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A versatile computational algorithm for time-series data
analysis and machine-learning models
Taylor Chomiak1,2✉, Neilen P. Rasiah3, Leonardo A. Molina2, Bin Hu1, Jaideep S. Bains3 and Tamás Füzesi 2,3✉

Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data.
Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can
be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting
Parkinson’s disease from a single digital handwriting test.
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Dynamic biological signals are comprised of subtle underlying
features that may be hidden from commonly used analysis tools.
The advent and rapid adoption of analysis approaches has
increased our ability to identify recurring patterns within these
signals with important implications for the identification of
diagnostic biomarkers1–6. While the most well-known methods
for time-series data analysis are those based on linear concepts
such as correlation and power spectra2,3, nonlinear tools can
extract important information associated with underlying signal
patterns that may not be fully captured with linear methods3,4.
One challenge is that traditional nonlinear approaches such as
recurrence analysis require thresholding2, meaning that exclusion
of a large proportion of the data may result in loss of potentially
important signal information.
The affordability of portable technology has enabled the

quantitative assessment of dynamic signal data for Parkinson’s
disease (PD) on a widespread basis, often without the need for
expensive equipment or dedicated space7. For example, digital
handwriting analysis has been shown to be a successful diagnostic
strategy for PD and is more efficient compared to paper
handwriting tests as well as costly and time-consuming expert
assessment, neurological tests, and/or brain imaging8. While deep-
learning (DL) techniques have been developed using raw images9,
recurrence analysis5, or spectral analysis6 as input features to
detect PD from digitized tablet handwriting samples, these are
limited by the added computational complexity associated with
the deep architecture and the need for large datasets for training
which can have an impact on other clinical decision-support
system-level constraints such as cost, computational time, and
budget8,10,11.
Here we present Local Topological Recurrence Analysis (LoTRA),

a simple yet versatile analysis method that helps overcome these
limitations that can be used to reveal highly discriminant recurring
patterns embedded in n-dimensional time-series data.
To illustrate the general concept of LoTRA, three phase-space

trajectories were created from a simple periodic signal (sine wave)
by changing the 2-dimensional embedding delay, thus creating
three different sine wave phase-space trajectories (data clouds)
with varying topological shape that can be distinguished by
LoTRA (Fig. 1a–c). The blue and black ribboning in the LoTRA plots

correspond to the shallow curvature of the phase-space
trajectory and the directionality of the trajectory; while the
repeating red and green pattering correspond to the increased
curvature associated with the vertices along the trajectory path
(Fig. 1b–c; also see “Methods”). In fact, LoTRA was able to capture
unique multi-dimensional signal information that may be missed
by traditional recurrence or spectral analysis (Supplementary
Figs. 1–3).
Next, we used data collected from a handwriting test

administered to individuals with and without PD to build a simple
machine-learning model and evaluate if LoTRA features can
translate into effective feature-space discriminability. Data from a
single Dynamic Archimedean Spiral Test captured on a graphics
tablet were used8,12 which has participants trace an Archimedean
spiral with a stylus as the spiral blinks12. This prevents participants
from relying on visual cues to simply trace the spiral while
continuing to draw, challenging both working memory and motor
ability9,12. Multi-dimensional traces consisting of the x–y coordi-
nates and corresponding pressure applied by the stylus over time
are shown in Fig. 1d (left), while the LoTRA-generated binary
sparse matrices that were used to extract a short (length= 9)
feature vector13 for support vector machine classification are
shown in Fig. 1d (right). Model performance metrics obtained by
nested leave-one-out cross validation are shown in Fig. 1e. Using
only a single test and a feature vector a fraction of the length,
LoTRA can be used to build a remarkably simple machine-learning
model with improved performance compared to other state-of-
the-art DL achievements on this dataset5,6,9,14 (Fig. 1e; Supple-
mentary Table 1). These results are also comparable to other
DL-based models requiring more trials, tests, and/or samples8,15.
As the feasibility of telehealth/telemonitoring is heavily depen-
dent on the speed and quality of the internet connection16,
algorithms that are highly effective while requiring fewer tests/less
data would be highly advantageous in both helping to develop
more efficient and accessible telehealth/telemonitoring systems
(particularly in rural areas), and for conserving battery life on
portable devices.
While gait speed has become the standard gait parameter in PD

because it is easy to measure and interpret, reduced gait speed
alone might not be suitable to characterize the disease course17.
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Rather, identification of underlying disturbances in gait-cycle
fluidity may manifest as changes in complexity (entropy) and
provide a better indication of locomotor control system break-
down1,17. In fact, we found that LoTRA may represent a powerful
tool for revealing underlying disturbances in the complexity of PD
gait cycling compared to traditional recurrence analysis (Fig. 1f–i).
Finally, our proposed algorithm may have a number of applica-

tions related to neurology/neuroscience in general, and may be
particularly useful for studying stress and anxiety in animal models of
PD18. For example, computational simulations have shown that
increased underlying neural ensemble phase locking and coherence
can result in decreased complexity of the overall population-level
dynamic signal of a network19. Indeed, using a genetically encoded
fluorescent calcium reporter (GCaMP6f) in stress-related neurons of
the hypothalamic paraventricular nucleus (Fig. 2a, b), LoTRA was
found to support these simulation studies as exposure to a mild

stress (a novel environment) was associated with reduced
population-level signal complexity and increased underlying corre-
lated neuronal activity patterns (Fig. 2c–g).
Taken together, our proposed algorithm provides an opportu-

nity for more elaborate analysis and the extraction of richer data
from a variety of time-series data types.

METHODS
Ethics approval
All animal protocols were approved by the University of Calgary Animal
Care and Use Committee. Human data used in this study were collected in
previous studies with informed consent and ethics approval by the ethics
committee of Cerrahpaşa Medical Faculty of Istanbul University12, as well
as the University of Calgary University Ethics Board for Human Research
and the Committee of the First Affiliated Hospital of Sun Yat-sen
University20.
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Fig. 1 LoTRA: Parkinson’s gait and handwriting. a Top, 1-dimensional dynamic signal; sine wave. Bottom, 2-dimensional phase-space
reconstruction of the sine wave signal where it is easy to distinguish between xi−xl and xi−xj based on local neighborhoods. b LoTRA plots
of three different phase-space reconstructions (inset in c). c Colors represent quartiles of the 8-bit binary code associated with topological
features used to create a binary matrix to parse the signal’s component parts (see “Methods”). d Multi-dimensional time-series data for
digital handwriting samples from the Dynamic Archimedean Spiral Test for non-PD (NPD) and PD (left), their associated LoTRA plots
(center), and their high-curvature binary sparse matrices (right) with which recurrence statistics are extracted. e Top; diagnostic-based
performance metrics: accuracy= 98.6%, sensitivity= 100%, and specificity= 93.3%. Bottom; classification model performance metrics:
F1 score= 99%, precision= 98.2%, and recall= 100%. f NPD and PD gait data from a single wearable sensor (left). Shifted spectral peak in
PD indicting slower gait cycling (right). g Additional information related to underlying disturbances in gait-cycle complexity captured by
recurrence plots (left) and LoTRA plots (right) for each trace shown. h RQA summary data (t(8)= 1.702, p= 0.127). i LoTRA summary data
(t(8)=−4.542, p= 0.002). All box plots represent median and upper and lower quartiles.
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Theoretical framework
An important strategy for gaining deeper insight into underlying dynamic
changes obtained by data series is to extract recurring patterns embedded
within these data through distance-based thresholding and recurrence
quantification analysis (RQA)1,20–30. However, choosing the threshold
parameter setting to define what is “recurrent” is not always an easy
task31. In a dynamic state, a recurrence has occurred if at time tj, a
trajectory of a system returns into the dynamical neighborhood of a
previous state xi ¼ xðtiÞ, where ti < tj28,32. Such neighborhoods commonly
rely on distance metrics to quantify proximity, and thus recurrent patterns,
by applying a distance-based threshold to a Heaviside step function28,30.
This creates a binary recurrence matrix which can be easily visualized via
the recurrence plot20,28,30,33,34. These matrices are, however, often not
transitive; that is, Rij ¼ 1 and Rjk ¼ 1 does not necessarily imply Rik ¼ 128.
This may limit the identification of recurrent patterns and emergent
recurring domains28. That is because with thresholding important
information related to underlying dynamic processes embedded within
the signal may be lost, or spurious patterns introduced with inappropriate
thresholding28,30,31,35.
Consider for a moment the traditional recurrence analysis approach for

time-series data:

x ¼ ðx1; x2; x3; ¼ ; xnÞ (1)

where x represents a time-series vector. If only a one-dimensional time-
series vector is available (as above), time-delay embedding can be used to
reconstruct the phase-space trajectory for the time-series, where m is the
embedding dimension and t is the embedding delay:

V ¼

V1
V2
V3

..

.

Vn�ðm�1Þt

0
BBBBBB@

1
CCCCCCA

¼

x1 x1þt ¼ x1þ m�1ð Þt
x2
x3

..

.

x2þt

x3þt

..

.

¼ x2þ m�1ð Þt
¼ x3þ m�1ð Þt

..

.

xn� m�1ð Þt xn� m�2ð Þt ¼ xn

0
BBBBBB@

1
CCCCCCA

(2)

with the elements of V all being constructed from x based on some
delay, t. The delay, like the embedding dimension, m, is estimated
quantitatively1,20,24,36. The recurrence matrix R ¼ Rij is 1 if xj is contained in
a “ball” BεðxiÞ of radius ε > 0, and 0 otherwise as mediated by applying a

Heaviside step function to the distance matrix to generate the recurrence
plot28,33,34,37:

Rij ¼ Θðε� kVi xð Þ � VjðxÞkÞ (3)

where Θ is the step function which is 0 for values <0 and 1 for values ≥0,
and ε represents the threshold parameter23,36. However, setting up an
optimal ε can be challenging, and we are also limited by the fact that
significant dynamic features may be lost by ε-thresholding31,35,38. With
thresholding distance we are only including points along the trajectory
that are “close” together without considering the context of the local
neighborhood. This means that recurring patterns with respect to changes
in phase-space trajectories are indistinguishable when xj is contained
within the ball of radius ε, and are excluding altogether when xj is outside
the ball of radius ε.
Now consider the 3x3 neighborhood around each vector element being

constructed from x. x represents our one-dimensional time-series vector
that can be used for time-delay embedding with delay t and embedding
dimension m to reconstruct the phase-space trajectory1,20,36. However,
instead of considering the Euclidean norm between data points:

Dij ¼ ðkVi xð Þ � VjðxÞkÞ (4)

we will consider vectors Vi and Vj in relation to their local 3x3
neighborhood such that:

Tij ¼
Di�1j�1 Di�1j Di�1jþ1

Dij�1 Dij Dijþ1

Diþ1j�1 Diþ1j Diþ1jþ1

0
B@

1
CA (5)

where it can be seen that Tij ≠ Til even when Dij = Dil (Fig. 1a). It follows
then, that directional and curvature information can be captured by
different inequality patterning around the 3x3 neighborhood when
computed for all Tij by constructing a new matrix that represents an
8-bit binary code for each point-pair’s local neighborhood T 0ij

� �
:

T 0ij
� �

8
¼

X8
n¼1

s gn � g0ð Þ2n�1; s xð Þ ¼ 0; x < 0

1; x � 0

�
(6)

where g0 represents ðDijÞ and gn= {g1,… ,g8} are its eight connected
neighbors39,40. Each neighbor which is larger or equal to g0 is set to 1,
while each neighbor that is smaller than g0 is set to 0. A binary code is thus
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Fig. 2 LoTRA and in vivo brain dynamics. a Expression of GCaMP6f (green) in the paraventricular nucleus corticotropin-releasing hormone
(PVN CRH) synthesizing neurons. b Schematic of the experimental design and exposure to a mild stress (novel environment). c Example
GCaMP6f recordings (top) and 3-D plots of the reconstructed fiber photometry population-level signals (bottom). d Summary RQA data
(repeated-measures ANOVA F(2,14)= 2.514, p= 0.117; Bonferroni correction p ≥ 0.104). e Summary LoTRA data (repeated-measures ANOVA
F(2,14)= 11.741, p= 0.001; Bonferroni correction p ≤ 0.007 compared to NE). f Sample traces of individually identified units from one animal for
each condition (top) and cross-correlation matrices (bottom). g Summary data between the activity of PVN CRH neurons in the three
conditions (HC: 0.08 ± 0.02, NE: 0.34 ± 0.03, HC: 0.11 ± 0.01; HC/NE: p= 0.0005; HC/HC: p > 0.9999; NE/HC: p= 0.0009; n= 4; repeated-measures
ANOVA F(2,6)= 41.33, p= 0.0003, Bonferroni correction). Scale bars: a, 50 µm; c, 25s; f, 60s.
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created by moving around the central point g0 (here counterclockwise)
where a single integer value is calculated based on the sum of the binary
code elements (0 or 1) multiplied by the eight 2p positional weights
(increments of powers of 2: 20, 21, 22, 23, 24, 25, 26, 27) starting with the
preceding points (i.e., Di�1j�1). This represents 8-bit binary coding where
there are 28 (256) different possible integer values, ranging from 0 to 255.
This newly created matrix now allows for the identification of graded
changes in phase-space trajectories that can be used to identify recurring
sets of local topological features embedded within the dynamic signal
(LoTRA plot; see Fig. 1b, c for example).
To illustrate the basic idea of LoTRA, three phase-space trajectories were

created from a simple periodic system (sine wave) by changing the
2-dimensional embedding delay (see next section), thus creating three
different sine wave phase-space trajectory topologies (or data clouds) with
increasing eccentricity (Supplementary Fig. 1; left, top to bottom). The
recurrence plots from traditional recurrence analysis for each are also
shown (Supplementary Fig. 1; middle, top to bottom), illustrating the
characteristic diagonal line patterning of periodic systems. The varicosities
associated with the highly eccentric structure (Supplementary Fig. 1;
middle, bottom panel) illustrate how distance-based thresholding can
include the unwanted parallel trajectory segments, running in opposite
time, as “recurring” points31. Alternatively, the LoTRA plot can be used to
characterize and compare the different features associated with the data
cloud in phase-space (Supplementary Fig. 1; right, top to bottom). The blue
and black ribboning correspond to the shallow curvature of the phase-
space trajectory and the directionality of the trajectory; while the repeating
red and green pattering correspond to the increased curvature associated
with the vertices along the trajectory path with changing eccentricity of
the different structures relative to point xi along the line of identity. When
considering the right panel, moving from top to bottom, it becomes
apparent that LoTRA indeed captures additional information related to this
signal’s phase-space trajectory that is lost by thresholding with traditional
recurrence analysis (Supplementary Fig. 1; compare middle and right
panels).
We also considered a more complex simulated system; the Lorenz

attractor28,30. This system is widely used for the study of dynamic
processes as it exhibits characteristic oscillatory dynamics and recurring
domains28,41. Supplementary Fig. 2a, b display the 3-dimensional time-
series data of the Lorenz attractor. The recurrence plot in Supplementary
Fig. 2c exhibits the typical diagonal line patterning that is characteristic for
oscillatory dynamics and the “wings” of the Lorenz system that are
explored by the system’s trajectory28. The results of LoTRA for the same
dynamic states are shown in Supplementary Fig. 2d, e. Similar to the
periodic sine wave signal, additional dynamic signal information can be
captured by LoTRA.

Simulated data
For an idealized periodic signal, a simple sine wave was constructed by a
sequence of 300 points, ranging from 0.1 to 30 with an interval of 0.1. To
modify the eccentricity of the m-dimensional phase-space trajectory of the
sine wave when m= 2, the embedding-delay (t) was changed for phase-
space reconstruction. Values of t= 15, t= 20, and t= 3 were used, where
m is the embedding dimension and t is the embedding delay with the
elements of V all being constructed from x1,20,36,42. The distance matrix was
generated using the Euclidean norm. For a more complex simulated
dynamic system, the Lorenz attractor was used28,41. For this study,
simulation of the data series was initialized with parameters r= 28, σ= 15,
β= 8/3, and Δt= 0.025.

Handwriting dataset
Data and specific dataset details for the Dynamic Spiral Test (Parkinson
Disease Spiral Drawings Using Digitized Graphics Tablet Data Set)9,12 for
control and PD are publicly available at the UC Irvine Machine Learning
Repository (https://archive.ics.uci.edu/ml/index.php). The Handwriting
dataset was constructed using a Wacom Cintiq 12WX graphics Tablet9,12.
These data are already multi-dimensional (x–y coordinates and pressure)
and thus time-delay embedding was not used. As not all data were
acquired at the same sample rate6, the data were downsampled by every
three or four points so all data had approximately equal sampling rates.

Human gait data
Human gait data were previously collected using the Ambulosono
wearable system20. This system utilizes high-precision movement sensors

consisting of a 3-axis Micro-Electro-Mechanical Systems (MEMS)-based
gyroscope and a 3-axis accelerometer. The firmware uses proprietary
fusion codes for automatic gravity and sensitivity calibration and real-time
attitude angles output (pitch, roll, and yaw), while the GaitReminder App
utilizes algorithms to sample sensor output for real-time gait calculations
after corrections for limb length, angular excursion, signal filtering and
drift43,44. The data series consisted of 12 sec of gait-cycling data sampled at
50 Hz from n= 10 subjects, with half the sample having been diagnosed
with mild to moderate Parkinson’s disease (PD) with gait disturbances, and
the other half of the sample corresponding to neuro-typical individuals
without any neurological or gait impairments20. For both LoTRA and
traditional recurrence quantification analysis, the data series were first
reconstructed in m-dimensional phase-space by estimating the delay time
t and the embedding dimensionm. Here, the delay time t (range 9–19) and
the embedding dimension m (range 2–6) for each z-score scaled data
series analyzed were determined using Average Mutual Information (AMI)
and the False Nearest Neighbor (FNN) functions, where the first local
minima of those functions or the point at which those functions level-off or
no longer appreciably change can be used to estimate the delay and
embedding dimension45. For RQA the same t and m for each time-series
were used as in LoTRA, but with the additional threshold parameter
adjusted to generate a recurrence rate on the order of 4–5%. This
recurrence rate is consistent with the estimated optimal value which has
been used previously for periodic gait1,46.

Mice
For the experiments, the offspring of Crh-IRES-Cre (B6(Cg)-Crhtm1(cre)Zjh/J;
stock number 012704) mice crossed with Ai148 (Ai148(TIT2L-GC6f-ICL-tTA2)-
D; stock number 030328) animals were utilized. Mice were obtained from
Jackson Laboratories. Mice were housed on a 12-h:12-h light:dark cycle
(lights on at 7:00 a.m.) with ad libitum access to food and water in whole
litters until 1–2 d before use, then were individually housed during the
experimental phase. Mice were 6–8 weeks old at the time of ferrule or lens
implantation.

GRIN lens and fiber implantation
Crh-IRES-Cre;Ai148 mice were maintained under isoflurane anesthesia in
the stereotaxic apparatus. For fiber photometry, a 400 µm diameter mono
fiber optic cannula (Doric Lenses, MFC_400/430/0.48_5mm_MF2.5_FLT)
was implanted dorsal to the PVN (AP, −0.7 mm; L, −0.2 mm from the
bregma; DV, −4.5 mm from the dura. The GRIN lens (7.3 mm length;
Inscopix) was lowered dorsal to the PVN at a 100 µm/min speed using a
motorized stereotaxic apparatus. The implantations were targeted to the
PVN and were affixed to the skull with METABOND® and dental cement. At
least one month after lens implantation a baseplate was installed on the
head. Experiments started after an additional two weeks of recovery and
handling.

In vivo fiber photometry and miniature microscope data
Fiber photometry was used to record GCaMP6f (n= 8, Crh-IRES-Cre;Ai148)
calcium transients from CRH neurons in the PVN of freely moving mice.
Animals were handled for 5 min a day for 3 successive days and then
habituated to the optic fiber in their homecage (15min a day) for 3
additional days. We recorded 10min of PVN CRH neuron activity in the
homecage immediately before and after each test for better bleaching
correction. A fiber photometry system was used from Doric Lenses:
Consisting of two excitation LEDs (465 nm and 405 nm from Doric)
controlled by a LED driver and console, running Doric Studio software. The
LEDs were modulated at 208.616 Hz (465 nm) and 572.205 Hz (405 nm) and
the resulting signal demodulated using lock-in amplification. Both LEDs
were connected to a Doric Mini Cube filter set (FMC5_E1(405)_E2(460–490)
_F1(500–550)_S) and the excitation light was directed to the animal via a
mono fiber optic patch cord (DORIC MFP_400/460/900–0.48_2m_FC/
MF2.5). The power of the LEDs was adjusted to be 30 µW at the end of the
patch cord. The resulting signal was detected with a photoreceiver
(NewPort model 2151). Fluorescent signal data was processed in real-time
and acquired at a sampling rate of 100 Hz. Data was then exported to
MATLAB (Mathworks) for offline analysis using custom-written scripts to
downsample the signals to ~10 Hz for analysis. The 465/470 nm and
405 nm data were first individually fit with a second order curve which was
then subtracted to remove any artifacts due to bleaching, then the z-score
was calculated using the standard deviation and mean signal recorded
during baseline. Approximately 3 min of data for each condition
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(homecage and novel environment) were used for analysis. As previously
reported, GCaMP fluorescence increased in response to a novel environ-
ment47. However, increases in bulk calcium level do not provide insight
into the underlying dynamics of the system. That is because mean values
are insensitive to the spatio-temporal pattern of the signal which could
arise from changes in correlated neuronal ensemble firing patterns or
through changes in gain via persistent intracellular calcium release48–50.
Here we asked if LoTRA could be used to identify patterns embedded
within signals between conditions as unlike persistent intracellular calcium
release, recruitment of underlying neural ensembles would be expected to
significantly alter the pattern embedded within the population-level signal.
To this end, delay time t (range 10–100) and the embedding dimension m
(range 2–5) for phase-space reconstruction of fiber photometry signals
were determined the same as described above. Similar to other non-
periodic physiological data, the threshold was set to generate a recurrence
rate around 2%24. Re-running the analysis with a recurrence rate on the
order of 5% gave similar results (not shown). For miniature microscopy
data, activity of PVN CRH neurons from n= 4 mice were recorded
continuously for at least 15 min at 20 FPS, 40% LED power and 2.5 gain,
using the nVista Acquisition Software (Inscopix). The video files were
cropped with ImageJ, preprocessed by Min1pipe51, and analyzed with
custom-scripts in MATLAB. The data corresponded to the same conditions
(i.e., homecage prior to novel environment, novel environment, back to
homecage) used for fiber photometry analysis.

Machine-learning model
The distance matrix from the scaled 3-dimensional Dynamic Spiral drawing
time-series data were transformed into a local topological matrix with
which the high curvature 8-bit binary codes (64–191) were used to
generate a binary sparse matrix. Recurring topological patterns were then
extracted by recurrence statistics13 and fed into a support vector machine.
A nested leave-one-out cross validation procedure was used to evaluate
hyperparameter-tuned model performance.

Data and statistical analysis
Gait and in vivo recurrent pattern signal complexity was measured by
recurrence entropy. It is based on the point density-based measure,
recurrence rate (RR):

RR ¼ 1
N2

XN
i;j¼1

Ri;j (7)

which is a measure of the density of non-zero elements in the binary
matrix1,13. The probability of finding a diagonal line of exact length l in the
binary matrix is given by:

p lð Þ ¼ PðlÞ=Nl (8)

where P lð Þ represents the histogram of diagonal lines of length l, and Nl is
the total number of diagonal lines. Entropy (ENT), which is a measure of
signal complexity, is the Shannon entropy of the probability p lð Þ:

ENT ¼ �
XN
l¼lmin

p lð Þln pðlÞ (9)

where lmin is commonly set to 2 as it takes a minimum of two points to
define any line1,23. All analyses were done in Prism, SPSS, and R (R: A
language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria). Statistical analysis used two-tailed t-
tests or analysis of variance, and α was set at 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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