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Mining imaging and clinical data with machine learning
approaches for the diagnosis and early detection of Parkinson’s
disease
Jing Zhang 1✉

Parkinson’s disease (PD) is a common, progressive, and currently incurable neurodegenerative movement disorder. The diagnosis of
PD is challenging, especially in the differential diagnosis of parkinsonism and in early PD detection. Due to the advantages of
machine learning such as learning complex data patterns and making inferences for individuals, machine-learning techniques have
been increasingly applied to the diagnosis of PD, and have shown some promising results. Machine-learning-based imaging
applications have made it possible to help differentiate parkinsonism and detect PD at early stages automatically in a number of
neuroimaging studies. Comparative studies have shown that machine-learning-based SPECT image analysis applications in PD have
outperformed conventional semi-quantitative analysis in detecting PD-associated dopaminergic degeneration, performed
comparably well as experts’ visual inspection, and helped improve PD diagnostic accuracy of radiologists. Using combined multi-
modal (imaging and clinical) data in these applications may further enhance PD diagnosis and early detection. To integrate
machine-learning-based diagnostic applications into clinical systems, further validation and optimization of these applications are
needed to make them accurate and reliable. It is anticipated that machine-learning techniques will further help improve differential
diagnosis of parkinsonism and early detection of PD, which may reduce the error rate of PD diagnosis and help detect PD at pre-
motor stage to make it possible for early treatments (e.g., neuroprotective treatment) to slow down PD progression, prevent severe
motor symptoms from emerging, and relieve patients from suffering.
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INTRODUCTION
Parkinson’s disease (PD) is a common, chronic, progressive
neurodegenerative movement disorder associated with the
aggregation of abnormal α-synuclein in Lewy bodies and the loss
of nigrostariatal dopaminergic neurons. The mechanism of
neurodegeneration in PD is unclear, and currently, there is no
cure for PD. The most striking symptoms of PD are motor
symptoms such as tremor, rigidity, bradykinesia, or postural
instability and patients with severe motor symptoms often have
difficulty using their hands, or have difficulty standing and walking
due to tremor and stiff muscles, which severely affects their
quality of life. In addition, non-motor symptoms, such as
hyposmia/anosmia (smell/olfactory loss), autonomic dysfunction,
and rapid eye movement (REM) sleep behavior disorder, usually
emerge years before motor symptoms, but they may be mild and
are often overlooked. The diagnosis of PD is challenging, e.g., in
differentiating PD from essential tremor, drug-induced parkinson-
ism and atypical parkinsonian disorders such as progressive
supranuclear palsy (PSP), multiple system atrophy (MSA), and
corticobasal degeneration (CBD). The error rate of a clinical
diagnosis of PD is high. A meta-analysis reported that the error
rate was 26.2% by nonexperts, and from 16.1% (for initial
diagnosis) to 20.4% (for follow up diagnosis) by experts1. Using
autopsy results to evaluate PD diagnoses, Hughes et al.2 found the
diagnostic error rate was around 24%. Further, using neuropatho-
logic findings of PD as the gold standard, Adler et al.3 found that
the accuracy of a clinical diagnosis of PD was only 26% in
untreated or medication non-responsive subjects, 53% in
medication-responsive early PD (duration shorter than 5 years),

and >85% in medication-responsive and longer duration PD. The
high error rate in PD diagnosis may be because: (1) Clinical
diagnoses of PD are mainly based on results of clinical tests and
response to antiparkinsonian medication. Neuroimaging is only
used as an assistance in PD diagnosis, although the clinical utility
of neuroimaging such as SPECT (single photon emission
computed tomography) is high and results of dopamine
transporter scan (DaTscan) lead to modified diagnosis in one-
third of the patients4; (2) Currently, there are few reliable
biomarkers for PD5, in particular, there is no in vivo imaging tool
available to directly image the accumulation of α–synuclein
aggregates or the spreading of Lewy bodies in the brain of a PD
patient6.
Another challenge in the diagnosis of PD is early detection

because at early stages of PD, brain changes and symptoms are
subtle. The brain regions that are most affected by PD are the
basal ganglia and substantia nigra. Neurodegeneration of the
basal ganglia and loss of dopaminergic neurons in the substantia
nigra begin long before the presence of motor symptoms, and by
the time motor symptoms emerge, 40–60% of nigral dopaminer-
gic neurons are lost and up to 80% synaptic function is reduced7,8.
The period between the onset of neurodegeneration and the
emergence of motor symptoms is called prodromal (or pre-motor)
stage, which might last from several years to decades9. Early
neuroprotective treatment can slow down neurodegeneration
progression and potentially prevent clinical PD symptoms from
emerging9. Therefore, it is important to detect PD at early stages
so that early neuroprotective treatment can be effective.
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Clinical assessment and analysis of PD imaging is crucial for the
diagnosis of PD. At early stages of PD, loss of neurons in the brain
first occurs in the ventrolateral substantia nigra pars compacta,
then projects to the posterior putamen, and then to more regions
in the striatum. Progressive brain atrophy has been detected on
structural MRI in PD, even at early PD stages10,11. In addition, due
to the accumulation of abnormal α-synuclein aggregates in Lewy
bodies and the spreading of Lewy bodies in the brain of PD
patients over time (from brain stem and olfactory system, to the
substantia nigra and then to neocortical regions)12, PD may be
viewed as a progressive brain network disruption13. Dopaminergic
radiotracer imaging with SPECT or positron emission tomography
(PET), a biomarker of early PD, can detect dopaminergic
denervation in PD at pre-motor stage9,14. However, dopaminergic
denervation may elude from visual analysis or semi-quantitative
image analysis of SPECT or PET images. Consequently, there is
variability in dopamine transporter SPECT imaging interpretation
between radiologists, which leads to inconsistent diagnosis. Thus,
computer-aided diagnosis (CAD) based on machine-learning
methods has been developed to help detect dopaminergic
denervation on SPECT15–20 and PET21–24 images, and to identify
PD-related structural changes on MRI25–28 for early detection of
PD. Moreover, resting-state functional MRI (rs-fMRI)29–33 and
diffusion tenser imaging (DTI)34,35 have been used to identify
abnormal functional and structural connectivity in PD. Further,
machine-learning-based multi-modal data (including imaging
and/or clinical data) analysis has been found helpful in the
detection of brain abnormalities in PD17,30,36,37.
Machine learning (ML), a group of multivariate analytic methods

that learn from data, identify data patterns and classify the data, is
often used in data mining and artificial intelligence. Machine
learning can be either supervised (using training data labeled by
humans for data classification) or unsupervised (which does not
use training data, but identify data patterns on its own).
Supervised learning includes methods such as linear discriminant
analysis (LDA)38, support vector machine (SVM)39, artificial neural
networks (ANNs)40 and random forest41, while unsupervised
learning includes approaches such as cluster analysis42. Among
these methods, SVM and ANNs are frequently used machine-
learning models. SVM creates a line (or a hyperplane) that best
separates data into classes and provides linear (or non-linear)
mapping between inputs and outputs, while ANNs (consisting of
multiple layers) work in a complex and non-linear way, which do
not provide direct mapping between inputs and outputs. In
addition, based on ANNs, newly developed deep-learning
techniques or deep-neural networks are a new set of powerful
tools for data classification in PD18,24,43.
Since each PD case is unique, diagnosis and therapy need to be

tailored for individual patients to achieve the best clinical
outcome. Machine-learning (ML) techniques have the potential
to identify complex data patterns, automate data analysis, and
make inferences/classifications for data of individual patients,
which may be useful for precision medicine in PD. In recent years,
machine learning has been increasingly used in the diagnosis of
PD. This paper reviewed the studies that applied machine-learning
methods to the diagnosis and early detection of PD in order to
provide an overview of this field.

AN OVERVIEW OF MACHINE-LEARNING-BASED STUDIES FOR
THE DIAGNOSIS OF PD
Studies applied machine-learning-based approaches to the
diagnosis of PD mainly fall into three categories: 1. Discrimination
between PD and Healthy control (HC); 2. Differential diagnosis; 3.
Early PD detection. Machine-learning-based imaging studies using
SPECT, PET, structural MRI, and functional MRI (fMRI) were
summarized in Table 1, Table 2, Table 3, and Table 4, respectively
(among them, Table 4 is a Supplementary Table).

MACHINE-LEARNING-BASED STUDIES FOR THE
DISCRIMINATION BETWEEN PD AND HC
Dopaminergic imaging
Reduced uptake of a dopamine transporter radiotracer in the
striatum of a PD patient on dopaminergic imaging (SPECT or PET)
indicates neuronal degeneration and dopaminergic deficit in PD.
In particular, reduced uptake of [123I]FP-CIT ([123I]-ioflupane) (the
most widely used dopamine transporter radiotracer in SPECT
DaTSCAN imaging) in the striatum (putamen and caudate) helps
confirm PD and exclude other disorders such as drug-induced
Parkinsonism and essential tremor. Measurements of dopamine
transporter binding in the striatum and the distribution of the
radiotracer uptake are important to characterize dopaminergic
functional deficit in PD. Semi-quantitative analysis computes
measurements of dopamine transporter binding in the striatum
such as striatal uptake and striatal-binding ratios, but can not
capture the distribution of the radiotracer uptake (which is often
perceived by experienced experts), while machine-learning
methods such as artificial neural network (ANN) and support
vector machine (SVM) can identify data patterns in the distribution
of the radiotracer uptake on SPECT imaging.
To test the ability whether a machine-learning method can

mimic expert pattern recognition skills, Acton and Newberg
applied ANN to striatum images obtained from dopaminergic
SPECT imaging and obtained an overall diagnostic accuracy of
94.4% (n= 81)15. Illan et al.44 further developed an automatic
computer-aided diagnostic system based on SVM (and other
classifiers) for PD detection, and found that classification with SVM
on striatum images performed the best (the area under the
receiver-operating characteristics curve (AUC) was 0.968) (n=
108). In addition, Segovia et al.45 used partial least square (PLS) for
data dimension reduction of striatum images, classified the
imaging features with SVM and obtained a classification accuracy
of 94.7% (n= 95). Further, Palumbo et al.46 used SVM to classify
the uptake values in the striatal regions (accuracy: 90.6–90.7%)
and reported that uptake values in the putamen are the most
discriminative predictor for PD diagnosis, and adding patient age
to data classification improved classification accuracy (95.6%) (n=
56).
Comparative studies between machine-learning-based analysis

and semi-quantitative analysis of SPECT images have shown that
computer-aided diagnosis (CAD) based on machine-learning
methods such as SVM and ANN has outperformed conventional
semi-quantitative analysis, reduced interpretation variability of
dopaminergic transporter SPECT imaging, and improved diag-
nostic accuracy of PD and consistency of radiologists15,19,20.
Further, new imaging features such as texture features have

improved classification accuracy (e.g., 97.4%, n= 158)47, and
recently developed machine-learning techniques such as deep-
learning convolutional neural networks (CNNs) have begun to
show some promising results. For example, Choi et al.18 developed
an automatic deep-learning system that applied CNNs to SPECT
imaging analysis and obtained high detection rates of 96% (PPMI
data, n= 431, early PD) and 98.8% (local data, n= 72, advanced
PD), which was comparable to that of experts’ visual analysis and
semi-quantitative analysis. The deep-learning system could also
reclassify patients who were clinically diagnosed as PD, but had
scans without evidence of dopaminergic deficit (SWEDD)18.
Further, it has been reported that new classifiers such as enhanced
probabilistic neural network and a semi-supervised-learning
classifier graph-based transductive learning detected PD more
accurately than SVM37,48. In addition, to overcome the limitations
of institution-specific ML software implementations, Zhang and
Kagen explored the widely available GoogleTM TensorFlow
machine-learning software library and applied Artificial Neural
network to SPECT image classification for a large sample of PD
patients (n= 1171), which yielded a classification accuracy of
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93.8 ± 4.7%49. Further, Glaab et al.21 performed voxel-based
whole-brain analysis on FDOPA PET (n= 60 PD) and FDG PET (n
= 44 PD) images, classified them with SVM and random forest
models, and found that FDOPA PET had (~10%) higher diagnostic
performances than FDG PET. Using uptake features or texture
features extracted from FDG PET data, classification yielded
70–91% accuracy21–23. Further research is warranted to validate
and optimize these new data features and/or new machine-
learning methods to improve classification accuracy and reliability.

Structural magnetic resonance imaging (MRI)
Morphometric measurements such as brain gray matter (GM) and
white matter (WM) volumes, shapes, cortical thickness, and
cortical surface area in regions of interest (ROIs) such as striatum
have been used as imaging features to detect progressive brain
atrophy in machine-learning-based MRI imaging analysis to aid in
the diagnosis of PD.
Subcortical nuclei shape analysis has revealed volume differ-

ences in the putamen and shape differences in the striatum
(putamen and caudate nucleus) between PD patient group and
control group, and discriminant analysis using a combination of
these imaging features discriminated individual patients from
controls with an accuracy of 75–83% (n= 21)50. In another study,
SVM was applied to combined MRI imaging features (GM, WM,
cerebrospinal fluid (CSF) volumes, cortical thickness, cortical
surface area, correlation index of cortical thickness of 78 ROIs),
which distinguished patients from controls with an accuracy of
85.8% (n= 69)51. In addition, new MRI imaging features such as
cerebellum shape index36 or GM density feature of the
cerebellum52 and proper classifiers are promising to improve
classification accuracy. For example, classifying GM density
decrease in the Crus and Vermis of the cerebellum with SVM
improved the classification accuracy to 97%52, while classifying
neuroimaging biomarkers such as cerebellum shape index, surface
area, and volume of regions of interest (ROIs), as well as clinical
data (e.g., UPDRS scores) with AdaBoost classifier, yielded a
classification accuracy up to 98.9%36.

Functional MRI (fMRI)
Reduced functional connectivity (FC) and brain activity (measured
by amplitude of low-frequency fluctuation (ALFF)) in the basal
ganglia network (BGN) and sensorimotor network in PD have been
reported53–56. These findings are consistent across multiple
patient samples54,57, and robust to variations in image processing
methods, which suggests that resting-state fMRI (rs-fMRI) might be
a biomarker for PD.
However, there are some inconsistent findings across rs-fMRI

studies in PD58–62. Machine-learning methods may help reveal the
diagnostic value of rs-fMRI in PD and clarify some of the
inconsistencies. rs-fMRI measurements such as FC, ALFF, and
regional homogeneity (ReHo) have been used as imaging features
for PD classification. For example, classifying FC, ALFF, and ReHo
features with SVM yielded a classification accuracy of 74% (n=
19)30; using FC features from 12 brain networks, FC classification
with SVM yielded 70% accuracy (n= 80)63, while using whole-
brain FC features, classification with SVM achieved 93.6% accuracy
(n= 21)64. Apart from variations across data samples, these results
revealed the importance of feature selection and optimization in
machine-learning-based rs-fMRI image analysis.

Multi-modal data
Since data from a single source or modality (e.g., SPECT) can not
fully capture all the key characteristics of the abnormalities of PD,
multi-modal data (e.g., combined SPECT imaging and clinical data
such as motor test score) may help improve PD detection. Multi-
modal data refers to data from different sources (such as imaging

modalities: SPECT, PET, MRI, etc.; and/or clinical tests: motor test,
cognitive test, etc.) measured on different scales. Clinical data that
are often used for PD diagnosis include motor data and non-
motor data of clinical examinations such as motor disorder
society-sponsored revision of the Unified Parkinson’s Disease
Rating Scale I, II, and III (MDS-UPDRS I,II, and III), Montreal
Cognitive Assessment (MoCA), Scales for Outcomes in Parkinson’s
Disease—Autonomic (SCOPA-AUT), and University of Pennsylvania
Smell Identification Test. In addition, to identify biomarkers of PD
progression, the Parkinson Progression Marker Initiative (PPMI)5, a
comprehensive international multi-center study collected multi-
modal clinical data (motor data included MDS-UPDRS; non-motor
data included cognitive testing such as MoCA, autonomic testing
such as SCOPA-AUT total autonomic score, sleep disorder
assessment, and olfactory assessment), imaging data (DaTSCAN
and MRI), biospecimen data (blood, CSF, urine) and genetic data
(DNA, RNA) of 400 PD patients and 200 health controls over 5
years, and made the data available online, which is a great data
resource in the field5.
Studies have shown that the combination of imaging and

clinical data have improved the detection of brain abnormalities in
PD17,21,36,37. For instance, Hirschauer et al.37 found that PD
detection rate of a single-modal feature extracted from SPECT
(Ioflupane (123I) striatal-binding ratios in the caudate and puta-
men) was 66–97%, but the combined multi-modal data features
(SPECT+ clinical data) yielded a detection rate of 98.6%. Glaab
et al.21 also reported that combining imaging data features (PET
data) with metabolomics data enhanced the discrimination power
and diagnostic performance of the machine-learning systems in
their study.
In addition, studies have shown that combined genetic and

clinical data (such as rapid eye movement (REM) sleep behavior
disorder, olfactory loss, and CSF measurements) improved PD
diagnosis and early detection17,36,37. Genetic data (e.g., whether
sibling with PD with age of onset <50 years) and clinical data such
as abnormal quantitative motor test results are biomarkers of early
PD9. For a recent review on machine learning using genetic data in
PD, see ref. 65.

MACHINE-LEARNING-BASED STUDIES FOR THE DIFFERENTIAL
DIAGNOSIS OF PD
Dopaminergic imaging
The difference in striatal uptake or striatal uptake ratios between
PD and other parkinsonism has been identified by machine-
learning-based dopaminergic imaging analysis. To differentiate
between PD and vascular parkinsonism (VP), Huertas-Fernández
et al.66 developed diagnostic models to classify the [(123)I]FP-CIT
uptake in the region of interest (ROI) striatum and the whole brain,
and reported that discrimination accuracy between VP and PD
reached 90.3 ± 5.8% (using logistic regression for ROI approach),
and 90.4 ± 5.9% (using SVM for voxel-based whole-brain
approach) (n= 164). Further, to differentiate between PD and
atypical parkinsonian syndromes such as MSA or PSP, SVM has
been applied to (18)F-DMFP PET image classification (with imaging
features such as striatal uptake and uptake in the thalamus) and
has yielded moderate (>70%) classification accuracy (n= 39)67–69.
A recent study has shown that using deep-learning method and
saliency features (extracted from FDG-PET images) significantly
improved the differentiation between PD, MSA, and PSM (n=
502)24.
In addition, attempts have been made to differentiate between

PD and essential tremor with machine-learning-based dopami-
nergic imaging analysis. Using striatal uptake ratios as input data
for ANN, Hamilton et al.70 distinguished PD from essential tremor
(n= 18) with 100% diagnostic accuracy. Further, Palumbo et al.71

classified striatal uptake ratios with probabilistic neural network
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(PNN) (n= 261), and confirmed that PNN achieved valid
classification accuracy to differentiate between PD and essential
tremor (accuracy: 81.9 ± 8.1% for early PD; 78.9 ± 8.1% for
advanced PD; 96.6 ± 2.6% for essential tremor).

Structural MRI
Atrophy in the midbrain, basal ganglia, and cerebellar peduncles
helps distinguish PD from atypical parkinsonian disorders such as
progressive supranuclear palsy (PSP) and multiple system atrophy
(MSA). PD has subtle volume reduction in cerebral gray matter
(GM) and the basal ganglia50,72,73, while major brain atrophy of
PSP is in the midbrain and superior cerebellar peduncles2, and for
MSA, major abnormalities are in pons, middle cerebellar
peduncles, and cerebellum2,74. Although challenging, attempts
to use machine-learning approach have been made to differ-
entiate between PD and other parkinsonian types based on these
structural MRI imaging features.
To distinguish PD from atypical parkinsonian disorders (such as

PSP or MSA), Duchesne et al.75 developed an automated computer
classification system that extracted brain tissue composition and
deformation features in the hindbrain region from MRI images,
applied SVM to feature classification and obtained a classification
accuracy of 91% (PD vs. non-PD (PSP or MSA)) (n= 16 PD). Further,
to differentiate PD from atypical parkinsonian disorders, Focke
et al.76 used GM and WM volumes obtained by voxel-based
morphometry (VBM) and found that classification with SVM
yielded up to 96.8% accuracy for differentiation between PD
and PSP, and 71.9% between PD and MSA, but it failed to
differentiate between PD and healthy controls (n= 21 PD). On the
other hand, Salvatore et al.77 extracted MRI imaging features by
principal components analysis, generated voxel-based pattern
distribution map of structural differences for identification of
voxel-based morphological biomarkers of PD and PSP, and
obtained >90% accuracy in differentiating between PD and PSP,
or between PSP and healthy control (n= 28 PD). To further
distinguish PD from PSP and MSA, Huppertz et al.74 developed an
automated MRI analysis method that computed atlas-based
volumetric measures and classified the imaging features with
SVM, reported the majority of classification accuracy of >80%, and
found the largest atrophy in PD, PSP, and MSA (compared with
controls) (n= 204 PD). To differentiate between PD and scans
without evidence of dopaminergic deficit (SWEDD) or healthy
controls, Singh et al.26,27 extracted discretized voxel intensity
changes from MRI using unsupervised self-organizing maps,
classified the imaging features with SVM (n= 408 PD) and
achieved accurate classification performances (>90%).
In addition, abnormalities in the substantia nigra in PD (due to

dopaminergic neuronal loss) revealed by T2-weighted MRI,
neuromelanin-sensitive MRI or iron-sensitive MRI at high field
strength (such as 7 T) or by 3 T susceptibility weighted imaging
(SWI) can be used in the diagnosis of PD14. For example, Haller
et al.78 examined PD patients with SWI and found that they had
increased SWI in the bilateral thalamus and left substantia nigra,
which had diagnostic value in differentiating between PD and
other parkinsonism (classification accuracy for SVM: 86.92 ±
16.59%) (n= 20 PD).

Functional MRI (fMRI)
Machine-learning methods have also been applied to rs-fMRI
analysis for differentiation of PD subtypes such as tremor-PD vs.
non-tremor-PD79, and postural instability and gait difficulty
subtype (PIGD) vs. non-PIGD80. Zhang et al.79 used rs-fMRI
measurement regional network efficiencies as imaging feature,
and classified them with linear discriminant analysis, which
yielded an accuracy of 92% in differentiating tremor-PD vs. non-
tremor-PD79. Further, to differentiate between PD with Levodopa-
induced dyskinesias (LID) and PD without LID, Herz et al.81

extracted seed-based FC in cortico-striatal network from rs-fMRI
images, classified them with SVM and achieved a differentiation
accuracy of 95.8%.

Diffusion tenser imaging (DTI)
Reduced substantia nigra fractional anisotropy (FA) has been
identified and regarded as a PD biomarker for over a decade, but
recent meta-analyses have found that substantia nigra fractional
anisotropy had a very large variation in results across studies82,
had low pooled sensitivity and specificity, and was not a
diagnostic biomarker of Parkinson’s disease83.
However, since DTI reflects the disruption of microstructure

(e.g., neuron myelin) integrity, DTI has shown promise in
differentiating PD from atypical parkinsonism. Haller et al.84

examined DTI images of PD patients and other Parkinsonism with
tract-based spatial statistics (TBSS) analysis and found that
compared with other parkinsonism, PD patients had an increased
FA and a decreased MD in the right frontal white matter, and
classification of DTI imaging features using SVM yielded an
accuracy of 97.5 ± 7.54% (n= 17 PD vs. 23 other Parkinsonism).
Further, Cherubini et al.85 combined DTI and MRI voxel-based
morphometry features to distinguish PD patients from PSP
patients using SVM, which yielded an improved accuracy (100%)
(n= 57 PD vs. 21 PSP). Combining with MRI voxel-based
morphometry and rs-fMRI imaging features, DTI has also aided
in the differentiation between PD subtypes (PIGD vs. non-PIGD)80.
In addition, using combined DTI and apparent transverse
relaxation rate (R2*) imaging, Du et al.86 found that MSA has a
decreased FA and an increased apparent transverse relaxation rate
(R2*) in the subthalamic nucleus, whereas PSP has an increased
MD in the hippocampus. Classification of imaging features with
Elastic-Net machine-learning technique yielded high differentia-
tion accuracy (>90%) (n= 35 PD vs. 16 MSA vs. 19 PSP)86.

Multi-modal data
Compared with single-modal data features, higher classification
accuracy or detection rate using combined multi-modal data
features has been achieved in differentiation between PD and
atypical parkinsonian disorder. For instance, to differentiate
between PD and PSP, Cherubini et al.85 used combined MRI and
DTI imaging features, and achieved a classification accuracy of
100%, which was higher than using either MRI or DTI features
alone85. In addition, to differentiate between PD and MSA or PSP,
Du et al.86 reported high classification accuracy (98–99%) using
DTI and apparent transverse relaxation rate R2* imaging features,
higher than DTI or R2* features alone.

MACHINE-LEARNING-BASED STUDIES FOR THE EARLY
DETECTION OF PD
Dopaminergic imaging
Machine learning has been found useful in dopaminergic imaging
analysis for early PD detection. As a pioneering study, Prashanth
et al.16 investigated the value of different SVM methods in
classifying SPECT images for early PD detection. Using striatal-
binding ratios in the striatal regions from data obtained from the
PPMI database, they found that SVM was valuable in early PD
detection and SVM with non-linear kernel achieved higher
detection rate (96.14 ± 1.89%) than SVM with linear kernel. Oliveira
et al.87, applied SVM and other classifiers to classification of the
binding potential at each voxel in the striatum of SPECT images
for early PD detection and reported that SVM achieved the highest
detection rate (97.86%). Later, Prashanth et al.17 added non-motor
clinical data features such as cerebrospinal fluid (CSF) measure-
ments to further improve the detection rate of early PD. Prashanth
et al.88 further found that shape and surface-fitting-based features
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showed higher importance than striatal-binding ratios for early PD
detection and feature classification with SVM yielded a classifica-
tion accuracy of 97.29 ± 0.11% (n= 427)88. In addition, Oliveira
et al.89 found that the length of the striatal region uptake
(detection rate: 96.5%) performed better than uptake ratio-based
based features for early PD detection (n= 443). These findings
have demonstrated the value of machine-learning approach in
dopaminergic image analysis for early detection of PD and the
importance of imaging feature and classifier selection/optimiza-
tion in machine-learning-based imaging analysis.

Structural MRI
Machine-learning methods have helped improve the diagnostic
gain of MRI. Classification of combined MRI measurements (gray
matter (GM)+white matter (WM)+ cerebrospinal fluid (CSF)
volumes) with SVM could detect early PD with an accuracy of
80% (n= 19)30. A robust linear discriminant analysis (LDA)
classifier with an optimal set of imaging features (GM and WM
volumes of 98 ROIs from MRI) that applied to MRI images of early
PD patients (99% in early stages) (n= 374) yielded a classification
accuracy of 81.9%, which was higher than 69.1% yielded by SVM90.
In addition, Singh and Samavedham26 demonstrated that the
structural changes of early PD could be detected by using MRI
features alone with an unsupervised self-organizing map
approach (n= 518) and high classification accuracy (>95%) was
achieved. This approach was later applied to a larger dataset (n=
1316) from PPMI (Parkinson’s Progression Markers Initiative) and
ADNI (Alzheimer’s disease neuroimaging initiative), and yielded
high classification performance (95.37 ± 0.02%) for distinguishing
patients with PD (or Alzheimer’s disease) from healthy subjects27,
which confirmed the value of the machine-learning approach in
aiding the diagnosis of neurodegenerative disorders such as PD
and Alzheimer’s disease. In a recent study, Amoroso et al.25 used
an unsupervised approach for MRI image classification, and they
extracted structure regional connectivity features from MRI images
(n= 374), applied SVM to imaging feature classification, and
obtained a classification accuracy of 88 ± 6% (using MRI features
alone) or 93 ± 4% (using MRI features and clinical data).

Functional MRI (fMRI)
Studies have shown that rs-fMRI can detect PD at early stages. Wu
et al.29 used effective connectivity extracted from rs-fMRI to
examine patients with early PD (n= 16) and reported that the
substantia nigra pars compacta in early PD had decreased
effective connectivity with regions such as the striatum, thalamus,
supplementary motor area and cerebellum, which negatively
correlated with the Unified Parkinson’s Disease Rating Scale
(UPDRS) scores. However, the detection rate of early PD using rs-
fMRI imaging features alone (classified by SVM) is not high (e.g.,
74%30) and needs to be improved. In addition, the findings of two
rs-fMRI studies in asymptomatic LRRK2 mutation carriers sug-
gested that functional connectivity disruptions precede the
presence of PD motor symptoms32,33. Further, using rs-fMRI,
Rolinski et al.31 examined patients with rapid eye movement (REM)
sleep behavior disorder (RBD) (n= 26), and PD patients (n= 10),
and found that functional connectivity measures of basal ganglia
network (BGN) dysfunction differentiated RBD and PD from HC
with high sensitivity (96%) and specificity (74% for RBD, 78% for
PD), suggesting that rs-fMRI may be a biomarker in identifying
early functional connectivity changes in the BGN in subjects at
high risk of PD and patients with PD. However, confirmative
studies are warranted.

Multi-modal data
Combining multi-modal imaging and/or clinical data have
improved early PD detection. Long et al.30 found that combined

multi-modal features improved early PD detection and multi-
modal imaging (MRI and rs-fMRI) with combined multi-modal
features (GM+WM+ CSF+ ReHo+ALFF+ FC) yielded higher
classification accuracy (87%) than single-modal features (MRI:
80%; rs-fMRI:74%). In addition, Oliveira et al.89 examined SPECT
images of early PD patients and found that several data features
had high classification accuracy including the length of the striatal
region (96.5%), the putaminal binding potential (95.4%) and the
striatal-binding potential (93.9%), while the combined imaging
features had the highest classification accuracy (97.9%). Further-
more, Prashanth et al.17 classified non-motor clinical data features,
such as rapid eye movement (REM) sleep behavior disorder (RBD)
and olfactory loss, and CSF measurements in addition to SPECT
imaging markers (striatal-binding ratios) with classifiers such as
SVM and random forests, and found that a combination of these
data features with SVM classification performed the best in early
PD detection (detection rate: 96.40 ± 1.08%) (n= 401).

DISCUSSION
The studies reviewed in this paper have demonstrated that
machine-learning automated data analysis, identified data pat-
terns (e.g., in the distribution of the radiotracer uptake on SPECT
images) and improved the accuracy of imaging quantification in
the diagnosis of PD. A recent comprehensive review has
confirmed the value of machine learning in assisting the diagnosis
of PD, and has further pointed out the potential of these machine-
learning applications to enhance clinical decision-making in PD
diagnosis91. Particularly, the review by Mei et al.91 provided
statistical analysis for the machine-learning studies in PD
diagnosis, and reported that (1) on average, the classification
accuracy of the machine-learning applications was ~94% for
SPECT imaging, ~86% for PET imaging, and ~87% for MRI
(including fMRI) imaging; (2) SVM and NN (neural network) were
the most frequently used methods in the imaging studies, the
usage for SVM (50%–70% used for SPECT or PET imaging, ~60%
for MRI imaging) was higher than that of NN (22%–53% used for
SPECT or PET imaging, ~23% for MRI imaging); and (3) SVM and
NN had higher classification accuracy than other machine-learning
methods in the imaging studies.

The value and role of machine learning in the diagnosis and
early detection of PD
The value and potential of machine learning (ML) in PD diagnosis
have been clearly demonstrated by comparative studies that
compared ML methods with conventional techniques such as
semi-quantitative methods or visual analysis in the diagnosis of
PD. For example, it has been shown that computer-aided
diagnosis (CAD) system based on machine-learning methods has
outperformed semi-quantitative methods of SPECT image analy-
sis15,19 and improved PD diagnostic accuracy of radiologists20.
Further, Choi et al.18 demonstrated the value of recently
developed deep-learning techniques (convolutional neural net-
works) in SPECT image analysis, and obtained high classification
performance that is comparable to experts’ visual analysis and
semi-quantitative analysis18. In addition, ML methods have been
shown useful in differential diagnosis65–69,85,86 and early PD
detection17,26,30,31.
Machine-learning applications can automatically analyze and

classify imaging and clinical data in PD, but machine-learning
applications are still in infancy and subject to errors, pitfalls and
biases. For example, clinician-dependent class/group labeling of
the training data in the machine-learning models may be prone to
errors because of the high error rate in the clinical diagnosis of PD.
As another example, newly developed deep-learning models may
have new challenges such as overfitting, low generalizability and
data insufficiency.
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The role of machine-learning applications is not to substitute
clinicians, but to assist them in clinical decision-making, to relieve
them from tedious data preprocessing, to save them from time-
consuming manual raw data inspection or processing (e.g., draw
regions of interest and perform measurements on images), and to
help them focus on important clinical decision-making questions
in order to reduce medical errors, and improve the clinical
diagnosis of PD. On the other hand, machine-learning applications
are far from perfect and still need to be improved. Being aware of
the potential errors and problems in machine-learning applica-
tions in radiology, Geis et al.92 pointed out that clinicians who use
the applications are ultimately responsible for clinical decision-
making and patient care.

Current limitations and challenges in machine-learning
applications
First, prone-to-error labeling of classes/groups in supervised learning.
Due to the high error rate of a clinical diagnosis of PD, clinician-
dependent labeling for the classes or groups (e.g., PD patients or
healthy subjects) of the training data (that are used in supervised
machine-learning applications) may be prone to error. To
overcome this problem, training data labeling in supervised
learning need to be confirmed by pathological (biopsy or post-
mortem) data. On the other hand, when the clinical diagnosis of a
PD dataset is uncertain and pathological data is not available,
unsupervised-learning approaches may be considered. Without
the need for training data, unsupervised learning seeks to identify
hidden data patterns, which may overcome the problem of
mislabeling diagnostic categories in the training data in super-
vised learning. However, there are some technical challenges in
applying unsupervised-learning methods to imaging analysis in
PD diagnosis, e.g., unsupervised-learning methods are not good at
accurately extracting imaging features43. Attempts have been
made to overcome such difficulties, e.g., by using semi-
supervised-learning clustering method that combines a small
amount of labeled data with a large amount of unlabeled data in
the training dataset43. In addition, unsupervised learning has been
applied to MRI feature selection in early PD detection25–27. To
detect early PD using supervised-learning methods on structural
MRI features is challenging, but Singh and Samavedham have
demonstrated that the structural changes of early PD could be
detected by integrating Kohonen unsupervised self-organizing
map and least-squares support vector machine (n= 518)26. This
approach was later applied to a larger dataset (n= 1316)27, which
confirmed the value and robustness of the method.

Second, machine-learning “black-box”. Since machine-learning
applications identify data patterns (e.g., abnormal structural or
functional changes in imaging data) that could be invisible (or
unrecognizable) to humans, the mechanisms and results of the
machine-learning applications (especially for neural network-
based models) may be difficult to interpret due to lack of direct
“evidence” supporting classification results. This could be against
the principle of evidence-based medicine and results in reluctance
to accept machine-learning applications in clinical practice. For
example, new deep-learning (or deep-neural network) models
often have millions of parameters which make them like a “black-
box” incomprehensible to clinicians, and make it hard to interpret
how the classification results have been obtained. However, just
like a microscope allows people to see at cellular level (which is
invisible to human eyes), machine-learning methods identify
abstract imaging features (that reveal brain signal differences
between groups/classes) such as distributions of a radiotracer
uptake, image voxel intensity changes, and texture features, and
amplify these signal differences between classes/groups at a
resolution that the signal differences between classes/groups can
be detected by “machines” or machine-learning models to best

separate the data into classes or groups. Clinicians do not have to
understand the details of the inner workings (e.g., the parameters)
of machine-learning methods in order to use these application
tools for PD diagnosis, but it is beneficial to have some basic
knowledge of the mechanism of a machine-learning method and
statistical pitfalls in order to avoid errors. Nevertheless, although
there is an abstraction in the mechanism of machine-learning
methods, machine-learning applications shall follow the principle
of evidence-based medicine, use best evidence in the field of PD
diagnosis (e.g., to guide feature selection or check classification
results), and provide as much “evidence” as possible to support
clinical decision-making. For instance, in addition to imaging
feature classification, Singh et al.27 identified disease-specific
biomarkers (i.e., significant brain regions affected by PD) with a
machine-learning method, and these biomarkers, serving as
“evidence”, could be used to decipher disease progression.
Further, efforts have been made to interpret classification results
of deep-learning models. For example, Magesh et al.93 reported a
newly developed deep-learning model CNN based on transfer
learning to analyze and classify SPECT DaTSCAN images that could
distinguish PD patients from healthy controls with an accuracy of
95.2%, and used Local Interpretable Model-Agnostic Explainer
methods to interpret classification results.

Third, overfitting problem in machine learning. Overfitting problem
often occurs in machine-learning applications, which refers to a
machine-learning method or model performs very well on a training
dataset, but not on a test dataset or other datasets94. This might be
because the machine-learning method is over-trained by the training
dataset and the noise in the training data is also modeled which
makes the model ungeneralizable to other datasets. A recent rs-fMRI
study showed that PD-related functional connectivity changes were
not reproducible across the 3 PD samples used in the study62. The
classification performance (PD vs. HC) was low (50–60%) even in the
datasets from a single data sample and the lack of generalizability in
these data samples may be mainly due to high PD heterogeneity62.
In addition, there are new challenges of overfitting in machine-
learning applications using deep-learning models95. To overcome the
overfitting problem in machine-learning applications for PD diag-
nosis, it is necessary to improve data quality, reduce data
heterogeneity, use large data samples and validate machine-
learning models with proper validation methods (such as N-fold
cross-validation) in order to make machine-learning models general-
izable. Further, to avoid overfitting in deep-learning models, some
methods such as implicit regulation, proper initiation, adjusting
learning rates and reducing model complexity may help the models
generalize well95.

Future directions
First, improve and validate the machine-learning applications.
Despite the progress made in machine-learning applications in
the diagnosis and early detection of PD, there is still much room
for improvement. 1) more research is needed to address the
problem of prone-to-error class labeling in supervised learning. 2)
it is necessary to optimize multi-modal data features for an
optimal feature set, and choose and optimize machine-learning
classifiers for an optimal classifier to improve classification
accuracy. This is because: (1) several studies have shown that
combined multi-modal data features (such as SPECT+ clinical
data) had higher detection rate than single-modal features30,37; (2)
comparative studies using different classifiers have demonstrated
the differences in classification accuracy between different
classifiers36,37,89. 3) thorough validation is needed before the
machine-learning applications can be used in clinical settings. In
addition, newly developed deep-learning techniques have shown
promising results18,93,96, but also face new challenges and
obstacles such as overfitting, low generalizability and data
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insufficiency. For a recent review of deep-learning applications for
the diagnosis of PD, see ref. 97. Research in explainable machine-
learning models is needed to address the “black-box” problem in
the neural network models. To overcome the new challenges in
deep-learning models, further research is needed to avoid
overfitting in deep-learning models, improve these new deep-
neural network applications and make them more accurate,
reliable, generalizable and explainable.

Second, improve modeling longitudinal multi-modal data. Since
Parkinson’s disease is a progressive disorder, it is necessary to
model multi-modal data over time in order to identify biomarkers
for PD progression. Some efforts have been made to tackle this
difficult problem in recent years98–102. Due to the complexity of
longitudinal multi-modal (imaging and clinical) data, methods
such as embedding learning and sparse regression have been
proposed, which have obtained promising results102. Further
research is needed to improve modeling these longitudinal multi-
modal data so that reliable biomarkers can be identified to
enhance the diagnosis and management of PD.

Third, integrate ML-based applications into clinical decision support
system to aid in PD diagnosis. It has been demonstrated that the
performance of machine-learning-based computer-aided diagnos-
tic (CAD) system generally exceeded that of semi-quantitative
analysis on SPECT imaging in distinguishing PD patients from
healthy controls12,16 and improved PD diagnostic accuracy of
radiologists17. More comparative and confirmative studies are
needed to further reveal the advantages and weaknesses of these
machine-learning applications. Since semi-quantitative imaging
analysis software is commercially available at clinics, such software
may be upgraded to incorporate mature machine-learning
algorisms to further assist clinicians in the diagnosis of PD.
However, a framework that facilitates the development, deploy-
ment, validation and regulation of such machine-learning-based
clinical applications is needed. For example, benchmark data and
metrics (e.g., the PPMI database) need to be established to test the
optimized and standardized applications. Further, before these
ML-based clinical applications are deployed in clinical settings, it is
necessary to run clinical trials to assess the diagnostic gain and
clinical benefits of such applications over conventional semi-
quantitative analysis (or visual analysis). Consequently, rules and
regulations are needed to facilitate this process in order to make
such ML-based systems available to clinics.

CONCLUSIONS
In summary, encouraging progress has been made in applying
machine-learning techniques to the diagnosis and early detection
of PD. Although machine-learning applications in PD diagnosis are
still in their infancy, machine-learning methods have automated
imaging data analysis, outperformed conventional semi-
quantitative analysis and performed comparably well as experts’
visual inspection in detecting PD-associated dopaminergic degen-
eration on SPECT imaging, reduced interpretation variability of
imaging, improved PD diagnostic accuracy of radiologists and
aided in differential diagnosis and early PD detection. Using
combined multi-modal imaging and clinical data (in these
applications) may further enhance the diagnosis and early
detection of PD. To integrate these machine-learning applications
into clinical systems, further validation and optimization are
needed to make them accurate and reliable. Despite the
challenges in translating machine-learning applications into
clinical practice, machine-learning techniques are promising to
assist clinicians in improving differential diagnosis of parkinsonism
and early diagnosis of PD, which may reduce the error rate of PD
diagnosis, and help detect PD at pre-motor stage so that early
treatments (e.g., neuroprotective treatment) may be applied to

slow down PD progression, prevent severe motor symptoms from
emerging, and relieve patients from suffering.
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