ideally allowing for out-of-sample validation) so as
to strengthen their generalizability. Second, the AT and nAT we
employed described only a few action and non-action events
which may not be directly relevant to patients’ daily activities. This
should be circumvented in future studies, aiming for greater
ecological validity. Third, the retelling task taxes working memory
resources. Although statistical results were controlled for mea-
sures of cognitive (including memory) function, this might partly

influence overall task conditions for PD-MCI patients. Future
studies could harness our approach with tasks that reduce
working memory demands, such as online descriptions of action
and non-action pictures. Fourth, our study was restricted to
Spanish, precluding insights on cross-linguistic generalizability. As
argued recently36 and as done in other PD studies35, replications
over typologically different languages would be important to
ascertain the external validity of these results. Finally, as in recent
text comprehension research9, further studies could include
neural measures to reveal anatomo-functional signatures of the
different behavioral profiles reported in each group.
In conclusion, well-established semantic markers of PD can be

captured automatically in connected discourse. In particular,
disruptions in the construal of action concepts seem useful to
identify persons with PD and to detect patterns that differ
between those with impaired and spared cognitive skills. Given its
objectivity, low cost, and scalability, this approach can fruitfully
complement mainstream approaches to characterizing, phenotyp-
ing, and diagnosing patients. Computerized language analysis,
thus, represents a promising tool towards richer clinical research
on this population.

METHODS
Participants
The study involved 80 Spanish speakers from a well-characterized
cohort7,28, including 40 early PD patients with varied cognitive
profiles and 40 HCs. This sample size matches or surpasses that of
previous PD studies using automated language tools8,20. All
participants were Hispanics/Latinos from Colombia, self-identified
as white in terms of race. No participant reported a multi-racial
background nor indigenous, Asian, or African ancestry. Patients
were diagnosed based on United Kingdom PD Society Brain Bank
criteria37, with motor assessments via the UPDRS-III38 and the
Hoehn & Yahr scale39, and executive function testing through the
INECO Frontal Screening (IFS) battery40. No patient had primary
language deficits, signs of Parkinson-plus, deep brain stimulation
antecedents, or concomitant neurological, psychiatric, or addic-
tion disorders. Results from the Barthel Index41 and the Lawton &
Brody Index42 indicated that all patients were functionally
independent.
MCI screening followed level-1 criteria of the Movement

Disorder Society Task Force43, including the Montreal Cognitive
Assessment (MoCA)44, a sensitive tool for PD26. Patient sub-groups
were formed based on region-specific MoCA cutoffs45, as in the
previous works7,28. Those with normal MoCA scores integrated the
PD-nMCI group (n= 24), while those with MoCA scores below the
MCI cutoff were classified as PD-MCI (n= 16)—Supplementary
Information 1. These sample sizes are similar to or larger than
those of previous machine learning studies8,28,46.
HCs had functional independence, normal MoCA scores, and no

history of neurological or psychiatric disease. They were socio-
demographically matched with patients in the overall cohort
(Table 5) as well as in each sub-group (Supplementary Information
1). Patient sub-groups were also matched for sociodemographic
and clinical variables. All patients were tested during the “on”
phase of anti-parkinsonian medication, converted to Levodopa
equivalent daily dose47.
Participants provided written informed consent pursuant to the

Declaration of Helsinki. The study was approved by the Institu-
tional Ethics Committee of Antioquia University (resolutions 14-10-
569 and 15-10-569).

Materials
The AT and the nAT were created through a systematic protocol
used in previous action semantics research4,7,9,21,48. The former
story focused on the characters’ bodily movements, including
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single-limb and whole-body actions performed in isolation or
during interactions with objects and other people (e.g., Johnny ran
quickly to the place where the clown was jumping and dancing). This
text offered several locative and temporal specifications, alongside
details of how bodily actions were performed. Conversely, the nAT
foregrounded its characters’ feelings, thoughts, and perceptions
(e.g., Albert was euphoric), without explicit mention of bodily
actions. Abundant circumstantial information was included about
the places, objects, emotions, and internal states involved in
the story.
Each text was based on the same 22 grammatical patterns,

pseudo-randomly distributed in each case. Selected lexical items
were chosen to compose each story. These included 32 verbs per
text, chosen based on semantic, syntactic, and distributional
criteria to operationalize the action/non-action distinction. The
stories were matched for character count; overall and content-
word-type counts; mean content-word frequency, familiarity,
syllabic length, graphemic length, and imageability; sentence
and sentence-type counts; reading difficulty; grammatical correct-
ness, coherence, and comprehensibility; readability rating; and
emotional content (Table 6). Both texts communicated mostly
literal meanings and contained no jargon (for full transcriptions
and English translations, see Supplementary Information 2).

Procedure
Participants sat at a desk in a quiet room, wearing a noise-
canceling headband microphone (Genius HS-04SU) connected to
a laptop. First, for familiarization purposes, they were handed a
practice text and asked to read it silently, at their own pace. Once
finished, the page was removed and they were asked to retell the
story in their own words, with normal pace, cadence, and volume.
The same procedure was then followed for the AT and the nAT,
whose order was counterbalanced across participants (Fig. 1a). All
participants retold both texts. Audio files were deidentified,
recodified, and saved via WaveSurfer 1.8.8p4 (.wav, 44100 Hz, 16
bits). Recordings were transcribed via an automatic speech-to-text
service and manually revised following standard criteria from the

Royal Spanish Academy, as in previous works20,35. Transcripts were
fully faithful to the patients’ production: grammatical mistakes,
false starts, hesitations, and other speech infelicities were left
unedited for analysis20,35.

Data preprocessing and feature extraction
Following standard preprocessing approaches, all words in each
transcript were converted to lowercase letters. Accents, numbers,
punctuation signs, and stop words were then removed, and the
remaining words were lemmatized29. Feature extraction was
performed for AT retellings and nAT retellings separately. This
yielded two corpora, each with its own vocabulary (i.e., a list of

Table 5. Participants’ demographic and clinical data.

All PD patients
(n= 40)

All HCs
(n= 40)

All PD
patients vs.
all HCs

Sociodemographic variables

Sex (F:M) 15:25 15:25 –

Age 62.25 (9.27) 61.87 (7.32) 0.84a

Years of education 12.23 (5.01) 12.75 (4.62) 0.63a

Clinical variables

Years since
diagnosis

5.65 (3.72) – –

UPDRS-III 31.0 (12.54) – –

H&Y 2.05 (0.29) – –

IFS battery 19.56 (3.36) 22.92 (2.67) 0.07a

Barthel Index 100 (0) – –

L&B 8 (0) – –

MoCA 24.75 (2.99) 26.7 (1.63) >0.01a

LED 658.27 (375) – –

Data presented as mean (SD); sex was self-reported.
PD Parkinson’s disease, HCs healthy controls, UPDRS-III Unified Parkinson’s
Disease Rating Scale, part III, H&Y Hoehn & Yahr scale, IFS INECO Frontal
Screening, L&B Lawton & Brody Index, MoCA Montreal Cognitive Assess-
ment, LED Levodopa equivalent dose.
ap-values calculated using Mann–Whitney U tests.

Table 6. Linguistic features of the stories.

Action text Non-
action text

Statistic p-value*

Charactersa 944 978 χ²= 0.60 0.44

Words 208 204 χ²= 0.04 0.84

Nouns 48 44 χ²= 0.17 0.68

Adjectives 7 9 χ²= 0.25 0.62

Adverbs 6 8 χ²= 0.29 0.59

Verbs 32 32 χ²= 0 1

Action verbs 1 24 χ²= 21.16 <0.001

Non-action verbs 31 8 χ²= 13.56 <0.001

Content word
frequencyb

1.63 1.79 t= 1.53 0.13

Content word
familiarityb

6.15 6.24 t= 0.74 0.46

Content word
imageabilityc

5.25 4.97 t= 1.39 0.17

Content word syllabic
lengthc

2.52 2.49 t= 0.25 0.80

Content word
graphemic lengthc

6.16 6.26 t= 0.36 0.72

Sentences 22 22 χ²= 0 1

Minor sentences 3 3 χ²= 0 1

Simple sentences 8 8 χ²= 0 1

Compound sentences 4 3 χ²= 0.14 0.71

Complex/complex-
compound sentences

7 8 χ²= 0.07 0.80

Grammatical
correctnessd

4.52 4.29 t= 0.66 0.51

Coherenced 4.05 3.86 t= 0.62 0.54

Comprehensibilityd 4.24 4.10 t= 1.05 0.30

Readabilitye 79.92 77.3 χ²= 0.04 0.83

Reading difficultyf Fairly easy Fairly easy – –

Emotional valenceg 33.25 33.29 F= 1.0 0.33

Arousalg 4.81 4.24 F= 2.7 0.20

aCharacter count was performed without counting spaces.
bData extracted from the LEXESP database, through B-Pal47 (results based
on the mean of all content words in each text).
cData extracted from B-Pal47 (results based on the mean of all content
words in each text);
dData collected from a panel of 10 Spanish-speaking undergraduates,
based on Likert scales ranging from 1 (very low) to 5 (very high).
eBased on the Szigriszt-Pazos Index48.
fBased on the Inflesz scale rating49.
gData collected from a panel of 17 native Spanish speakers, who rated each
sentence in the texts in terms of overall emotional content (positive,
negative, or neutral) and arousal level for positive and negative emotions
(based on seven-point Likert scales).
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unique words for the ATs and another one for the nATs). Three
main steps were applied thereon: (i) computation of words’ vector
representations; (ii) estimation of the verbs’ importance in each
original story; and (iii) calculation of the P-RSF metric, capturing
the weight of action and non-action semantic fields across in each
retelling (Fig. 1b).
In each type of retelling separately, vector representations were

obtained for each word via LSA –a method that represents each
document based on latent features or topics, previously used in
PD research20. First we constructed a document-term matrix. The
cardinality of this matrix is m × v, where m is the number of
documents in the corpus and v is the number of words in the
vocabulary. The matrix was estimated using the Bag-of-Words
model, which computes the vector representation of a document
based on the frequency of each of its constituting words49. As in
previous automated semantic analysis on PD20, the document-
term matrix was further processed via singular value decomposi-
tion (SVD) to obtain two matrices, namely: an encoding and a
dictionary matrix. The encoding matrix relates each document
with its weight in each topic, and the dictionary matrix relates
each term or word in the vocabulary with its weight in each topic.
The topics considered for analyses were those that accumulated
95% of the explained variance50. The dictionary matrix was then
used to create a vector representation for each word in the
vocabulary of the AT, on the one hand, and of the nAT, on
the other.
We then computed the importance of the verbs in each

retelling, exclusively targeting those that also appeared in the
original stories. This yielded 27 verbs for the AT (24 of which
denoted physical actions) and 23 for the nAT (20 of which evoked
no physical actions) –mean motility ratings51 were 3.91 (SD= 1.30)
for AT verbs and 2.29 (SD= 0.79) for nAT verbs. Then, for each
story, we calculated the similarity among each original verb and all
words in each corpus via the average cosine distance. We thus
obtained a verb importance measure, namely, the weight of the
semantic field of each original verb in the semantic field
generated by the words in the retellings.
Finally, we used a part-of-speech-tagger to find all verbs in each

text set52, and computed the occurrence frequency of each
original verb in each retelling. When a verb from a retelling did not
correspond to any original verb, its occurrence frequency was
estimated as the distance to the closest original verb via cosine
similarity. Then, an occurrence matrix was derived from these
vector representations in each retelling document. The cardinality
of this matrix was m × v, where m is the number of documents
and n is the number of original verbs. The P-RSF matrix was then
estimated using the Hadamard product (i.e., element-wise
product) between the occurrence matrix and the verb importance
vector—the lower the P-RSF value, the lower the P-RSF value, the
lower the weight of the target (action or non-action) concepts in a
retelling. This matrix was used for inferential analyses (via
ANCOVAs) and as a feature matrix for machine learning analyses.

Statistical analysis
The features described above were statistically compared
between groups in each tandem, namely: (a) all PD patients and
all HCs, (b) PD-nMCI patients and HCs, (c) PD-MCI patients and
HCs, and (d) PD-nMCI and PD-MCI patients (Fig. 1c). In each case,
mean P-RSF scores on each text were compared between groups
via one-way ANCOVAs, covarying for MoCA and IFS scores as
measures of cognitive symptom severity –as in previous action
semantic studies on PD7 and other neurological disorders4. Alpha
levels were set at p < 0.05. Effect sizes were calculated through
partial eta squared (ηp2) tests. All statistical analyses were
performed on Pingouin, an open-source statistical package53.

Machine learning analyses
The semantic features were also used to classify between
participants in each group tandem: (a) all PD patients and all
HCs, (b) PD-nMCI patients and HCs, (c) PD-MCI patients and HCs,
and (d) PD-nMCI and PD-MCI patients. In each case, individual
binary classifiers were run for the AT and for the nAT. These
analyses employed SVM with a Gaussian kernel, a classifier that
has proven robust in experiments with similar data28,54 and
moderate sample sizes55,56. The kernel bandwidth and regulariza-
tion parameters were optimized through a randomized search
strategy that avoids overfitting and guarantees generalization57.
Instead of searching over the entire grid of possible values of
hyper-parameters, the randomized search only evaluates a
random sample of points on the grid. The models were trained
following a participant-independent nested five-fold cross-valida-
tion strategy, with four folds used internally for hyper-parameter
optimization based on training set outcomes28,54. That is, in each
iteration, four folds were used to train/optimize the model’s meta-
parameters and the remaining fold was used for testing (thus, in
each iteration, each participant’s vectors were used for either
training or testing, but not for both). Main results for each tandem
were represented via an area under the ROC curve plot, a
confusion matrix, and a distribution plot (Fig. 1d).
In addition, we implemented two complementary approaches

as benchmarks to ascertain the discriminatory utility of our
approach. First, we explored classifier performance when verbs’
semantic distance was established by reference to corpus-derived
embeddings, as in previous PD research8. To this end, we used
Global Vectors for Word Representation (GloVe), a method that
captures linear substructures of a text’s word vector space based
on summated statistics of the co-occurrence between any two
words in a corpus58. The same part-of-speech-tagger used in our
main analyses was employed to find all verbs in each
preprocessed retelling. Then, the numerical representation of all
verbs in each retelling was obtained using a previously reported
GloVe model, pre-trained with the Wikipedia 2018 Corpus, which
contains ≈709 million Spanish words59. We computed the cosine
distance between each verb in the retelling and the verbs in the
original story (i.e., the same verbs used in our main analyses). The
feature vector of each retelling was computed as the mean
distance of all verbs in the retelling to each verb in the
corresponding original story. Second, we examined classifier
performance based on each retelling’s overall semantic structure,
as captured by GloVe embeddings. Numerical representations
were obtained for all post-tagged words in each processed
retelling. The overall feature vector of each retelling was
calculated as the mean word embedding of all its words. In both
approaches, classification models were created using support
vector machines, with the same cross-validation strategy used in
our main analyses.

Exploratory correlation analyses
Finally, to examine the relation between action concept proces-
sing and motor symptom severity, we performed exploratory
analyses between P-RSF scores and UPDRS-III scores These
analyses were in each patient group, for each text separately,
using Pearson’s or Spearman’s correlations depending on data
distribution.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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