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Ensuring the long-term chemical durability of glasses is critical for nuclear waste immobilization
operations. Durable glasses usually undergo qualification for disposal based on their response to
standardized tests such as the product consistency test or the vapor hydration test (VHT). The VHTuses
elevated temperature and water vapor to accelerate glass alteration and the formation of secondary
phases. Understanding the relationship between glass composition and VHT response is of
fundamental and practical interest. However, this relationship is complex, non-linear, and sometimes
fairly variable, posing challenges in identifying the distinct effect of individual oxides on VHT response.
Here, we leverage a dataset comprising 654 Hanford low-activity waste (LAW) glasses across a wide
compositional envelope and employ various machine learning techniques to explore this relationship.
We find thatGaussianprocess regression (GPR), a nonparametric regressionmethod, yields the highest
predictiveaccuracy.Byutilizing the trainedmodel,wediscern the influenceofeachoxideon theglasses’
VHT response.Moreover, wediscuss the trade-off betweenunderfitting andoverfitting for extrapolating
the material performance in the context of sparse and heterogeneous datasets.

The disposal of nuclear waste has far-reaching implications for both the
environment and humanwell-being. To ensure safe storage, transportation,
and disposal, vitrification of radioactive materials into waste forms is a
crucial step in the waste management process1,2. Among the critical attri-
butes for successful waste disposal, the chemical durability of waste-bearing
glasses stands out as a paramount consideration, given the potential expo-
sure of the disposal to aggressive environments3. Over the past decades,
scientific research has demonstrated that the durability of waste glasses is
fundamentally influenced, though not entirely determined, by their che-
mical compositions. Therefore, understanding the relationship between
glass composition and durability performance holds special significance in
the context of proper waste disposal.

At the Hanford Tank Waste Treatment and Immobilization Plant
(WTP), the immobilized low-activity waste (ILAW) is slated for on-site
disposal at the near-surface Integrated Disposal Facility4. As the ILAW
glasses act as the primary barrier against the release of radionuclides to the

biosphere, the Department of Energy (DOE) has mandated two chemical
durability-related measurements to characterize the corrosion behavior of
candidate ILAW glasses—the product consistency test (PCT)5 and the
Vapor Hydration Test (VHT)6. Different from the PCT which focuses on
the steady-state leaching rate, the VHT is specifically designed to measure
the glass corrosion rate under hydrothermal conditions, a process that leads
to partial conversion of the glass into amorphous and crystalline alteration
products. This hydrothermal corrosion test offers critical insights into the
long-term durability of ILAW glasses in on-site disposal scenarios, con-
tributing significantly to our understanding of the complex processes
influencing glass performance in nuclear waste immobilization. The DOE
has established specific requirements formeasuring theVHT response limit
as follows7:

The glass corrosion rate shall be measured using at least a seven (7)-day
vapor hydration test run at 200 °C as defined in the DOE-concurred upon
ILAWProduct Compliance Plan. The measured glass alteration rate shall be
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less than 50 g/(m2·day). Qualification testing shall include glass samples
subjected to representative waste form cooling curves. The vapor hydration
test shall be conducted on waste form samples that are representative of the
production glass.

In VHT, the rate of conversion is influenced by the coupled rates of
glass corrosion and the formation of primarily crystalline zeolite alteration
products. Thenucleation of zeolite phases in this process is sporadic, leading
to ahighdegreeof response variability, particularly during the early stages of
conversion (Fig. 1)8. Within the typical 24-day VHT duration, glasses with
high alteration rates have usually progressed past the early sporadic phase,
while glasses with low alteration rates may still be within the early sporadic
phase. Consequently, simple functions used to describe the VHT responses
of waste glasses are inaccurate. The high degree of nonlinearity and the
variability in zeolite nucleation, coupled with variability in experimental
factors, contribute to highbias anduncertainty inVHT response prediction.
Jiricka et al. highlighted the significant impacts of surface finish, volume of
water, and cutting procedures on the single-time VHT responses, all of
which are generally not strictly controlled across different VHT tests8. As a
result of these experimental variations, a relative standard deviation of 63%
was observed for the pooled replicated single-time VHT response9.

In real production scenarios, glass property-composition models are
utilized to predict theVHT response of glasses during the processing of each
waste batch atHanford’s LAWvitrification facility. The use of thesemodels,
along with their uncertainty descriptions, is necessary to ensure with suf-
ficient confidence that glasses satisfy the VHT specifications listed in the
WTP contract10. This approach is also used for other glass processing and
product quality-related properties11. Existing VHT response models have
met this goal with limited success. In terms of the previousmodeling efforts,
Vienna et al. modeled the logarithm VHT response of 58 glasses as a first-
order function of composition12:

ln r;
g

m2 � d
� �

¼
Xq

i¼1

rigi ð1Þ

where r is theVHTrate at 200 °C (basedonmulti-timeVHTresponses), ri is
the ith component coefficient, and gi is the ith componentmass fraction in a
glass. More recently, partial quadratic mixture (PQM)models were applied
to advance the prediction of the VHT response in a similar manner13:
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where d is theVHTalteration thickness in µmafter a 24-day test duration at
200 °C, vi is the ith component coefficient, vii is the ith component squared
coefficient and vij is the ith and jth component cross-product coefficient.
These models demonstrated some success in predicting VHT responses
within relatively narrow composition regions but faced high relative
uncertainty. For instance, to satisfy the WTP constraint of the VHT rate
being 50 g/m2/dwith 90% confidence, the predicted rate needed to be below
7.9 g/m2/d10.Also, the validationperformanceof themodel is unsatisfactory,
as shown in Supplementary Fig. 1. As the composition regions expanded,
particularly for the relatively large region of enhanced LAW glasses14–16, the
prediction uncertainty increased, and distinct biases emerged. The PQM
model by Vienna et al., for instance, over-predicted low VHT responses
while under-predicting higher VHT responses (Fig. 2). Vienna et al. also
attempted to address this issue using an artificial neural network (ANN) to
model VHT response as a function of composition15. While this model
exhibited reduced uncertainty, it did not perform well on validation data,
indicating overfitting. Consequently, Vienna et al. did not obtain a suitable
model to quantify VHT responses in enhanced ILAW glass data and so
developed a logistic regression model to predict pass/fail state of glasses
relative to the 50 gm−2d−1 contract limit16. Therefore, for both research and
the design of LAW glasses with enhanced performance, a more robust
model is needed to overcome experiential noise and capture the true
compositional effects on VHT response.

This study leverages advancedmachine learningmethods to unveil the
distinct effect of different oxides on the durability performance of nuclear
waste immobilization glasses. We utilize a dataset comprising VHT
alteration rates of more than 600 Hanford LAW glasses, encompassing a
wide compositional envelope. Four machine learning methods, including
PQMandANN fromprevious studies, and two nonparametric approaches,
namely, local linear regression (LLR) and Gaussian process regression
(GPR), are employed to predict their VHT responses. The nonparametric
methods, being more capable of fitting complex relationships without
presuming the target function’s form, typically offer superior performance17.
Our test results demonstrate thatGPRachieves the best overall accuracy and
robustness in predicting the VHT response of unseen glass compositions,
significantly outperforming the benchmark models. Through detailed
interrogation of the GPR model, we decompose the complex relationship
between glass composition and VHT response, effectively unveiling the
individual effects of the different major oxides. Based on the observations
from this study, we further discuss an interesting phenomenon that is
generic to machine-learning-based material studies, where a slightly-

Fig. 1 | Impact of time on the amount of glass converted to alteration products in
typical VHT tests8,58,59. The dashed lines represent linear fittings for the data
measured from two studies, excluding the initial days.

Fig. 2 | Predicted vs. measured logarithm VHT responses using PQM, aligned to
an equivalent 24-day alteration depth14. For measured VHT response, the pooled
standard deviation is 0.9034 ln(µm)9, and, for predicted VHT response, the uncer-
tainty (95% prediction interval) is illustrated in Supplementary Fig. 1.
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overfitted model is found to be beneficial for extrapolating a small dataset
with a heterogeneous sample distribution.

Results
Prediction accuracy of the machine learning models
Based on the data reported by PNNL-30932 report16, a dataset consisting of
639 single-time VHT responses was curated. This dataset considers the
influence of tenmajor oxides (as themodel inputs) on theVHT response (as
the model output). The distributions of those inputs and output are sum-
marized in Fig. 3. As indicated by the orange whiskers in Fig. 3, the glass
compositions involved in this dataset range over a broad envelope as rele-
vant to diverse glass waste forms. Additional details of the data curation are
provided in the “Methods” section.

Based on the procedures described in the “Methods” section, the four
models—PQM, ANN, LLR, and GPR—were optimized. The optimal pre-
diction accuracies of these models were compared using ten different train-
test splits, and the results are presented in Table 1. Additionally, Fig. 4
showcases the predicted and true VHT alteration rates of the test samples
from one single train-test split. Overall, all the models achieve decent pre-
diction accuracy in mapping the glass composition to the VHT alteration
rate.While the averagedRMSEvalues on the test set ~1.0 ln[g/(m2·d)] for all
four models, it is worth noting that the pooled standard deviation (SD) is
found to be 0.9034 ln[g/(m2·d)]) from analyzing duplicate glasses (i.e., same
glass composition with multiple measured values), representing the
uncertainties caused by fabricating glasses, and performing VHT analyses9.
The small difference between RMSE and pooled SD indicates that the
models are properly fitted (i.e., not over or underfitting).

Another noteworthy observation from Fig. 4 is that all four models
exhibit decreased prediction accuracy as the VHT alteration rates decrease.
This trend canbe attributed to the reducednumber of sampleswithvery low
VHT alteration rates in the dataset, as illustrated in Fig. 3. Such scarcity of
samples in this range implies that corresponding predictions entail more
extrapolation. In that regard, an intriguing phenomenon observed during
model optimization is the delicate balance between the degree of overfitting
and extrapolability, influenced by varying degrees of model regularization.
This dynamic arises due to the unevendistribution of samples in the dataset.

Specifically, a slightly-overfitted model extrapolates more accurately for
glass compositions with very high or very low VHT alteration rates. This
point is discussed in detail in the “Discussion” section.

Among the four models, the PQM model, despite achieving a higher
accuracy than reported in the previous study14, exhibits the lowest perfor-
mance.The relatively lower accuracy of the PQMmodel can be attributed to
its finite analytical terms, which struggle to adequately capture the intricate
dependence between the glass composition and its VHT response18. For
further insights into the analytical terms of this updated PQMmodel, please
refer to Supplementary Note 3. Conversely, the ANNmodel demonstrates
considerable improvements in both test R2 and RMSE, owing to its higher
flexibility in fitting non-linear patterns. However, a significant gap is
observed between the training and test accuracies of the ANN model,
suggesting a tendency tooverfit. This observation is consistentwithprevious
findings and raises concerns about the ANN model’s ability to generalize
well on new samples14, particularly for new glasses located near the edge of
the compositional envelope.

In comparison, both the nonparametric models exhibit superior pre-
diction accuracies. The LLR model shows the best performance on test
RMSE among the four models, but the high prediction variations of LLR
(indicated by the standard deviation values in Table 1) raise questions about
its robustness. The high variations of LLR can be attributed to the fact that
some samples in the VHT dataset are sparsely distributed in the composi-
tional envelope, causing the local fitting of the LLR model to vary sig-
nificantly across the different train-test splits. In contrast, the GPR model
achieves a good prediction accuracy, with the highest R2 accuracy and the
second-lowest RMSE on the test set. Importantly, the GPR model does not
involve the instability associated with LLR or the overfitting issue of ANN.
Furthermore, the lack of fit test indicates that GPR has the smallest F score
(i.e., least likely to involve the lack-of-fit issue) compared to PQM and LLR
models. Considering all the above-discussed factors, GPR emerges as the
most suitable modeling method for the logarithm VHT response dataset19.
Consequently, results and discussion in the subsequent sections focus only
on GPR.

One-dimensional effect of individual oxides on VHT response
To interpret the effect of individual oxides on the VHT alteration rate as
learned by the optimized GPR model, we conducted a one-dimensional
feature effect analysis. We first assumed a hypothetical glass composition
based on the median value of each oxide feature (as shown in Fig. 3),
representing a generic composition of nuclear waste immobilization glasses.
Subsequently, we analyzed the effect of each oxide by sequentially jittering
its contentwithin its 15-to-85percentiles in thedataset,while rescalingother
oxides such that the total oxide content remainedunchanged. The impact of
each oxide was then evaluated based on the variation in the predicted VHT
alteration rate resulting from the jittered oxide content.

The results of the individual oxide effect analysis are summarized in
Fig. 5. Notably, the different oxides exhibit distinct effects on the VHT

Fig. 3 | Composition ranges of the ten oxides in the 585 considered nuclear waste
immobilization glasses for modeling the VHT responses, along with the dis-
tribution of theVHT responses in the dataset.Note that the unit of the scaledVHT
alteration rate, *, represents g/(m2 d). The red, two purple, and two orange whiskers
indicate themedian, lower and upper quartiles, and lower and upper extremes of the
feature values, respectively.

Table 1 | Comparison of the predictive accuracies and lack-of-
fit statistics for four models—PQM, ANN, LLR, and GPR

PQM ANN LLR GPR

Training
set

R2 0.62 ± 0.01 0.78 ± 0.01 0.77 ± 0.18 0.76 ± 0.01

RMSE
[ln(*)]

1.05 ± j0.01 0.80 ± 0.02 0.66 ± 0.16 0.83 ± 0.02

Test set R2 0.58 ± 0.04 0.63 ± 0.08 0.61 ± 0.15 0.65 ± 0.07

RMSE
[ln(*)]

1.09 ± 0.05 1.03 ± 0.12 0.93 ± 0.23 1.00 ± 0.12

Lack of fit, F 1.50 ± 0.00 0.87 ± 0.03 1.28 ± 0.01 0.63 ± 0.04

The mean and standard deviation values are calculated based on the model performance over ten
train-test splits. Here, * represents the unit of the scaled VHT alteration rate, i.e., g/(m2·d). Lack of fit
statistics are calculated based on all samples in the dataset.
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response, characterizedby varying slopes anddegreesof nonlinearity, which
broadly corroborate the observations reported in a prior analysis utilizing
the PQM model16. Based on the slopes of the feature lines, the ten oxides
considered in this study can be categorized into two groups (ranked by the
feature slope and the quantity of each oxide in the dataset)—those that
increase the VHT alteration rate of the glass (Na2O, Li2O, K2O, CaO, and

Al2O3), and those that decrease the rate (ZrO2, SiO2, TiO2, and SnO2). Note
that B2O3 hasminimal impact onVHT response.Meanwhile, we stress that
the displayed feature effects can be influenced by the choice of the reference
composition (i.e., the centroid inFig. 5).The effect of the sameoxide can also
vary depending on the reference composition, which, in turn, highlights the
challenge of interpreting the effect of each individual oxide with a con-
ventional model.

Model interrogation with SHAP analysis
To provide amore comprehensive understanding of the prediction of VHT
alteration rate by the optimized GPR model, we employed the SHAP ana-
lysis, a powerful model interpretation technique20,21, as briefly reviewed in
the “Methods” section. Unlike the one-dimensional composition analysis,
the SHAP interpretation is based on the actual compositions in the VHT
dataset, without relying on assumptions about a reference glass composi-
tion. For this analysis, all the samples in the dataset were considered,
ensuring a robust and detailed examination of the model’s predictions.

In Fig. 6, we present a summary of the marginal contribution of
each oxide component to the VHT alteration rate. The oxides are here
ranked based on their absolute influence on the VHT alteration rate as
captured by the Shapley values. The horizontal axis represents the
Shapley value (i.e., relative impact), where positive (negative) values
indicate an increase (decrease) in the VHT rate. For each oxide, the
horizontal distribution of the scatters shows the variation of its mar-
ginal contribution in response to the standardized feature values such
that all oxides can be compared with their mean value aligned to the
centerline in the plot. This enables easy comparison of all oxides with
their mean values. Taking Na2O as an example, this plot suggests that,
as the content of this oxide increases (as the scatter color shifts from
blue to pink), its marginal contribution changes from negative to

Fig. 4 | Comparison of the accuracy of themachine
learning models. Predicted vs. measured VHT
alteration rate for (a) PQM, (b) ANN, (c) LLR, and
(d) GPR models, based on the same test samples
from a single train-test split. The points are color-
coded based on the density of the scatters on the plot
(the concentration increases from blue to red), and *
represents the unit of the scaled VHT alteration rate,
i.e., g/(m2·d). The dashed line is added to visualize
the perfect agreement.

Fig. 5 | One-dimensional composition effect on VHT alteration rate based on the
optimized GPRmodel.The centroid corresponds to themedian value of each oxide
feature in the dataset. Note that* represents the unit of the scaled VHT alteration
rate, i.e., g/(m2·d).
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positive. This suggests that a higher amount of Na2O tends to raise the
VHT alteration rate while low concentrations show the opposite effect.

We next display the feature-wise SHAP results in Fig. 7, grouping the
oxides basedon the slopes of their feature effects fromFig. 5. In eachplot, the
actual content of each oxide is plotted against the marginal contribution,
with each point representing a specific sample in the VHT dataset. We
observe thatmost of the oxides exhibit amonotonous influence on theVHT
rate. Among all, Na2O, Li2O, ZrO2, and K2O, show clear effects in affecting
the VHT rate, with ZrO2 showing a negative influence opposite to the other
three oxides. In contrast, the data patterns extracted from CaO and Al2O3

are less clear in both Figs. 6 and 7. This point is further discussed with
additional evidence based on the SHAP analysis in the “Discussion” section.

Discussion
We first discuss the trade-off betweenmodel overfitting and extrapolability
associatedwith theuneven sample distribution in thedataset, as noted in the
“Results” section. This is a common challenge faced in many machine-
learning-based material studies due to the limited scale of common lab
testing22–25. Conventionally, it is expected that a model’s extrapolation
capability is maximized when overfitting is minimized. However, our
findings based on theVHTdataset reveal a somewhat surprising outcome: a
slightly-overfitted model appears to exhibit more accurate extrapolation at
very low or very high VHT rates.

This trade-off issue is collectively illustrated with Figs. 8, 9, and 10, as
explained in the following.We first employ progressive regularization of the
GPR model, transitioning from overfitting to underfitting, by gradually
increasing the noise level parameter. Using the RMSE difference between
the training and test set samples as a measure, we then track the model
deviation at different ranges of the VHT alteration rate. As a comparison,
Fig. 8 presents the prediction deviations between a non-overfitted model
(achieved by minimizing the difference between the train and test R2

accuracies) and a slightly-overfitted model. For statistical representative-
ness, the single sample with a VHT rate larger than 6 ln[g/(m2·d)] was
excluded from this analysis.

Ideally, a model with robust extrapolability should exhibit a consistent
level of deviation across the entire range of theVHT rate. In Fig. 8a, the non-
overfitted model demonstrates relatively low deviations within the inter-
polation region, but its deviation significantly increases in the extrapolation
regions. Conversely, the slightly-overfitted model in Fig. 8b shows mar-
ginally inferior interpolationperformance, yet it achieves substantially lower
deviations during extrapolation. Consequently, compared to the non-

overfittedmodel, the slightly-overfittedmodel appears to be better suited for
predicting glass compositions with extreme VHT responses.

To further investigate the trade-off issue illustrated inFig. 8, the average
deviation (mean deviation averaged from the different VHT intervals), and
the degree of overfitting (i.e., the RMSE difference between the training and

Fig. 6 | Summary of the SHAP analysis. This plot shows the relative impact (i.e.,
marginal contribution) of the oxide components on the VHT alteration rate, as
ranked by importance from top to bottom. Note that the feature values in this plot
have been standardized to ensure a fair comparison. * represents the unit of the
scaled VHT alteration rate, i.e., g/(m2·d).

Fig. 7 | Feature-wise results of the SHAP analysis.Those plots show the correlation
between the oxide content (on the actual scale) and marginal contribution: aNa2O,
b Li2O, c K2O, d Al2O3, e CaO, f B2O3, g SiO2, h SnO2, i TiO2, and j ZrO2. Here, the
feature values are based on the actual scale. To assist comparison, the vertical and
horizontal dash lines indicate the mean feature value and zero marginal contribu-
tion, respectively.
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test set samples) at different levels ofmodel regularization are plotted in Fig.
9. Noted that the zero regularization here indicates a very low level of
regularization that causes the model to overfit, as the noise level is not the
only parameter controlling the regularization in GPR. Our analysis reveals
that, as the model regularization increases, the degree of overfitting gra-
dually diminishes as anticipated, but this is accompanied by a continuous
increase of the average deviation, which indicates a decline in the model
extrapolability. As seen in Fig. 8, the rise of the average deviation is primarily
driven by the higher deviations at low and high VHT rates. These trends,
depicted in Figs. 8 and 9, are not commonly expected, as the general
understanding is that overfitting leads to larger deviations, undermining
model performance.

The superior performance of the slightly-overfitted model
observed in this study is likely related to the uneven distribution of the
VHT alteration rate in the adopted dataset. Specifically, most of the
VHT samples are concentrated within the mid-range of the alteration
rate between 0 and 4 ln[g/(m2·d)] (see Fig. 3), while fewer samples are
outside this range. The observed issue is illustrated with a simplified
case of the heterogeneous dataset in Fig. 10. In this figure, the majority
of the training samples are concentrated at 4 to 8, and the major pre-
diction deviations from different models are indicated with arrows.
The model’s extrapolability is reflected by the magnitude of deviations
at the two ends, where both the non-overfitted and overfitted models

exhibit large deviations when predicting samples outside the middle
range. In contrast, despite the slightly higher variance compared to the
non-overfitted model, the slightly-overfitted model achieves more
reasonable predictions when extrapolating beyond the populated
region.

Returning to the VHT dataset, it is apparent that the model optimi-
zation is dominated by themodel accuracy in predicting themost populated
samples within the mid-range of VHT rate. Consequently, much lower
weights are assigned to extrapolating glass compositions with high and low
VHT rates. With slightly lower regularization, however, more weight of the
model optimization is allocated to the less populated regions. As a result, the
slightly-overfitted model extrapolates the VHT rate substantially better at
the extremities.

Drawing from the observations made from the VHT dataset as dis-
cussed above, different strategies can be employed to select the best model
based on the target of the model prediction. If the model is primarily
intended for interpolating material performance within the populated
region of the dataset, the non-overfitted model is expected to provide the
best predictability. However, in cases where there is an interest in extra-
polating material performance, adopting a slightly-overfitted model could
yield more robust predictions for extrapolating material behavior. Indeed,
the ability of the slightly-overfitted model to accurately extrapolate at very
low or very high VHT rates is particularly relevant and significant for
material research. This is because the slightly-overfittedmodelmay result in
more robust predictions in extrapolating the material behavior, which
facilitates the exploration of unexplored regions in the compositional space,
potentially leading to the discovery of new materials with unconventional
compositions.

Next, we discuss the effect of individual oxides on the VHT alteration
rate, as conducted in both the one-dimensional feature effect analysis and
the SHAP analysis, yields consistent and insightful results. Based on the
results in Figs. 5, 6, and 7, the influence of the ten oxides can be ranked
descendingly as follows: Na2O, Li2O, ZrO2, K2O, TiO2, SnO2, SiO2, CaO,
Al2O3, and B2O3. Among all, Na2O has the most substantial impact on the
VHT alteration rate, with higher concentrations leading to a faster rate of
alteration, which becomes more pronounced when its molar fraction
exceeds 20%14,16. Meanwhile, only CaO andAl2O3 exhibit unclear effects on
affecting the VHT rate. In general, the interpretation of these oxide effects
aligns well with the roles of the corresponding atoms in altering the glass’s
formation ability and chemical durability, which are related through the
oxide composition and atomic structure. In terms of the VHT test, the
response of a glass is determined by two primary factors: 1) the influence of
the components on glass network stability and 2) the influence of the
components on the stability of the solution leading to the driving force to
dissolution.

Fig. 8 | Trade-off between model overfitting and
extrapolability observed in this study.Variation of
the prediction deviation (i.e., the RMSE difference
between the training and test sets) at different VHT
alteration rates, based on the (a) non-overfitted and
(b) slight-overfitted GPR models. The interpolation
and extrapolation ranges are roughly divided
according to the data distribution in the VHT
dataset. Note that * represents the unit of the scaled
VHT alteration rate, i.e., g/(m2·d).

Fig. 9 | Variations of the prediction deviation (blue squares) and the degree of
overfitting under different levels of model regularization (green triangles).Here,
the two metrics are both calculated based on the RMSE difference between the
training and test set samples, but the former takes the average from the different
VHT intervals (see Fig. 8) while the latter is on the overall difference.
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Regarding the glass network stability, it is associated with the role of
different atoms in altering the topology of the glass atomic network (see
topological constraint theory)26–28, which influences the strength of the
chemical bonds within the glass29,30. Here, Na, Li, and K atoms that form
alkali oxides play a role in depolymerizing the glass network, thus reducing
the corrosion resistance of the nuclear waste immobilization glass and
therefore increasing the VHT rate. In contrast, Si and B atoms, as typical
network-forming elements, enhance the glass formation ability and, con-
sequently, reduce the VHT response. Additionally, the weaker network-
modifying elements, Zr, Ti, and Sn, also contribute to enhancing glass
network formation31. Aluminum has a mixed effect on the glass structure
depending on the overall glass bonding environment30,32.

As for the effect of the solution on glass dissolution, alkali ions released
into the solution increase its pH, driving a higher dissolution rate while
boron buffers the pH of the corroding solution. Zirconium, Ti, and Sn are
only sparingly soluble in solution and therefore have little effect on this
mechanism.Orthosilicic acid and aluminate ion concentrations in solutions
most strongly influence the driving force for dissolution33,34. High Al con-
centrations in a caustic solution cause a precipitation of zeolites which
dramatically reduce the concentrations of both aqueous Si and Al, then
increase the dissolution rate35. Notably, the effects of Ca andAl atoms on the
VHT response appear to be mixed, with their marginal contributions being
either positive or negative, even at fixed oxide content levels (see Fig. 7e, d).

By further taking advantage of the SHAP analysis, we revisit the effect of
those oxides while focusing on identifying their most interactive features21,
as displayed in Fig. 11. We find that the total content of alkaline oxides
(Na2O, K2O, and Li2O) has the strongest interactive effect with CaO and
Al2O3.Under lowalkaline oxide content, themarginal contributions ofCaO
and Al2O3 are positive, while this trend reverses with the presence of a high
total alkaline content. This dual pattern may be linked to the significant
impact of alkaline oxides on solution pH, which is known to accelerate glass
corrosion32. This observation points to a potential feedback effect involving
the solution chemistry that influences the VHT response in complex ways.
Thus, CaO and Al2O3 warrant further investigation to understand the
underlying solution feedbackmechanisms that govern their influenceon the
VHTresponse. To systematically analyze the interactive effects amongother
oxides that also exhibit potential significance in glass alteration processes,
future investigations may benefit from employing more sophisticated cri-
teria and validating the results through experimental characterizations.

Overall, machine learning proves to be a valuable tool for under-
standing the relationship between the composition of nuclear waste
immobilization glasses and their VHT responses. Through proper model
interpretations, data-driven machine learning offers meaningful insights
into the durability of these glasses and the effects of individual oxides, which
are not easily accessible using conventional approaches.The findings pre-
sented herein contribute to the knowledge and development of nuclear

Fig. 10 | Illustration of the trade-off between
overfit and model extrapolability. Predictions
made by (a) non-overfit and slight-overfit and (b)
strong-overfit models trained based a simplified
heterogeneous dataset. In both cases, the arrows
indicate the major prediction deviations from the
true function.

Fig. 11 | Interactive effects between oxides as revealed by the SHAP analysis.
Variations on the marginal contribution of (a) CaO and (b) Al2O3 to VHT response
under the influence of the total content of alkaline oxides (Na2O+ K2O+ Li2O).
Here, the arrows are added to highlight the dual effects of these two oxides, and the

feature values are based on the actual scale. To assist comparison, the vertical and
horizontal dash lines indicate the mean feature value and zero marginal contribu-
tion, respectively.
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waste immobilization glasses, paving the way for enhanced material design
and performance optimization in this critical field of research. More
importantly, the generic analyses presented in this study can serve as a
paradigm for other machine-learning-based material investigations.

Methods
Curation of the VHT dataset
A comprehensive database consisting of 654 single-time VHT responses,
measured for 595 individual glasses, was initially compiled, including 59
replicates of 44 distinct glass compositions8,14,15,36. The raw data is docu-
mented in theAppendixA of the PNNL-30932 report16. Themajority of the
VHT results were obtained at the standard 24-day measurement period. In
cases where some glasses were completely corroded during the 24-day
duration, shorter measurement times such as a 7-day test were employed.
For the sake of uniform analysis, those shorter testing points were extra-
polated to an equivalent 24-day specimen thickness, assuming a constant
rate of alteration from the test’s initiation. It is worth noting that this
approach, while ensuring consistency, may introduce some uncertainty to
the measured value.

Following an initial screening process, a total of 15 glasses were
excluded from the database, as summarized in Table 2. The removal criteria
were as follows (i) extreme compositions for 13 glasses, (ii) consistently
gross model fit outliers for one glass, and (iii) abnormal VHTmeasurement
for one glass. For the first type of outliers, the removal of the extreme
compositions was based on a systematic analysis previously reported by
Vienna et al. (see Section 4.1.1.1 of the cited report)16. For the second type, a
single glass consistently appeared as an isolated data point, residing far from
all other data points in the fitting conducted by differentmodels. Regarding
the third type, the7-day corrosion result exceeded the24-day result, possibly
indicating an experimental issue such as water loss during the test or reflux.

After removing the outliers, a dataset was prepared for the subsequent
machine learning analysis comprising 639 VHT responses from 585 indi-
vidual glass compositions, with an additional 54 replicates of 42 glass
compositions. Given the limited size of this dataset, some oxides in the glass
compositions that are less influential to the VHT alternation rate were
omitted to reduce data dimensionality, thereby improving the efficiency of
the machine learning model training and mitigating the “curse of dimen-
sionality” phenomenon37. The identification of uninfluential oxides was
previously documented by Vienna et al. in a comprehensive study (refer to
Section 3.3 of the cited report)14. This analysis initially pinpointed 15 oxides
with reasonably distributed concentrations for potential inclusion as model
inputs. These included Al2O3, B2O3, CaO, Fe2O3, K2O, Li2O, MgO, Na2O,
P2O5, SiO2, SnO2, TiO2, V2O5, ZnO, and ZrO2. Through a systematic
elimination process based on the step-by-step removal of oxides with
negligible effects, four oxides—MgO, P2O5, V2O5, and ZnO—were exclu-
ded from further consideration. Herein, Fe2O3 was further excluded due to
its strong correlation with multiple oxides known to exert a significant
influence on the VHT alteration rate, such as Al2O3, Na2O, SiO2, and ZrO2.
Consequently, a total of ten major oxide components (see Fig. 3) were
selected based on their impact on VHT response14. These components
constituted a significant portion of the total molar content, ranging from
82.2% to 96.5% with a median of 92.5%. For the model inputs, the molar
fractions of the selected oxide were further normalized to sum to one.

Regarding the model’s output, the raw VHT response of the selected
samples ranged from0.7 to 13848 µm indepth. To standardize the influence

of different sample sizes and testingperiods, theVHTresponsewas scaled as
the glass mass change per square meter per day. Subsequently, the model’s
output was taken as the natural logarithm of the VHT alteration rate,
reducing the skewness of the output distribution. Following these trans-
formations, the VHT alteration rate now ranges from −2.30 to 7.33 ln[g/
(m2·d)] in thedataset.Note that the ranges of both the glass compositionand
VHT alteration rate considered herein are broader than those in previous
investigations8,14,15,36, which presents additional challenges in modeling the
relationship between glass composition and VHT alteration rate.

Machine learning analyses
Based on the dataset, we employed variousmachine learning approaches to
predict the VHT alteration rate based on the glass composition as input. In
detail, we considered four regression methods, namely, PQM, ANN, LLR,
and GPR. The first two have been used in previous studies and they are
considered as baselines15,18, while the latter two are nonparametric models
that may exhibit superior performance in fitting the waste glass dataset. To
ensure a fair comparison, all four models were provided with the same ten
input features for model training (see Fig. 3). The modeling work was
conducted in Spyder IDE (5.4.3) with Python (3.10.10), and the specific
program packages (if applicable) used are provided below. A brief overview
of these four models is provided as follows.

The PQM model employs a combination of relatively simple terms,
including linear, squared, and quadratic cross-products, to generate
predictions38. By incorporating squared and quadratic terms, PQM can
capture certain non-linear patterns in the data. Previous studies have
demonstrated its feasibility formodeling theVHTresponse of nuclearwaste
immobilization glasses13. The PQMmodel in this study was built using the
statsmodels package39.

The ANNmodel has been widely popular in machine learning due to
itsflexibility in processing diverse datasets and performing variousmachine
learning tasks40–42. In this study, theANNmodelwasbuilt using thePyTorch
package43. To optimize themodel’s architecture, considering the limited size
of the VHT dataset and experience established from previous studies22,44,45,
we established anetworkwith eight and four artificial neurons in twohidden
layers, respectively. ReLU activation and Batch Normalization were
implemented between each layer to enhance model accuracy46. Further-
more, Adam optimizer andmean square error (MSE) loss were adopted for
guiding the model optimization.

The LLR model performs linear regression locally in the data space,
providing non-linear and smooth predictions on a global scale47. LLR
employs adistance-basedweight function todetermine the influenceof each
data point on local fitting, making it nonparametric and highly expressive
for modeling complex relationships. LLR also exhibits good resistance to
noise in the dataset. The LLR model in this study was directly coded
according to the algorithm.

TheGPRmodel is a probabilistic-based predictionmethod established
onBayes’Rule48.GPRassumes that both the input features andoutput target
follow Gaussian processes, enabling the modeling of the probabilistic dis-
tribution of the output target (i.e., posterior distribution) based on the input
features (i.e., prior distribution)49. This allows GPR to provide not only
predictions (mean of the probabilistic distribution) but also estimates of
prediction confidence (variation of the probabilistic distribution). Being
nonparametric, GPR can fit completely unknown relationships without
assuming a specific mapping function. GPR requires selecting an optimal

Table 2 | Outlying data removed from the VHT model fitting dataset16

Reason for removal Glass IDs of the removed samples

Noise in composition (mass fraction of minor oxides >1.9%) LAWA46, LAWA47, LAWA48, LAWA64, LAWABP1, LAWA54, LAWA55, LAWA58, LAWA59

High MgO content (mass fraction >6.0%) ORPLA28, ORPLA29, ORPLA31, ORPLA32

Fitting outlier New-OL-57284

VHT rate 7d > 24d LP2-IL-04

https://doi.org/10.1038/s41529-024-00458-6 Article

npj Materials Degradation |            (2024) 8:38 8



kernel function, which should ideally echo the generic trend of the predicted
output distribution. The GPR model in this study was built using the
GpyTorch package43,50. Based on the kernel selection pipeline established in
a previous GPR study17, we used a combination of Linear and Radial Basis
Function (RBF) kernels for modeling the VHT dataset. The former ensures
good model extrapolability, while the latter allows the model to fit complex
data patterns51. Another hyperparameter, noise level, was tuned for model
regularization to prevent overfitting. Further details on thenoise level choice
are provided in the “Results” section.

In termsof the optimizationof the fourmodels,weprimarily employed
brute-force searches to identify their respective optimal hyperparameters,
based on ten independent random training repetitions to evaluate model
performance. Further details about the model tunning and the selected
optimal hyperparameters are provided in Supplementary Note 2. The
search was performed on 85% of the samples (i.e., training set), which were
randomly stratified from the dataset to ensure a statistically consistent
distribution within the raw dataset22,44,52. The remaining 15% samples (i.e.,
test set)were held hidden in order to test the true performance of themodels
with optimized hyperparameters since those samples were never exposed to
model training. In each repetition, 15%of the training set samples were held
out as a validation set to determine the optimal hyperparameters (i.e., those
yielding the lowest averaged MSE loss). Model performance comparison
was based on two statistical metrics computed on the test samples: coeffi-
cient of determination, R2, and root mean square error, RMSE46. Addi-
tionally, a lack-of-fit F-test was conducted to assess whether prediction
errors were due to lack of model fit53, where a high F score (>1) indicates a
lack-of-fit model.

SHAP analysis
Advancedmachine learning algorithms like ANNcan effectively interpolate
complex, non-linear datasets, but they often act as “black boxes,” making
their predictions challenging to interpret. In order to gain insight into the
relationship between glass composition and VHT response, we employed
the SHapley Additive exPlanations (SHAP) analysis. This method is based
on the coalitional game theory, originallyproposedbyLloydShapley54, and it
is intended to address a classicmath problem—how to attribute an outcome
to the presence of multiple contributing factors. Under the ideal conditions
assumedbyShapley’s theory, the “pure” contributionof each factor (namely,
marginal contribution, which is presented by the Shapley value in SHAP
analysis) can be determined by analyzing a large group of instances that
record variations in these factors and the corresponding changes in the
outcome. Importantly, this method, although also permutation-based, dif-
fers from conventional permutation feature importance analysis, which
focuses on the reduction in prediction accuracy, as the Shapley value directly
reflects the actual influence on the same scale of the outcome.

More recently, Shapley’s theory has been incorporated into the SHAP
analysis for interpreting machine learning models. In brief, this analysis
estimates the marginal contributions of the model’s input features to the
output20,21. A significant advantage of the SHAP analysis is its ability to
reliably approximate the Shapley value without requiring high computa-
tional demands for calculating the exactvalue.Thismakes it feasible to apply
this approach to large datasets and sophisticated machine learning models.
Over the past years, SHAP analysis has successfully been utilized to inter-
rogate various machine learning models in several glass-related
studies44,55–57. The SHAP analysis involves calculating outcome differences
by permuting the factor of interest (between its actual value and its mean
value) across all instances under different conditions. By averaging these
differences over all instances, we can assess themarginal contribution of the
factor of interest (i.e., Shapley value). Inour analysis, each glass sample in the
VHTdataset corresponds to an “instance”, the “factors” are the oxidemolar
fractions of the glass, and the “outcome” corresponds to the logarithmVHT
alteration rate predicted by the model. Note that, depending on the actual
influence of an oxide, the Shapley value can be either positive or negative,
wherein a positive value signifies an increase in theVHT alteration rate, and
vice versa.

Data availability
The data used in this study can be found in the Appendix A of the PNNL-
30932 report (https://doi.org/10.2172/1862823)16.

Code availability
The codes used in this study can be shared upon reasonable request.
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