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The current present in a galvanic couple can define its resistance or susceptibility to corrosion.
However, as the current is dependent upon environmental, material, and geometrical parameters it is
experimentally costly to measure. To reduce these costs, Finite Element (FE) simulations can be used
to assess the cathodic current but also require experimental inputs to define boundary conditions. Due
to these challenges, it is crucial to accelerate predictions and accurately predict the current output for
different environments and geometries representative of in-service conditions. Machine learned
surrogate models provides a means to accelerate corrosion predictions. However, a one-time cost is
incurred in procuring the simulation and experimental dataset necessary to calibrate the surrogate
model. Therefore, an active learning protocol is developed through calibration of a low-cost surrogate

model for the cathodic current of an exemplar galvanic couple (AA7075-SS304) as a function of
environmental and geometric parameters. The surrogate model is calibrated on a dataset of FE
simulations, and calculates an acquisition function that identifies specific additional inputs with the
maximum potential to improve the current predictions. This is accomplished through a staggered
workflow that not only improves and refines prediction, but identifies the points at which the most
information is gained, thus enabling expansion to a larger parameter space. The protocols developed
and demonstrated in this work provide a powerful tool for screening various forms of corrosion under

in-service conditions.

Materials degradation is a pervasive challenge in engineering that manifests
in diverse forms across a wide variety of applications and are often highly
dimensional containing variations in part dimensions, service environ-
ments, or material properties. Digitial twins or other models, including
Finite Element Methods (FEM), are frequently utilized to inform upon
materials degradation, helping to determine the rate and extent of degra-
dation. Despite the utility of models, boundary conditions (BC) are often
necessary, in combination with the geometry, to describe a material’s per-
formance in a given environment. This becomes especially difficult if there is
a wide range of geometric and environmental considerations for a material’s
performance. Further, if BC’s are non-trivial to measure, substanital time
could be spent on boundary condition acquisition. Therefore, there exists a
need to speed up materials degradation in complex, high dimensional cases.

Active Learning (AL) is a viable solution to maximize the efficacy of
materials degradation models that utilize FEM simulations and experimen-
tally measured BCs. This approach provides a standardized, probabilistically
informed pathway to identify optimal input configurations in an efficient

manner'”. AL establishes an accurate surrogate model using an iterative
process that starts with a sparse dataset and sequentially selects additional
datapoints that exhibit the highest potential to improve the performance of
the model. The additional datapoints are selected by maximizing an acqui-
sition function™. This acquisition function is informed using a surrogate
model* that is trained on the sparse initial dataset”. Prior studies have used
various acquisition functions including predictive uncertainty, expected
improvement'®"', and expected information gain*'>"’. While the utility of AL
has been shown, limited prior work has incorporated AL in a stratified
manner to address problems with environment and geometric variations.
One high dimensional problem that FEM can be utilized for is cor-
rosion. Specifically, galvanic corrosion is a phenomenon in which dissimilar
metals, such as those in fasteners, come into contact under a corrosive
environment' . These structures are exposed to a wide range of corrosive
environments, including atmospheric conditions in which the relative
humdity in combination with salt load will dictate the concentration and
thickness of the brine layer. When two dissimilar metals are in contact under
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a corrosive brine, the corrosion rates experienced by the metals are governed
by various environmental, chemical, and geometric factors'*"”. In addition,
the composition of the alloys that constitute the galvanic couple also plays an
important role in controlling the reaction rates at the surface**’. Such a wide
range of environments as well as reaction mechanisms present in corrosion
provides a complex, stratified dataset which can be difficult to understand
without advanced analytical techniques such as machine learning (ML)
and AL*.

A metric that provides useful insight into the susceptibility to galvanic
corrosion is the current (either anodic or cathodic) for a given environment,
material, and geometric configuration as the current can often inform upon
materials loss. It is important to note that under the consideration of charge
conservation, the anodic and cathodic currents will be equal and opposite.
Computational modeling of galvanic couples has served as a convenient
means of estimating the available cathodic current across multiple
conditions'*"”**. For corrosion FEM modeling, electrochemical boundary
conditions and solution properties are necessary at every relative humidity
(ie., chloride concentration) and often requires performing experiments
through the measurement of polarization curves. Performing experimental
investigations across multiple configurations of environmental parameters
and electrode materials contains a specific cost, including: (i) materials, (i)
specialty equipment (i.e., temeprature control), and (iii) time of material
preparation (i.e., polishing) and experiments. Therefore, it is not feasible to
measure and model all potential combinations of environments and alloy
configurations.

Previous studies have modeled metallic corrosion under environ-
mental conditions with varying levels of fidelity using the Finite Element
(FE) Method”. These FE models consider differ in terms of time-
dependency (i.e., including transient charge transport™*°), the dimension-
ality of the specimen (considering either one””*® or two-dimensional
specimens”>**%), and the coupling between electrodynamics and the charge
transport”**’. Recently, Liu and Kelly'” have demonstrated that the Laplace
equation can be used to model galvanic corrosion under steady-state,
electroneutral conditions. This model form has been utilized in prior works,
along with experimentally derived cathodic boundary conditions to predict
the current output of a SS-AA7050 galvanic couple'®”. Despite successful
application of FE-simulations in literature, significant challenges remain for
the rapid exploration of the vast space of inputs that influence corrosion.
The main limiting factor is the need to reconcile the boundary conditions
(BC) in FE simulations with experimental results. Some previous
studies'*'”* utilized cathodic polarizations obtained from a rotating disk
electrode to capture the coupled, nonlinear BC for the solution of the
Laplace equation in atmospheric conditions. These BCs are developed based
on the Butler-Volmer equation'’, and are dependent on the temperature and
salt concentration within the electrolyte. Thus, a minimum of two experi-
mental polarization scans (i.e., anodic and cathodic) is necessary for every
environmental configuration, with oftentimes replicate scans conducted to
ensure fidelity of the data. Even after experimental data is obtained, several
FE simulations are required to identify interactions between the boundary
conditions and geometric configuration'®. This leads to significant run time
for the FE method on distributed computing clusters depending upon the
geometric complexity of the specimen and the fidelity of the physics-
based model.

As experimental cost to measure BCs and solve the FEM models can be
excessive, a protocol to accelerate the predictions of current in a corrosion
models is desirable. These accelerated predictions are typically obtained
with the help of a machine learned surrogate model**’ trained on a dataset
of FEM simulations. The surrogate model emulates the response of per-
forming an experiment/simulation at a specific input configuration for
which the data is currently unavailable in a fast and accurate manner.
Depending upon the run time for the FE simulation and the form of the
surrogate model, it is possible to accelerate the predictions by multiple
orders of magnitude"*”'>”. However, training the surrogate model with a
set of previously performed simulations (and experiments) is still necessary.
It is critical to perform the calibration experiments at optimally selected

input configurations, so that the accuracy of the surrogate model is max-
imized with the fewest number of data acquisition steps.

For instance, Bansal et al.”’ used the cumulative distribution function of
the classification confidence value to iteratively improve the GP surrogate
model predictions for the material loss experienced by metallic joints in spot
welds, and obtained a drastic (75%) reduction in prediction errors after 30
AL iterations. These AL approaches can be utilized to incrementally increase
the explored ranges of the input parameters. In other words, the acquisition
function predictions can be estimated beyond the input domain that was
originally used to calibrate the surrogate model, which in turn allows for an
enlarged domain in a cost-efficient manner. However, a direct application of
AL approaches to accelerate galvanic corrosion predictions faces several
hurdles.

First, the existing protocols for AL search the entire input domain using
the acquisition function to sequentially identify additional inputs for data
acquisition purposes. However, the available cathodic current of a galvanic
couple is dependent on environmental (temperature, WL thickness), che-
mical (salt concentration), and geometric parameters (cathode length).
Consequently, the experimental polarization curves need to be discerned for
each new combination of temperature and salt concentration, since they
inform the BCs used in the simulations'®'”*. With these BCs, the FE
simulations are used to calculate the cathodic current. In other words, the
simulations can probe the dependency of the current on the cathode length
and WL thickness, for a given combination of temperature and salt con-
centration. For that reason, an AL framework must follow for a “staggered"
prediction of the acquisition function. The framework needs to identify
subsets of inputs (temperature and salt concentration) to experimentally
measure polarization curves and, subsequently, identify cathode lengths and
WL thicknesses that have the highest potential to improve the predictions.
Existing protocols are inadequate to function in this manner as searches for
additional inputs occur over the entire input domain. This necessitates the
adoption of a versatile surrogate modeling approach capable of estimating
the acquisition function with limited information about the input config-
uration. Second, the optimization of the acquisition function typically only
results in the identification of a single input configuration’. However,
acquiring the data for a single input configuration may not always represent
the best trade-off between exploration and exploitation™. Therefore, a new
framework capable of leveraging the acquisition function to identify a set or
batch of input configurations that collectively refine the predictions to the
highest possible extent is necessary. Third, while the surrogate model can be
utilized to extrapolate the output predictions beyond the input domain, the
accuracy of these predictions are likely to be poor’. Therefore, the optimal
choice for the acquisition function needs to be identified to aid in the
enlargement of the input domain. This is crucial to ensure that we obtain the
fastest improvements to the model performance with additional data. Lastly,
it is unlikely that a surrogate model-form will be identified that performs
optimally across the entire input-domain due to the complex, multi-physics
nature of corrosion phenomena. Therefore, responses from multiple sur-
rogate model forms will be optimally combined to improve the robustness of
the FE predictions.

This work seeks to address the aforementioned challenges to optimally
establish a highly accurate surrogate model for the current in a corrosion
system. Specifically, this goal will be achieved by developing an AL frame-
work that enables the identification of input configurations for a galvanic
couple with the highest potential to increase the performance of the sur-
rogate model. The framework developed is initiated through training a
Gaussian Process (GP)****” and Neural Network (NN)° surrogate model for
the current output using a simulation dataset that was recently made
available by Katona et al."’. Information fusion approaches™* are used to
combine the NN and GP predictions in an optimal manner. A ‘staggered’
GP model is then constructed by analytically marginalizing the influence of
the WL layer thickness and cathode length. This ‘staggered’ surrogate
model, which only depends on the temperature and salt concentration, is
then used to maximize the acquisition function. In addition, two acquisition
functions are considered for active learning - the predictive standard
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Fig. 1 | Illustration of the active learning protocol utilized in this study. The blue
arrows indicate the exploration step where additional data is acquired with FE
simulations. The green and orange arrows represent the exploitation step where the

acquisition function is used to identify optimal input configurations for further
exploration.

deviation and the expected information gain. The maximization of the
chosen acquisition function identifies the best configurations of inputs for
performing additional experiments. Once the experimental polarization
curves are gathered, the acquisition function is used to sequentially identify
additional inputs for the simulations. Weighted K-means clustering® is
utilized in both steps to identify multiple sets of input configurations to drive
a balance between exploring the input domain and exploiting the GP sur-
rogate model. The efficacy of this protocol is demonstrated by substantially
refining the predictions for the current output of an SS304-AA7050 galvanic
couple. As a result, this work will demonstrate a significant (almost 50%)
increase in model performance after incorporating the optimal input con-
figurations. In addition, the optimal choice for the acquisition function is
identified based on the improvements of the current predictions. The
workflow utilized in this study is schematically illustrated in Fig. 1. While the
scope of the current study is restricted to galvanic corrosion, the implica-
tions of our framework extend far beyond this specific scenario, offering a
versatile tool for understanding and mitigating materials degradation across
a myriad of environments and applications.

Results

Active learning protocol reduces training costs by 50%

First, the validity and efficacy of the AL framework developed in this work to
leverage a previously generated dataset is demonstrated. This dataset con-
sists of 2520 FE simulations of galvanic corrosion and can be found in
Montes de Oca Zapiain et al.[30]. The dataset from Montes de Oca Zapiain

et al. calibrated the FE models to the work in Katona et al."’ and uses a
Laplace equation-based FE model to assess the cathodic current of a galvanic
couple over a wide range of geometrical and environmental parameters and
evaluated the current per width (I¢yy). The parameter ranges explored using
the FE simulations are shown in Table 1 which were sampled using a
hypercube sampling strategy. This hypercube specified by Table 1 is denoted
asC;.

The AL framework developed in this work was used to establish an
accurate surrogate model for predicting Iy within the input domain
delineated in Table 1 in an accurate and computationally efficient manner
using an optimal number of simulation results (see Methods section).

Randomly splitting the FE dataset into training and testing datasets
consisting of 2000 and 520 datapoints respectively initializes the AL fra-
mework. Once a test/train split was performed, an “initial" batch of training

Table 1 | Parameter ranges for the FE simulations used to
calculate the cathodic current output of a galvanic couple

Parameter Range
Temperature [25,45] °C
Salt concentration {1,3,5} M

WL thickness [7E-06,0.05] m
Cathode Length [0.01,0.5] m

npj Materials Degradation | (2024)8:54



https://doi.org/10.1038/s41529-024-00476-4

Article

Fig. 2 | Illustration of the progression of the 10- 35 —— ‘ T
fold CV errors with the addition of input data- = Predictive Standarfi Dev1jat10n S)
points to the training dataset from the set of _ 30 == Expected Information Gain (EI)
candidates, using the predictive standard devia- g — Random Selection
tion and expected information gain acquisition E
. L e 25 g
functions. The predictive standard deviation out- =
performs the expected information gain since the é
saturation value is reached with fewer candidates. = 20 1
>
O
215 .
=
=)
10 .
5 L] -,- - ! 1 — -
600 800 1000 1200 1400 1600
Active Learning Iterations
Fig. 3 | Schematic description of model perfor- (a)
mance. a Parity plots showing the performance of 050
the fused surrogate models. The training datasets B8 Train St S
. . .. . Ada Train Set EI Train Set PS
were designed using the predictive standard devia- s || 000 st Set 4 )
tion (PS) and expected information gain (EI) = —  Train Set EI
respectively. The 10-fold cross validation predic- 2 Test Set EI

0.20

tions are shown for the training dataset, whereas the
fused model predictions are shown for the test
dataset. b Cumulative probability of absolute error
for the K-fold cross validation predictions and the
predictions of the test set using the predictive stan-
dard deviation (PS) and expected information gain
(EI) respectively.

0.15

0.10

Predicted Current (/¢

0.05

0.00

Cumulative Probability

0.00

0.05

0.10

True Current (/') - [A/m]

- - - 0.0
0.15 0.20 0.25 0.30 0.000 0.005 0.010 0.015

Absolute Error - [A/m]

0.020 0.025 0.030

data was chosen by selecting 50 points from the training dataset using the
MaxPro approach™. This approach maximizes the uniformity of the
projections of the design space onto any lower dimensional manifold. In
other words, the MaxPro approach enables the selection of a batch of 50
datapoints (out of a total of 2000) that best resembles a random uniform
design in any of 14 lower dimensional hypercubes (*C; + *C, + *C3) of the
four dimensional parameter space. This represents the best choice for a
space filling design in the absence of supervision (i.e., Iy predictions from
the FE simulations)™.

Subsequently, the initial batch of training data was used to calibrate an
initial GP surrogate model while the remaining datapoints in the training
dataset (1950) are treated as candidates. The initial GP surrogate model is
used to calculate the acquisition function on the candidates. The candidate
datapoint that exhibits the highest value of the acquisition function is then
concatenated to the training dataset, and the GP model is recalibrated. This
is an iterative process where the datapoints at which the model can be
improved the most (determined by the value of the acquisition function) are
sequentially added to the training set. This process is repeated until a set
number of iterations or a determined threshold is met.

The improvements to the current predictions obtained using this active
learning strategy are assessed with the help of the K-fold cross validation
(K-fold CV) error, with K=10. To calculate the K-fold CV error, the
training dataset is first split into K subsets. The surrogate model is calibrated
on the all but one of these subsets, and then used to obtain predictions for the
subset that was not used for calibration, also called the ‘out-of-fold’ subset.
This process is repeated for all subsets to generate the K-fold CV predictions
and errors. It is noted that the K-fold cross-validation predictions offer a
more effective means of evaluating the performance of the GP surrogate
model on the training dataset. This is attributed to the exact interpolation of

the training data effected by the GP model, leading to negligible training
errors when used for direct prediction.

The progression of the K-fold cross validation error for both
acquisition functions is shown in Fig. 2. It is clear that both acquisition
functions cause the K-fold cross validation error to saturate to the same
value of 5 mA m™". Furthermore, it is worth noting that the saturation
value obtained with the two different acquisition functions is similar to
the K-fold cross validation error obtained using the entire training
dataset. In other words, a GP model trained with the 2000 points
exhibits a K-fold cross validation error of 5mA m™' showing that the
systematic addition of high value observations results in an accu-
rate model.

The predictive standard deviation (PS) acquisition function is more
effective for selecting suitable datapoints from the candidate dataset
given that the PS required 450 points to saturate the K-fold cross vali-
dation. In contrast, the expected information gain (EI) needed 650
points. Despite this contrast, similar values of the cross-validation errors
as compared to the GP model trained on the entire dataset were
achieved, while utilizing fewer training samples, regardless of the choice
of the acquisition function. More precisely, a percentage reduction of at
least 50% in computational costs using these acquisition strategies was
achieved.

To demonstrate the effectiveness of the AL method, we conducted a
series of trials without utilizing an acquisition function. Instead, inputs were
randomly selected from the candidate dataset. Five different instances were
generated by adjusting the random seed. The surrogate models trained using
this random selection approach required over twice as many datapoints, on
average, to reach the same level of accuracy as the actively learned surro-
gate model.
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Table 2 | Comparison of the improvements obtained to the
predictions for the initial dataset using the acquisition func-
tions reveals that the expected information gain (El) performs
better than predicted standard deviation (PS)

Acquisition Function Training MAE (10-fold CV) Testing MAE
Predictive Standard Deviation 5mAm™! 3.7mAm™’
Expected Information Gain 5mAm™' 32mAm™’

Surrogate models accurately predict cathodic current for
unknown input configurations

The AL framework enabled the development of a surrogate model for
predicting Iy with a significantly smaller fraction of available data. In this
section the accuracy of the predictions obtained with the trained model are
evaluated and assessed. We note that the optimal datasets identified in the
previous step were used to re-train the GP and the NN surrogate models,
after which the responses from the respective models were fused. The
performance of the fused model is first demonstrated on the training and
test sets. Figure 3 schematically presents the accuracy of the developed
model. Specifically, Fig. 3a shows the scatter plot of the predictions for Iy,

obtained using the fused model (denoted as I c /w) and Iy predictions

obtained from the FE simulations (shown as Ig’%v) for both acquisition

functions considered in this study. The predictions are compared for the test
set (i.e., the remaining 520 points on which the model was not trained) as
well as the training set. Note that the K-fold CV predictions are used for the
training dataset. Fig. 3b shows the cumulative probability of absolute error
for the K-fold cross validation predictions and the predictions of the test set.
From Fig. 3b it is evident that the error performance of both acquisition
functions is similar. Finally, the mean absolute errors of the test set pre-
dictions are 3.7 mA m™" and 3.2 mA m™" for the PS and the EI acquisition
functions respectively. Therefore, the error performance, in conjunction
with the plots shown in Fig. 3, demonstrate that the model is capable of
accurately predicting Iy for scenarios not captured within the training
data. The model performance is summarized in Table 2.

The model was further evaluated through comparison of the predic-
tions to a completely new set of FE results, whose input parameters were
obtained from Liu and Kelly'"” and Katona et al.'’. This new dataset is
referred to as the “extrapolation dataset”, and it consists of 2885 datapoints.
The temperatures and salt concentrations explored in the extrapolation
dataset were (i) {25°C, 0.6 mol}., (ii) {35°C, 1mol}, (iii) {35°C, 3mol}, and (iv)
{35°C, 5.3 mol}. Notice that the temperatures values lie within the input
domain delineated in Table 1, however, the maximum values of the cathode
length and WL thickness in the extrapolation dataset are greater than the
corresponding maximum values shown in Table 1. Fig. 4 graphically depicts
that the tails of the distribution of the cathode lengths and the WL

thicknesses (see Fig. 4b and 4b respectively) lie outside C,. A similar note is
made for the minimum values of salt concentration given that it lies outside
of the domain shown in Table 1.

Consequently, the fused model predictions are expected to be less
accurate for the extrapolation dataset. Figure 5 graphically depicts the
performance of the trained model on the new extrapolation dataset.
Specifically, Fig. 5a shows the scatter plot of the predictions for I/
obtained using the fused model (denoted as I . sw) and I¢;w predictions
obtained from the FE simulations (shown as Iéﬁ%) for the extrapola-

tion set for the model trained with the EI acquisition function and the
PS acquisition function. It is evident that model performance sig-
nificantly decreased. A conclusion that is reinforced with Fig. 5b, which
shows the cumulative probability of absolute error for the predictions
on the K-fold cross validation predictions, the predictions of the test
set, and the predictions of the extrapolation set. Improvements to the
model are necessary to enhance the accuracy of the out-of-distribution
predictions.

Active learning framework drastically improves out-of-
distribution current predictions

Previously shown results highlight that the developed model’s performance
decreases when tasked to predict the results for parameters outside of the
support of the training data. The performance of the surrogate model can be
improved by incorporating more data outside the original domain. The
input domain is a 4-dimensional space, which makes it non-trivial to select
points to be added. Furthermore, it is important to acknowledge that an
experimental procedure will need to be performed to solve FE simulations to
obtain accurate results for new temperatures and molar salt concentrations.
Therefore, there is a critical need for a protocol capable of identifying the
points that will have the highest impact in the performance of the surrogate
model without performing an extensive search. Fortunately, the AL protocol
developed in this work (and validated previously) enables this. The fol-
lowing section demonstrates the efficacy of the developed AL protocol to
improve the performance of the model by incorporating a set of points that
will yield the highest improvement. The AL workflow utilized to improve
the out-of-distribution current predictions is schematically illustrated in
Fig. 6.

In order to improve the GP model predictions for the extrapolation
dataset, an expanded input domain C,, whose limits are shown in Table 3, is
considered. It is noted that the range of WL thicknesses in Table 3 span all
reaction control regimes delineated by Tomashov'* from the bulk immer-
sion regime to the thin-film regime. Subsequently, the input dataset that was
originally used to calibrate the surrogate model in conjunction with the
MaxPro augmentation approach™ is used to sequentially add candidate
inputs within the larger input domain shown in Table 3. This set of can-
didate inputs is denoted as D,,.

Fig. 4 | Probability Density Plots of the input

(a) (b)
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Fig. 5 | Graphic representation of model perfor-
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The AL protocol is leveraged to select a batch of input configurations
D?' from D,, for further exploration. To perform this selection, tem-
peratures and salt concentrations at which polarization curves need to be
obtained are identified. To ascertain these values, the influence of the geo-
metric parameters from the GP model are marginalized and are obtained
through a staggered GP model. This staggered GP model was used to obtain
estimates of the acquisition function, which only depends on the tem-
perature and salt concentration. Next, the weighted K-means clustering
algorithm is used to identify four distinct combinations of temperatures and
salt concentrations, by separating D,, into four clusters, and subsequently
calculating the cluster centers. The polarization curves are experimentally
collected at these values.

Once the polarization curves are measured, the optimal batch of geo-
metric parameters (cathode length and water layer thickness) for the FE
simulations needs to be identified. To obtain these values, the temperature
and salt concentration values are set equal to the cluster centers identified in
the previous step. The GP model thus retains its dependency on the geo-
metric parameters. The acquisition function is recalculated in terms of the
geometric parameters. The optimal batch of geometric parameters, for a
given temperature and salt concentration, are identified using another
application of the weighted K-means clustering algorithm. 10 distinct

Table 3 | Expanded input domain selected for exploration
using the active learning strategy compared against the input
domain used for the generation of the initial dataset

Parameter Range (Initial Dataset) Range (Extrapolation Dataset)
Temperature [25,45] °C [10,60] °C

Salt concentration  {1,3,5} M [0.001,5] M

WL thickness [7E-06,0.05] m [7E-06,0.1] m

Cathode Length [0.01,0.5] m [0.01,0.75] m

configurations of the geometric parameters for each combination of the
temperature and salt concentration are used. Therefore, a single AL iteration
with this strategy adds 40 datapoints (10 unique geometric configurations at
each of the four environmental conditions) to the training dataset.

Figure 7 shows the optimal design points identified for both acquisition
functions. One can clearly see that optimal design D%' for both acquisition
functions is not uniform in the two-dimensional projections. This is due to
the clustering algorithm ultimately prioritizes design points in D,, that
exhibit the highest value of the acquisition function. Most of the new input
configurations are sampled from C, — C,, mainly because the potential for
improving the surrogate model is significantly lower inside the domain
where the acquisition function values have saturated.

The surrogate models were re-calibrated after concatenating the newly
acquired dataset to the initial dataset. The updated fused model is then used
to obtain predictions for the extrapolation dataset (the dataset from ref. 16).
Figure 8 shows the performance of the updated model on the extrapolation
dataset. Specifically, Fig. 8b compares the predictions of Iy obtained using
the updated fused model and the FE simulations respectively for the
extrapolation dataset. Figure 8a shows a qualitative improvement since the
points appear closer to the diagonal line (which represents the true values).
Figure 8b further reinforces this assessment as it clearly shows that the
cumulative probability of absolute error for the extrapolation set improved
significantly after the AL iteration. Recall that this improvement was
obtained using only 40 new observations. A comparison of the mean
absolute errors is presented in Table 4. The results shown in Fig. 8 as well as
in Table 4 clearly show that both acquisition functions have provided overall
improvements to the quality of predictions for the extrapolation dataset.
This highlights the the efficiency of the proposed framework in searching a
high-dimensional space for input configurations with the highest potential
to improve the performance of the surrogate model. However, in the case of
the PS, some predictions are seen to be less accurate than the ones provided
by the originally calibrated surrogate model. In contrast, using the EI as the
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active learning approach from the expanded input domain C,, with the predictive
standard deviation and expected information gain being used as weights in the
clustering algorithm, respectively. Note that *CL' refers to cathode length.

Fig. 8 | Graphic representation of model perfor-
mance on the extrapolation dataset. a Parity plots
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acquisition function for exploring a larger domain has resulted in uniformly
better predictions for the extrapolation dataset, as revealed by a point-wise
comparison of the absolute errors obtained using the original and refined
surrogate model respectively. Indeed, using the EI acquisition reduces the

Table 4 | Comparison of the improvements obtained to the
predictions for the extrapolation dataset using the acquisition
functions reveals that the expected information gain (El) per-
forms better than predicted standard deviation (PS)

Acquisition Function Before active learning  After active learning
0.019 A/m 0.014 A/m

0.017 A/m 0.009 A/m

Predictive Standard Deviation

Expected Information Gain

mean absolute errors on the extrapolation dataset by nearly 50% from
0.017mA to 0.009mA (see Table 4).

Discussion

In this study, a two-step active learning protocol was developed and
deployed to calibrate a low-cost surrogate model for the available current in
a galvanic couple for a wide range of in-service conditions. The influence of
geometric, environmental and chemical factors on the current are con-
sidered. The surrogate model is trained on a dataset of FE simulations, and
experimental polarization curves are used to inform the BCs in the FE
simulations. The framework calibrates an initial surrogate model using a
sparse FE dataset. The two-step protocol identifies the optimal configura-
tion(s) for gathering additional polarization curves by marginalizing the
output of the surrogate model with respect to the geometric parameters.
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Once the polarization curves are gathered, FE simulations are used to gather
current data, and the surrogate model is updated using the new datapoints.
This iterative process rapidly establishes a highly accurate surrogate while
minimizing the total number of simulation runs and experiments.
Exploration versus exploitation trade-offs are taken into account by iden-
tifying multiple sets of input configurations, with the help of weighted
K-means clustering, to collectively refine the current predictions to the
maximum possible extent. Two popular choices are considered for the
acquisition function, and the rate at which they refine the surrogate model
with additional data are compared. Moreover, multiple forms of surrogate
models are optimally combined using information fusion approaches to
improve the robustness of the current predictions. The efficacy of this
protocol is demonstrated for interpolative and extrapolative case studies. In
both cases, large gains in performance (both in terms of error and parsi-
mony of data) are achieved. Since the establishment of the surrogate model
is a one-time cost,this approach reduces the time taken to obtain current
predictions under alternative environmental conditions or geometric con-
figurations by roughly four orders of magnitude. The protocols presented in
this study are highly relevant for the rapid screening of various alloys under
corrosive conditions.

The AL framework applied a single iteration using two different
acquisition functions. The EI acquisition function demonstrated superior
performance gains compared to the PS acquisition function. It’s important
to note that EI considers the domain-wide average of the GP model as the
Quantity of Interest (QoI) and seeks new design points with the greatest
potential to influence this average value. The domain-wide averaging step
regularizes the Qol, making it less sensitive to performance variations
exhibited by the GP model, particularly outside the original input domain
(C,, see Fig. 7). This feature is especially valuable in our study due to the
numerous physical and chemical phenomena inherent in the corrosion
process, requiring robust models and metrics. While the error reduction in
the EI framework is significant, further reductions may be possible in
subsequent iterations of this process. Limited prior research has compared
EI and PS acquisition functions in terms of the performance gains per
additional data point” and has confirmed the generally greater efficacy of
information gain-based criteria.

The framework also helps to overcome problems related to the sparsity
and high dimensionality of data in the corrosion field. The current work
showcased four input variables (i.e., chloride concentration, temperature,
water layer, and cathode length), however, such a problem could also
consider galvanic couple pair, elemental composition of the alloys, corrosion
parameters such as corrosion potential, among others. Applying an AL
framework optimizing corrosion response helps with current materials
exposed to various environments but could also be applied to materials
discovery in corrosion’” ™. Such work has also been highlighted in other
electrochemical fields such as batteries due to the high-dimensional data".
The remarkable efficacy of this framework arises from the usage of an
information metric (the acquisition function) to guide data acquisition.
Indeed, GP models along with AL strategies have been utilized to refine
predictions for functions of up to 40 variables*. Further, surrogate models
can be used to efficiently screen input variables that do not have a discernible
effect on the corrosion property of interest*’, which is especially useful when
the inputs are high-dimensional.

As previously noted**”, FEM modeling incurs various costs specifically
when incorporating experimentally derived boundary conditions (i.e.,
polarization scans). The developed AL framework allows for the separate
selection of environmental and geometric parameters that will reduce the
overall error in the trained surrogate model. The framework could have
easily been applied only to select geometric parameters for FE simulations
eliminating the need to perform experiments. However, the goal in the
present work was to show that the framework could reduce errors by adding
more experiments and geometries. In this regard, the staggered approach
developed in our work allows for a seamless and efficient assimilation of
additional experimental and simulation data into the existing dataset. In
addition, our approach is especially useful in scenarios where the

experimental and simulation response are controlled by different sets of
factors, which is often the case when simplifying assumptions are used to
construct the physics-based model. It is noted that this approach is inspired
by the Bayesian calibration framework". More specifically, while the
experimental and simulation responses utilized in the calibration process
are considered to be a function of controllable inputs, the simulation
response additionally depends on the material properties. Predictions for
new input configurations can be obtained by marginalizing the simulation
response w.r.t the probability distribution function associated with the
material properties.

Machine Learning (ML) serves as a powerful tool for discerning the
optimal scenarios for additional Finite Element (FE) simulations within a
dataset, presenting broader implications for the materials degradation
community. Acquisition function-based AL protocols offer a quantitative
method to assess the potential benefits of adding further simulations, such as
exploring geometric variations, to the candidate dataset, thereby enhancing
the fidelity of the surrogate ML model (see Fig. 2). In the course of our study, a
total of 2520 simulations were conducted. Notably, the minimum error value
was attained only 650 optimally selected simulations. Thus, the integration of
ML with Finite Element Modeling (FEM) allows users to limit parametric
sweeps while ensuring efficient exploration of the domain of interest.

This efficiency in optimizing computational resources while main-
taining model accuracy holds promise not only for corrosion-related work
but also for a broader spectrum of materials degradation investigations.
Beyond its direct application, our approach has the potential to inspire new
experiments aimed at reducing uncertainty in ML predictions, offering a
systematic means to forecast future events with an informed understanding
of prediction uncertainties. Consequently, the protocols developed in this
work have the potential to address longstanding scientific gaps across
diverse materials degradation challenges®.

Methods

Experimental setup

A three-electrode cell was used with SS304L (0.196 cm®) as the working
electrode, a silver/silver chloride reference electrode, and a Platinum-coated
Niobium mesh as the counter electrode. Samples were immersed in the
solution (ACS grade) and temperature of interest in a 150 mL water-
jacketed cell and sparged with lab air to maintain a solution saturated in O,.
The solution temperature was controlled to + 0.1 °C. Polarization mea-
surements were performed at scan rates of 0.167 after 1 h of open circuit
potential (OCP) equilibration and stabilization. The scans were performed
from OCP to —1.4 V.

FE simulations of galvanic corrosion

The FE models created in this study are described in more details in
previous works'®. Briefly, the modeling framework is based on the
Laplace Equation”. COMSOL Multiphysics v6.1 (COMSOL, Inc., Bur-
lington, MA) software was utilized. The potential and current dis-
tributions along a SS304L cathode coupled galvanically with AA7050-
T7451 were modeled using a simplified, two-dimensional geometry. The
anode length was fixed at 0.01 m, and cathode length and WL thick-
nesses were dictated by the active learning framework. The lower limit of
WL was set by the natural convection boundary layer. The values used
for solution conductivity (k) were obtained from OLI Studio Analyzer
9.5 (OLI Systems, Inc., Cedar Knolls, NJ). The anodic boundary con-
ditions (B.C.) were the anodic kinetics of AA7050 (anodic B.C.) obtained
from Liu et al."” and were assumed to be constant across all chloride
concentrations and temperatures. All calculations were assumed to be
steady state and the polarization scans were not dependent upon pH.
Both anodic and cathodic currents were measured, and it was ensured
currents were identical. The temperatures and salt concentrations
shown in Table 1 are representative of commonly encountered envir-
onmental conditions. The range of WL thicknesses explored using the
FE simulations includes the ohmic resistance-controlled regime as well
as the M-T kinetics controlled regime.
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Neural Network (NN) ensembles for prediction and uncertainty
quantification of cathodic current output

Neural networks (NN) are universal function approximators® which map
input to output using a combination of linear transformations and non-
linear activations. Each linear transformation results in a new set of features
called ‘hidden units’, whereas the non-linear activation allows us to capture
complex input-output relationships. A linear transform together with its
associated non-linear activation is called a ‘layer’.

Neural network parameters, also known as weights, are typically
initialized randomly, and adjusted during a training phase of the network
which measures the error (also called loss) between network predictions and
ground truth values of a dataset”. During this process, the gradients of the
loss function are used to update the weights. This iterative process results in
a trained network capable of approximating the function that defines the
input-output pairs in the dataset

In our study, each neural network surrogate model has three layers,
with 6464 and 32 hidden units respectively in each layer. In addition, we use
the Rectified Linear Unit (ReLU) activation function to account for non-
linear relationships between the input configurations and the galvanic
current. However, we utilize different random weight initializations to make
five independent models. Each random weight initialization allows the
surrogate model to have a different approximation of the ground truth data
distribution, which in turn allows us to quantify the uncertainty in the
predicted response. The optimal architecture of the neural network is
identified by maximizing the K-fold cross-validation performance. This
approach facilitates achieving an optimal balance between model accuracy
and robustness. Integrating ensemble techniques with K-fold cross-
validation enables training a neural network model without generalization
concerns, despite its high dimensionality.

Gaussian process regression models for cathodic current output
Gaussian Process Regression is a nonlinear, probabilistic interpolation
approach for emulating the response obtained from complex FE models’. In
this approach, the dataset of responses is collectively represented using a
multivariate Gaussian distribution, according to

Ysim N_/\/(O, O'2R(X5im, Xsim)) (1)

Where Y* is the dataset of simulation responses, X is the dataset of
inputs, ¢* is a scaling factor for the variance exhibited by the GP, and Ris a
positive-definite covariance matrix. The entries in this matrix are specified
with the help of a kernel function, which is typically a stationery, decaying
function of the L* distance between a pair of inputs. The most popular choice
for the kernel function is the Automatic Relevance Determination - Squared
Exponential (ARD-SE) kernel*”*'*, which is specified according to

(=)

D X — Xos

R(x;,x;) = expq — 2”172” (2
— ;

Where x;; refers to the j-th feature of the input x;, and {lj}jD: | are the
length-scales associated with each feature. These length-scales capture the
distance along each feature axis beyond which outputs are considered to be
uncorrelated.

GP models consider the joint Gaussian distribution of of the training
and test datapoints in order to make predictions. Mathematically, the joint
distribution is specified as

(o
Y

The predictions for test inputs are obtained by conditioning the joint
distribution using the existing simulation dataset (see Eq. (1)). This results in

R (Xsim , Xsim) R (Xsim , X*) 3
R (X* , Xsim) R(X* , X*) ( )

a normal distribution for the predictions given by
JE) ~ N (m(x"), s*(x")) (4)
m(x*) — R(X*, Xsim)R—l ()(sim7 Xsim>Ys1'm (5)

SZ(X*) — 02 {1 _ R(X*, Xsim)R—l ()(sim7 )(sim)R()(sim7 X*)} (6)

The optimal values of the lengthscales is estimated by minimizing the
log-likelihood of the normal distribution that represents the training dataset
(see Eq. (1)).

As mentioned in Sec. 2, the GP surrogate model is used to calculate the
two acquisition functions. The first acquisition function (the predictive
standard deviation) is calculated as the square-root of the variance in Eq. (6).
The second acquisition function (the expected information gain) is calcu-
lated following the approach developed by Pandita et al.”. The expected
information gain is calculated as

* D\ 0, 1 (0,(x") Pl )N
g(x’{li}jzl) _log(az(X*))+5( 0 ) +§(015(X*)) ?

Where 07 is the integral of the variance in Eq. (6) across the entire input
domain for a given dataset, 03(x*) is the integral of the variance in Eq. (6)
after augmenting the initial dataset with the prediction y(x*). The quantity
v(x') is specified as

v(x*) = e,(x") — ezl-(x*)R_lR(XSim,x*) 8)

5 (T\ /24D 1 —x; i
o= () () o

Fusion of current predictions from multiple surrogate models
Once the surrogate models are established with sufficient fidelity, we con-
sider fusing their predictive responses to build a more robust and accurate
predictor. We build a fused predictor that is a linear combination of the GP
and NN surrogate model predictions according to

¥ =w'y,

Where ' is the fused prediction, w” is the weight assigned to each
model (which varies with the input configuration), and y;, and y, are the
GP and NN surrogate model predictions respectively. We note that the
fused predictor is unbiased, i.e. w'1 = 1. The variance associated with the
fused predictor is specified according to

With

y= [5’GP75’NN] (10)

Var(j/) =wZw (11)

Where X = Cov(y). The optimal value of the weight vector w for each
input configuration is estimated by minimizing the variance in Eq. (11),
subject to the constraint w'1 = 1. This optimization problem is solved with
the help of Lagrange multipliers"’. Further details regarding this approach
can be found in refs. 33,34.

Data availability

The data supporting the findings in this study and the compiled models can
be found at this Zenodo repository - https://doi.org/10.5281/zenodo.
10655559.

Code availability

The codes used to generate the data in this study can be found at this Zenodo
repository - https://doi.org/10.5281/zenodo.10655559.
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