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Intergranular corrosion of Ni-30Cr in
high-temperature hydrogenated water
after removing surface passivating film

Check for updates

K. Kruska 1,3 , M. J. Olszta1,3, J. Wang1,2 & D. K. Schreiber 1

High-resolution transmission electron microscopy and atom probe tomography are used to
characterize the initial passivation and subsequent intergranular corrosion of degraded grain
boundaries in amodel Ni-30Cr alloy exposed to 360 °C hydrogenated water. Upon initial exposure for
1000 h, the alloy surface directly above the grain boundary forms a thin passivating film of Cr2O3,
protecting the underlying grain boundary from intergranular corrosion. However, the metal grain
boundary experiences severe Cr depletion and grain boundary migration during this initial exposure.
To understand howCr depletion affects further corrosion, the local protective filmwas sputtered away
using a glancing angle focused ion beam. Upon further exposure, the surface fails to repassivate, and
intergranular corrosion is observed through theCr-depleted region. Through this combination of high-
resolution microscopy and localized passive film removal, we show that, although high-Cr alloys are
resistant to intergranular attack and stress corrosion cracking, degradation-induced changes in the
underlyingmetal at grain boundariesmake thematerialmore susceptible once the initial passive film is
breached.

Pressurized water reactors (PWRs) use high-temperature (~280–360 °C)
hydrogenated water to transfer heat from the reactor core to a steam gen-
erator through a primary water loop. Nickel-base alloys were historically
selected for many structural components in PWRs away from the core
neutronflux (e.g., steamgenerator tubes) owing to their general resistance to
aqueous corrosion. In this hydrogenated water, Ni is thermodynamically
stable in its metallic state1, and selective oxidation of the less noble alloying
elements (e.g., Cr, Fe, Mn, etc.) is typically observed2–8. Additionally, the
operating temperature of PWRs results in a B-type diffusion regime9,10 that
strongly favors grain boundary diffusion over bulk diffusion. This combi-
nation of temperature andwater chemistry creates an ideal environment for
selective and penetrative intergranular (IG) oxidation of susceptible
alloys11,12. For example, Alloy 600 (Ni-16Cr-9Fe), used in steam generator
tubes and other locations, can be highly susceptible to intergranular stress
corrosion cracking (IGSCC) under service conditions13–16. The precise SCC
mechanism underpinning this behavior is still debated16–20, but most
recognize that intergranular oxidation and embrittlement strongly correlate
with the IGSCC response of Alloy 600.

Compared to Alloy 600, the higher-Cr concentration Alloy 690 (Ni-
30Cr-9Fe) exhibits far greater resistance to IGSCC in high-temperature
hydrogenated water. ManyAlloy 600 components in PWRs have thus been

replaced with Alloy 690 components in the last decades16; these replaced
components have an outstanding service record to date21. However, it is
important to note that Alloy 690 is not immune to IGSCC. Laboratory SCC
tests beginning with a pre-cracked specimen of Alloy 690 have consistently
demonstrated low but measurable crack growth rates22–25, especially in
highly cold-worked conditions26–30. Results from complementary SCC
initiation testing of Alloy 690 are more complex, with some specimens
showing no detectable cracking after years of testing20,27,31–33.

One of the unique features of corrosion and SCC of Alloy 690 in high-
temperature hydrogenated water is the apparent absence of the preferential
intergranular oxidation that is ubiquitous in the lowerCrAlloy600material.
In static corrosion coupons, surface corrosion of Alloy 690 in simulated
PWR water is characterized primarily by nanoscale transgranular oxide
penetrations, likely along dislocations6,34–38. Nearer the grain boundary,
these oxide penetrations diminish, replaced instead with a protective
nanoscalefilmofCr2O3 that prevents oxygen ingress to theunderlying grain
boundary and adjacent metal. Thus it has been postulated that the superior
SCC performance of the 30 at.% Cr Alloy 690 is founded in its resistance to
intergranular oxidation, and the SCC mechanism for Alloy 690 and Alloy
600 may be fundamentally different. In particular, the absence of similar
intergranular oxidation in Alloy 690 suggests creep or atomic ordering
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(short or long-range) may play more critical roles in its SCC
response23,30,39–44.

Despite their oxide morphology differences, the underlying metallic
grainboundaries of corrodedAlloys 600 and690, and similarlymodelNi-Cr
binary alloys, share a common feature: extensive grain boundary Cr
depletion. Driven by the selective nature of the reactions with the sur-
roundingwater chemistry, Cr is leached from the grain boundary in all cases
to formCr-rich oxides. This grain boundary depletion can extend formany
micrometers from the corroded surface. Such long-range Cr diffusion
requires Cr grain boundary diffusivity to be several orders of magnitude
faster than pure thermal diffusion, suggesting that vacancy injection
accelerates Cr diffusivity30. Furthermore, several authors have noted that
broad Cr depletion profiles ( ~ hundreds of nanometers wide) form at
affected grain boundaries7,45–50. These unique profiles are believed to result
from diffusion-induced grain boundary migration (DIGM), which is also
directly related to the rapid unidirectional Cr diffusion to the oxidation
front. In this case, DIGM is driven by the oxidation potential of Cr, which
then establishes Cr depletion and a chemical gradient for further Cr diffu-
sion and thusDIGM.DIGMprofiles are distinct from themore traditionally
recognized thermal sensitization Cr depletion profiles that result from
intergranular Cr carbide precipitation during heat treatments51. In thermal
sensitization, intergranular Cr carbides precipitate uniformly throughout
the material, depleting the grain boundaries of Cr. With time, matrix dif-
fusion of Cr replaces the intergranular Cr depletion, establishing relatively
broad (up tomicrometer scale) and symmetric Cr depletion profiles to both
sides of the grain boundary plane without obvious grain boundary migra-
tion. DIGMCr depletion profiles on the other hand are localized to near the
oxidized surface and are highly asymmetric. DIGM depletion profiles are
also narrower and extend only ~100 s of nm to one side of the grain

boundary plane, frequently undulating from side to side with increasing
depth. In DIGM, as Cr diffuses to the reaction front, the grain boundary
itself also migrates, leaving a region of Cr-depleted metal in the wake of the
grain boundary migration.

Most research on SCC in Ni-base alloys has focused on the role of
intergranular oxides and relatively little attention has been given to the
impact of the Cr depletion zone along grain boundaries. In this work, we
interrogate the effect of DIGM and its associated Cr depletion on the
intergranular corrosion of a model Ni-30Cr alloy after artificial removal of
its initial passivating film above several grain boundaries.

Results
Initial corrosion response
A highly polished coupon of a high-purity Ni-30Cr binary alloy was
exposed to 360 °C hydrogenated, pressurized water in a stainless steel
autoclave for 1000 h. To protect the surface oxide during sectioning,
a ~ 50 nm film of Ni metal was sputter-deposited onto the surface. Cross-
section scanning transmission electron microscopy (STEM) high-angle
annular dark field (HAADF) in Fig. 1(a) reveals a thin oxide layer across
the sample surface with no penetrative oxidation down the grain
boundary. The bright contrast of the grain boundary region in the STEM
HAADF image, in addition to transmission electron microscopy (TEM)
bright field (BF) imaging in Fig. 1b, show that the grain boundary has
migrated significantly, leaving in its wake an altered alloy composition.
Precession electron diffraction (PED) data showing the grain orientations
and curvature of the migrated grain boundary are shown in Supple-
mentary Fig. 1. Note that the random black contrast observed as spots in
Fig. 1b in grain 2 are artifacts from the FIBmilling processwhich appear as
black spot damage or surface dislocations.
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Fig. 1 | STEM analysis of Ni-30Cr after initial exposure to 360 °C hydrogenated
water for 1000 h. a STEM HAADF and (b) TEM BF images of the exposed surface
andmigrated grain boundary. c, d STEM EDSmapping of the near the surface away

from the grain boundary and corresponding line scan showing a typical duplex oxide
structure. e–g STEM EDS maps and linescan collected across the DIGM zone,
quantifying near complete Cr depletion across ~60 nm wide region.
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STEM energy dispersive X-ray spectroscopy (EDS) was also used to
describe the local composition of the altered surface. In Fig. 1c, d, EDS
imaging shows that the oxide film formed on the alloy surface exhibits a
typical duplex structure, with a ~ 20 nm thick Cr-rich inner oxide (likely
Cr2O3) and a Ni/Fe-rich outer oxide. The EDS line scan across the
surface oxide shows that Fe from the steel autoclave is present in the
outer oxide layer. Above the Fe-rich oxide is the sputter-deposited
protective Ni metal film that is partially oxidized. The absence of O
penetration or internal oxide formation beneath the Cr-rich inner oxide
established that the oxide film protects the underlying metal from fur-
ther corrosion.

STEM EDS in Fig. 1e–g also reveals more quantitative detail on the
altered grain boundary composition. Correlating the STEM HAADF
and EDS Crmap, the alloy grain boundary has migrated near the surface
from left to right ~60 nm, leaving in its wake substantial Cr depletion
down to 0–5 at.% from amatrix concentration of ~30 at.%Cr. Similar Cr
depletion and associated grain boundary migration have been observed
previously in other Ni-Cr alloys during high-temperature water and
steam corrosion and identified as DIGM38,45,46,49,52–56. The Cr depletion
extends only to one side (switching from right to left to right) of the
original (straight) grain boundary, consistent with a classic DIGM
microstructure. The STEM EDS line scan across the DIGM zone (Fig.
1[g]) also shows a shallower Cr gradient across the original grain

boundary plane (~60 nm position in the line profile) and a steeper
gradient across the current grain boundary plane (~125 nm position in
the profile). This is consistent with Cr depletion near the original grain
boundary partially being replaced by bulk diffusion from the adjacent
metal, while the current grain boundary has not experienced any back
diffusion. Furthermore, close inspection of the STEM EDS line profile
reveals a slightly higher Cr concentration (~3.5 at.% Cr) from 100 to
120 nm than the region from 60–100 nm (<1.5 at.% Cr), suggesting a
slower flux of Cr towards the oxidizing surface with increasing corro-
sion time.

Atom-probe tomography (APT) was used to further examine the
3D nature of the initial surface oxides and Cr-depleted grain boundary.
As illustrated schematically in Fig. 2(a), APT targeted three different
regions of the corroded surface: the Cr-depleted grain boundary (b,e),
the thin protective oxide formed directly above the grain boundary (c,f),
and the less protective oxides formed further from the grain boundary
(d,g). In the atom map reconstruction shown in Fig. 2b, a Cr iso-
concentration surface (Cr = 22 at.%) delineates regions of Cr depletion
from the nominal alloy composition. Simultaneously, these surfaces
outline the original and the migrated grain boundary positions that
bound the Cr-depleted zone formed in the wake of DIGM. In Fig. 2e, two
concentration profiles are overlaid to illustrate the different Cr con-
centration gradients across the new grain boundary (orange, ~2 nm
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Fig. 2 | Initial Ni-30Cr surface corrosion in high-temperature
hydrogenated water. a Schematic illustration of initial Ni-30Cr surface corrosion in
high-temperature hydrogenated water (adapted from34). b–d Select APT recon-
structions from different regions of the initially corroded sample showing (b) Cr-
depleted grain boundary and DIGM zone beneath the oxidized surface. c APT
reconstruction showing the metal/oxide interface of the surface corrosion imme-
diately adjacent to the DIGM zone. d APT reconstruction of the metal/oxide

interface and transgranular penetrative oxidation away from the DIGM zone.
e–gAPT 1D concentration profiles collected across various interfaces highlighted in
(b–d) quantifying composition changes associated with DIGM and the metal/oxide
interfaces. In (e) the lighter shades represent the sharp interface of the new grain
boundary (line 1) and the darker shades represent the interface at the original grain
boundary (line 2).
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interfacial width) and original grain boundary (brown, ~5 nm interfacial
width). This broader interface at the original grain boundary position
reflects 1000 h of thermal Cr bulk diffusion to partially backfill the
substantial Cr depletion within the DIGM zone (down to ~5 at.% from
~30 at.% in the surrounding matrix).

Figure 2c, f depict atom maps and concentration profiles derived
from the thin protective oxide layer formedwithin ~200 nmof where the
grain boundary intersects the exposed surface. The oxide layer is com-
positionally a good match for Cr2O3 (~1 at.% Ni, 41 at.% Cr and 58 at.%
Omeasured), with only trace amounts of Ni present, in particular, if the
typical loss of O from oxides in APT quantification is taken into
account57–60. Beneath this is a thin layer of Cr depletion, reaching a
minimumof ~10 at.%Cr, that is ~5 nmwide (defined by 90%of return to
Cr2O3 or base alloy Cr concentration respectively). The thickness of the
Cr2O3 layer does not appear to match that of the underlying Cr deple-
tion, suggesting that at least some of the Cr found in this oxide originated
from the Cr-depleted DIGM zone at the nearby grain boundary and
lateral metal/oxide interfacial diffusion. The red 1.5% CrO iso-
concentration surface in Fig. 2(c) also shows some discrete Cr-O pre-
cipitates within the base alloy, consistent with limited internal oxidation.
However, it is puzzling how these oxides could form so deeply within the
high-Cr alloy matrix as conventionally internal oxidation is associated
with dilute solute alloys, and further studies are needed to fully under-
stand this behavior.

Lastly, Fig. 2d, g shows the much more complex 3D nature of
penetrative oxides far from the grain boundary plane intersection. This
sample was extracted several micrometers from any apparent grain
boundary. Rather than forming a thin, continuous Cr2O3 film, a thick
surface oxide andmultiple deeper oxide penetrations can be found. The
line profile in Fig. 2g illustrates the lack of stoichiometry in the oxides.
The O concentration is most consistent with a spinel. The oxide also
contains ~5 at.% Fe (from the steel autoclave environment) and
~10 at.% Ni. This is in contrast to the more pure sesquioxide in thin
surface oxide in Fig. 2f. The significant Fe penetration confirms the lack
of protectivity of the surface oxide film in this region. Lithium, not

shown and from the simulated PWR primary water chemistry, is also
detected at trace concentration (~0.1 at.%) throughout these oxides.
Quantitative analysis (see Supplementary Fig. 5) of the deeper pene-
trating finger-like oxides below the surface revealed a Cr2O3 composi-
tion devoid of Fe and Ni.

Intergranular corrosion after surface oxide removal
The surface oxide over several grain boundaries was removed using a
focused ion beam (FIB) at a glancing angle to expose the underlying Cr-
depleted grain boundaries. This FIB procedure is further described in the
Methods section. Subsequently, the coupon was further corroded
(additional 1000 h, 360 °C hydrogenated water), resulting in clear
localized corrosion of the re-exposed, Cr-depleted grain boundaries. To
examine the sub-surface oxidation response, cross-sections of the grain
boundary were exposed with the FIB and imaged with scanning electron
microscopy (SEM). Figure 3a shows a schematic of two series of FIB/
SEM serial cross-section images along two sections of a single grain
boundary: one section exposed for an additional 1000 h with the surface
oxide intact, and a second section where the surface oxide was removed
before re-exposure. Figure 3b reveals that the surface oxide above the
grain boundary with an intact surface oxide still appears thin with no
discernable differences in the extent of Cr depletion, DIGM, or oxide
thickness versus the initial exposure. Conversely, FIB/SEM serial ima-
ging of the grain boundary where the surface oxide was removed above
the DIGM zone (Fig. 3c) shows intergranular oxides. In most cases this
oxidation is confined to the Cr depleted DIGM zone closest to the sur-
face. In no case did the oxide extend beyond the cross-over point at
which the DIGM direction switched to the other side of the grain
boundary and into another grain.

STEM analyses of the intergranular corrosion microstructure and
chemistry are presented in Fig. 4. STEM HAADF (Fig. 4[a]) and EDS
(Fig. 4[b, c]) images reveal that a Cr-rich surface oxide did reform, but it
failed to prevent penetrative oxidation into the Cr-depleted grain
boundary and DIGM zone that had formed during the initial exposure.
The penetrative oxide is Cr-rich and extends ~750 nm into the re-
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Fig. 3 | FIB serial sectioning of grain boundaries exposed with/ without oxide cap
intact. a Schematic showing locations of two grain boundary sections selected for
FIB serial sectioning. b Sequential SEM imaging of grain boundary with oxide cap

intact after second exposure. c Sequential SEM imaging of grain boundary with the
protective chromia cap removed.
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exposed surface while the Cr depletion along the grain boundary extends
much deeper ( > 1 µm) beyond the field of view of the STEM analysis
region. The corroded DIGM zone also shows evidence of Ni-rich
metallic inclusions. We postulate that Ni is rejected from oxides as they
form, resulting in Ni-rich metal islands enveloped by Cr-rich oxide.
Closer inspection of the corrosion at the migrated grain boundary plane
in Fig. 4d reveals a thin ( ~ 5–10 nm) layer of Cr-rich oxide. A line scan
across the thin grain boundary oxide and adjacent corrodedDIGM zone
is shown in Fig. 4f. Strong localized compositional variations can be
associated with the Ni-rich inclusions, the relatively well-defined Cr2O3

layer, and the mixed metal/oxide signal extending into the matrix. This
mixed metal/oxide signal coincides with the slightly darker contrast in
the STEM HAADF images in Fig. 4a, d and reveals some transgranular
Cr-rich oxides extending 20–40 nm from the grain boundary into the
surrounding grain 1 alloy matrix. STEM HAADF images as a tilt series
are provided in Supplementary Movie 2 for a more comprehensive
depiction of the distribution of metal and oxide in this region. Finally, by
tilting the alloy matrix to the <112> orientation (Fig. 4[e]) HAADF
atomic column imaging reveals the crystallographic orientation rela-
tionship between the metal and oxide phases. Assuming the, {111}//
{0001}, orientation relationship with the austenite matrix on the metal
island in the orientation, the Cr2O3 plane is expressed.

Atom probe analysis of the intergranular corrosion upon re-
exposure is presented in Fig. 5. Figure 5a shows a schematic of the

location the APT needle was extracted from: a volume containing the
original grain boundary close to the surface. Figure 5b shows the 3D ion
map with isoconcentration surfaces at 22 at.% Cr and 8 ion% CrO
outlining the Cr-depleted DIGM zone and the penetrating oxides,
respectively. Compositional analysis shown in the line profile in Fig. 5c
quantifies the local depleted Cr concentration in this DIGM zone to
~18 at.% Cr, with an interfacial width ~4 nm. This width is consistent
with the original grain boundary (in themidst of a composition recovery
process) after the initial exposure, although APT could not definitely
identify the crystallography of the DIGM zone. The 3D ion map also
displays a Cr-rich oxide penetration at the original grain boundary near
the top of the reconstruction and again within the DIGM zone towards
the lower-right of the reconstruction. The line profile in Fig. 5d reveals
an oxide that is not stoichiometric Cr2O3. Instead, the composition was
measured to be 42 at. % Cr, 5 at.% Ni, 5 at. % Fe, and 48 at. % O, which
suggests either a non-stoichiometric MO or M3O4 phase. Although not
thermodynamically stable, such phases and compositions are kinetically
possible in oxides grown via solute capture mechanisms61.

Discussion
The current data show that the initial corrosion response of Ni-30Cr after
1000 h in 360 °C hydrogenated water is consistent with that of solution
annealed Alloy 690 under similar conditions34,62,63. TEM and APT data
presented in Figs. 1, 2b, c show that the surface of Ni-30Cr formed a
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nanoscale Cr2O3 protective layer above the grain boundary regions
accompanied by the extensive Cr depletion from the underlying alloy grain
boundary. This thin film of Cr2O3 effectively inhibited further oxidation of
the grain boundary region. Further from the grain boundary intersection
with the surface (> 2–3 µm), transgranular oxidation was observed, as
demonstrated in Fig. 2d. This is also consistent with the behavior of Alloy
69063, where the density of the oxide penetrations in Alloy 690 was corre-
lated to the dislocation density of the material. The concentration profile of
the surfaceoxide in Fig. 2g shows~50 at.%Oand~50 at.%metal. This could
be consistent with the MO-structure oxide observed by Olszta et al.63, but
APT alone cannot assign the specific oxide phase and spinel (M3O4) may
also present with a similar O concentration in APT64.

Together these observations of initial surface corrosion demonstrate
that although high-Cr Ni-base alloys are highly resistant to IGSCC, they do
not formcontinuouspassivatingfilms across their entire surface.Only in the
vicinity of the grain boundarywhereCr is readily available bymeans of grain
boundary diffusion and DIGM are passivating Cr2O3 oxide films formed.
Elsewhere (e.g., grain centers) selective corrosion occurs along dislocations
and terminates at a shallow depth (100 s of nm).

By selectively removing the passivating surface oxide films from the
surface of Ni-30Cr and reexposing the Cr-depleted regions, the current
work has revealed that the Cr-depleted DIGM zone and its associated
grain boundary are susceptible to localized, penetrative corrosion.
Although a high Cr concentration is still present in the surrounding
matrix, the sample grain boundary failed to repassivate. Themain supply
of Cr to the passivating surface oxide in the initial exposure is through
grain boundary diffusion andDIGM. The inability of the grain boundary
to repassivate, despite abundant Cr in the adjacent unaltered matrix,
suggests that continued DIGM and rapid grain boundary Cr diffusion
from deep within the material are inhibited relative to the initial expo-
sure. Thismay be a result of the longer diffusion distance for Cr along the
grain boundary from deep within the material, and/or pinning of the
migrated grain boundary. At the same time themigration has left behind
a network of dislocations that are intersecting the freshly exposed sur-
face. The SEM images in Fig. 3 show that corrosion through the Cr-

depleted area is dominated by the oxidation of these dislocations. Figure
4 shows that oxidation along the grain boundary, adjacent to the
undepleted Ni-30Cr matrix, forms Cr2O3. The APT data in Fig. 5 con-
firms a Cr-rich oxide composition containing ~5 at.% Fe and ~5 at.% Ni
in one of the oxides protruding into the DIGM zone. In all cross-
sectional images of grain boundaries that had surface oxides removed
before re-exposure, the intergranular attack was confined to the Cr-
depleted DIGM “pocket” closest to the surface. That is, penetrative
corrosion did not breach a cross-over point where the DIGMmigration
switches to the opposite metal grain.We can speculate from this that the
new intergranular oxide acts as a protective oxide, stalling deeper
intergranular attack.

SCC initiation in Alloy 690 has been consistently observed in
constant extension rate tensile (CERT) tests56,65,66 and in more limited
instances (e.g., severely cold-worked Alloy 690) under constant load
tensile tests27,31–33. It has been hypothesized that a cycle of oxide film
rupture and repair during dynamic straining depletes the grain
boundary sufficiently to prevent the formation of a new passivating
oxide56. The CERT test method exposes the specimens to significant
applied strains to cause mechanical fracture of brittle oxide films; these
applied strains are much higher than necessary to facilitate crack growth
in an already initiated sample. In the current work we extend this
understanding in the absence of applied strain to show directly that the
Cr-depleted grain boundary region cannot easily repassivate once the
protective oxide is removed. Thus dynamic deformation of a CERT test
is not a necessary requirement for penetrative intergranular oxidation
and potentially embrittlement in these high-Cr alloys37,65,66. However,
the partially protective nature of the newly formed intergranular oxide is
distinct from the observations in the CERT tests, where dynamic
straining led to repeated rupture of passivating oxides and the grain
boundary eventually becomes embrittled deeply enough for crack
initiation to occur66.

Given the limited depth and diminishing intergranular nature of
corrosion, it appears unlikely that the corrosion observed after removal of
the surface oxide on Ni-30Cr in the absence of dynamic strain will lead
directly to sufficient grain boundary embrittlement for IGSCC initiation.
Removal of the surface oxide exposed a small region of metal similar in
composition to Ni-5Cr or Alloy 600, and this region was clearly susceptible
to corrosion. However, unlike the lower Cr alloys, both the original and the
migrated boundary of theNi-30Cr haveCr-richmetal to one side. LowerCr
alloys, such as Ni-5Cr or Alloy 600, exhibit narrower but much deeper
intergranular attack at under similar corrosion conditions and times. For
example, Schreiber et al. observed 10 s of micrometers of intergranular
attack in a Ni-5Cr alloy exposed to 360 °C hydrogenated water for 1000 h49.
In contrast, the depth of the oxide at the re-exposed grain boundary is on the
order of 500 nm after 1000 h. With abundant Cr immediately adjacent to
the grain boundary in Ni-30Cr, oxygen diffusion along the oxidized grain
boundary to sustain deeper intergranular attack is clearly inhibited by the
local intergranular Cr2O3 formation which acts to at least partially protect
the grain boundary plane from further rapid attack. On the other hand,
corrosion in the DIGM zone is dominated by the oxidation of dislocations
and resembles observations of the bulk surface of Alloy 600 in 480 °C
steam3,54, which are not typically observed at the lower pressurized water
exposure temperatures. This suggests a greater driving force for O diffusion
in theDIGMzone than inbulkAlloy 600, butmuch lowerdriving force than
in Alloy 600 grain boundaries where intergranular attack reaches much
greater depth in both water and steam3,5,8,46,54,67.

In summary, our findings show that the removal of surface oxide
aboveCr-depleted grain boundaries of high-CrNi-base alloys can lead to
penetrative oxidation around degraded grain boundaries. However,
given the limited depth of intergranular oxide penetration, it is doubtful
that this corrosion will lead directly to significant embrittlement to
facilitate sustained crack growth and IGSCC. Even after the removal of
the passivating oxide, intergranular attack is much more limited than in
low-Cr Ni-base alloys in comparable exposure conditions. However,
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repeated break down of passivating oxides and injection of progressively
deeper cracks into the uncorroded material as generated in dynamic
straining experiments can overcome the excellent IGSCC resistance of
high-Cr Ni-base alloys.

Methods
Materials
Ahigh-purityNi-30Crmodel alloy,whose nominal composition is reported
in Table 1, was used for these studies. Trace impurity concentrations are
noted for Fe, Si, B, and S, as determined by glow discharge mass spectro-
metry (GDMS). The alloy was solution annealed at 900 °C for 1 h andwater
quenched. It shouldbenoted thatAPTstruggles todifferentiate Si, Fe, andN
in trace quantities due to isobaric overlaps (28Si2+ with 14N1+, 28Si1+ with
56Fe2+) as there are insufficient counts to use isotopic ratios to deconvolute
these overlaps.

Corrosion testing
The polished coupon was exposed to high-temperature (360 °C), hydro-
genated water simulating a PWR primary water environment (25 cc/kg
dissolved hydrogen, 2 ppm Li, 1000 ppm B) in a stainless steel recircu-
lating autoclavewith active deionizer.After initial exposure for 1000 h, the
coupon was extracted from the autoclave, sputter-coated with ~50 nm of
Ni to protect the thin surface oxide, and mounted into an epoxy mount
and polished in cross-section for initial SEM analysis. The coupon was
subsequently extracted from the epoxy to enable sectioning for TEM and
APT characterization. The removal from the epoxy detached most of the
surface spinels. The protective oxide layer over about a dozen individual
grain boundaries was then removed via FIB milling, as described below.

After FIB sputtering of the protective oxide layer near grain boundaries,
the coupon was returned to the autoclave for an additional 1000 h
exposure under the same simulated PWR primary water conditions
at 360 °C.

Surface oxide removal
The protective surface oxide was locally removed above many grain
boundaries using a FIB. This process is demonstrated by SEM images and
schematics in Fig. 6. After identifying a target grain boundary, a protective
layer ofC+Pt (~100–300 nm thick)was deposited in situ by e-beamassisted
deposition. This layer both protects the underlying material from Ga ion
beam damage and facilitates smoother milling of the metal. Next, a trench,
perpendicular to the surface and parallel with the grain boundary, was FIB
milled to inhibit local redeposition. The sample was then tilted such that the
FIB was at a glancing angle relative to the surface ( ~ 11 deg) and the Pt cap
and thin passive oxide were locally removed, while the Cr-depleted grain
boundary below was preserved. The surface received a final cleanup with
2 kV Ga at a slightly higher angle ( ~ 13 deg) to further reduce ion beam
damage. The couponwas then returned to the autoclave for the final 1000 h
re-exposure of the freshly exposed Cr-depleted grain boundaries.

Characterization
Analytical electron microscopy and APT were both performed to char-
acterize the corrosion products and altered grain boundary compositions.
Analytical STEM analysis was carried out in a JEOL ARM 200 F equipped
with a HAADF detector and a Centurio EDS detector. EDS data were
processed using Pathfinder 1.4. APT analyses were performed on a
CAMECA LEAP 4000X HR in laser pulsing mode (λ = 355 nm) at a base
temperature of 40 K and a laser pulse energy of 30–100 pJ. APT data were
reconstructed and analysed using the Integrated Visualization and Analysis
Software (IVAS) software package from CAMECA, version 3.8.10. Repre-
sentative APT mass spectra and ranging can be found in Supplementary
Figs. 3, 4. Isoconcentration surfaces were generated in the respective
reconstrcutions on a grid with a 1 × 1 × 1 nm3 voxel size and delocalization
of 3 × 3 × 1.5 nm3. Samples for STEM and APT analyses were produced by
conventional FIB methods, which are further described elsewhere67,68. All
samples received a final low kV cleanup (2 kV Ga+) to minimize ion beam
damage.

100 μm 10 μm 10 μm50 μm

(a) after initial exposure (g) after re-exposure(e) removal of surface oxide(c) selection and prep

(b) (h)(f )(d)
Continuous
oxide cap

Migrated GB

Original GB
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material
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passiva�ng
oxide cap

grain

boundary

Fig. 6 | Experimental procedure for Ni-30Cr re-passivation experiment. a, b The sample after initial 1000 h exposure. c, d Selection and capping of a selected grain
boundary. e, f FIB removal of surface oxide. g, h Sample after re-exposure for 1000 h.

Table 1 | Composition of theNi-30 Cr binary alloy asmeasured
in the sample bulk by inductively coupled plasma mass
spectrometry (Cr) and GDMS (Fe, Si, B, S) and in a nanoscale
volume by APT

Ni Cr (at.%) Fe (appm) Si(appm) B(appm) S(appm)

Bulk analysis Bal. 28.7 260 210 2 17

APT analysis Bal. 29.3 225 527 trace N/D
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Data availability
The data supporting the presented findings are available in69.
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