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Laying the experimental foundation for corrosion inhibitor
discovery through machine learning
Can Özkan 1✉, Lisa Sahlmann2, Christian Feiler 2, Mikhail Zheludkevich2, Sviatlana Lamaka 2, Parth Sewlikar3,
Agnieszka Kooijman 1, Peyman Taheri1 and Arjan Mol 1

Creating durable, eco-friendly coatings for long-term corrosion protection requires innovative strategies to streamline design and
development processes, conserve resources, and decrease maintenance costs. In this pursuit, machine learning emerges as a
promising catalyst, despite the challenges presented by the scarcity of high-quality datasets in the field of corrosion inhibition
research. To address this obstacle, we have created an extensive electrochemical library of around 80 inhibitor candidates. The
electrochemical behaviour of inhibitor-exposed AA2024-T3 substrates was captured using linear polarisation resistance,
electrochemical impedance spectroscopy, and potentiodynamic polarisation techniques at different exposure times to obtain the
most comprehensive electrochemical picture of the corrosion inhibition over a 24-h period. The experimental results yield target
parameters and additional input features that can be combined with computational descriptors to develop quantitative
structure–property relationship (QSPR) models augmented by mechanistic input features.
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INTRODUCTION
Corrosion inhibition research has come far since Chyźewski and
Evans first categorised sparingly soluble corrosion-decreasing
substances as anodic and cathodic inhibitors1. Thanks to the
advances in computational power and methods, we are observing
a paradigm shift in how science is done, and this is also affecting
corrosion inhibition research.
There are four contemporary paradigms of science2,3. The first is

empirical evidence, leading to general laws through ‘trial and
error’. The second involves theoretical models based on those
laws. The third is defined by computational power offered by
Moore’s law, the application of theoretical models to more
complex and specific problems. This results in a data explosion,
leading to the fourth paradigm: data-driven scientific discovery—
such as using machine learning for categorisation and prediction.
We see examples of this paradigm shift in corrosion inhibitor

research in two broad categories: mechanistic and statistical
research. Lately, advances in surface analysis, electrochemical
characterisation and computational methods have been comple-
menting each other to facilitate the inhibitor discovery process for
both of these categories.
On the mechanistic end, a deeper scientific understanding is

obtained by controlled experiments and computational models.
The critical need for the protection of aerospace aluminium alloys
has driven the research that would uncover AA2024-T3 corrosion
inhibition of many compounds. Throughout the years, AA2024-T3
corrosion inhibition mechanisms were experimentally uncovered
for inorganic compounds such as chromates4–7, rare-earths8–11,
molybdate12 and cobalt ions13, magnesium-based pigments14–16,
lithium salts17–19, and a vast variety of organic compounds such as
imidazole20,21, triazole/thiazole22,23, quinoline24,25, carbamate26,
thiosemicarbazone27 derivatives, among others24,28–32. In addition
to uncovering the mechanisms for specific inhibitor species, the

physical features of inhibition mechanisms such as the importance
of time33,34 and irreversibility35 have been investigated.
The pressing demand for novel chromate-free corrosion

inhibitors has created the need for high-throughput inhibitor
screening methodologies. The approaches inspired by pharma-
ceutical drug discovery research spanned optical image analy-
sis36,37, fluorometric detection38, multi-electrode electrochemical
evaluation36,39–41, surface copper enrichment analysis42, hydrogen
evolution detection43,44, weight-loss measurements28,45, and
spectroscopic element analysis through multi-channels46. These
methods rapidly created large datasets but with the trade-off of
losing mechanistic information.
The third paradigm supported the mechanistic understanding

gained from experiments with computational models that span a
continuum to atomistic scales. Finite element method (FEM)
models produced previously unattainable information—such as
mechanical strains observed for inhibitor dissolution and leaching
from coatings47, local critical pH criteria for pit repassivation48, and
the effect of surface geometry on electrochemical behaviour49.
Density functional theory (DFT) and molecular dynamics (MD)
simulations have introduced a vast amount of quantum mechan-
ical/chemical information that is not directly available from
empirical methods, such as density of states, band gap, and other
physicochemical electronic properties50. The ease of investigation
of atomistic properties offered by software/hardware advances
has allowed corrosion scientists to replace costly and time-
consuming experiments. Molecular modelling was used as a
computational microscope to expose the underlying mechanisms
of inhibitor structure–substrate sorption phenomena50–55. Recent
papers56–58 have reported on how experimental and computa-
tional methods are catalyzing one another to combine the
strength of empirical and theoretical methods, in which research-
ers have analysed the influence of type and length of backbone
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chains and anchor groups on inhibitor performance by combining
carefully controlled experiments with DFT modelling.
The accumulated mechanistic understanding of inhibitors, high-

throughput methodologies and FEM/DFT-MD computational
approaches generated previously unavailable large datasets about
the mechanical and physicochemical behaviour of inhibitors,
which paved the road for data-driven statistical investigations.
This involved classification and predictive analytics of inhibitors.
Properties of inhibitor molecules obtained from DFT calculations,
and experimental inhibitor efficiencies gathered from high-
throughput methods have been combined to build correlations
using machine learning-based quantitative structure–property
relationships (QSPR). Winkler et al.59 used QSPR to reveal empirical
molecular descriptors most relevant for AA2024 and AA7075
inhibition and identified that chemical descriptors solely using
input features obtained from in vacuo DFT did not contain
sufficient information to generate predictive models. Würger
et al.60,61 have demonstrated a data-driven inhibitor prediction
workflow for magnesium alloys, which combined the results of
atomistic simulations and high-throughput experiments with
unsupervised machine learning clustering algorithms and super-
vised learning approaches to predict the behaviour of untested
inhibitors. Feiler et al.44 have demonstrated that the combination
of structural information with input features derived from DFT
leads to robust predictive models for corrosion inhibition
responses of small organic molecules based on an artificial neural
network for pure magnesium, as well as Mg-based alloys62. The
optimisation of machine learning approaches is an ongoing
process, whether it is coming up with better methods of
identifying the most relevant molecular descriptors62, or analysis
of different inhibitor classification algorithms and creation of new
descriptors with intrinsic mechanistic meanings63.
All in all, in silico inhibitor screening combined with smart high-

throughput testing has enabled overcoming the physical limita-
tions of previous paradigms. However, a complete jump to the
fourth paradigm will require a strong empirical foundation. A
recent review by Coelho et al.64 has identified the main challenge
of utilising machine learning for corrosion research as the lack of
high-quality datasets. Corrosion datasets are found to be typically
noisy, rarely shared in a systematic machine-readable way, and
lacking in time-dependent multidimensional input, which was
shown to increase the accuracy of studied models. On the one
hand, recent inhibitor data management initiatives such as
CORDATA database65 introduced open-source philosophies to
inhibitor discovery and selection - however although database
contains hundreds of entries, inhomogeneous data is still a
problem. The database contains data acquired on different raw
batches of alloys, different or poorly controlled ambient tempera-
tures, and different experimental methods and conditions. On the
other hand, dedicated state-of-the-art high-throughput datasets
for aluminium alloys have created data for hundreds of organic
compounds28,36,59,63. However, the lack of multidimensional input
is a distinctive shortcoming of high-throughput methods, where
only one parameter is collected to represent the inhibition
performance. For an alloy prone to localised degradation, such
as pitting corrosion of AA2024-T3, a data creation procedure that
obtains information on both the open circuit state as well as
behaviour under applied potentials is crucial to get the full
mechanistic picture. All in all, in silico inhibitor screening
combined with smart high-throughput testing has enabled
overcoming physical limitations of previous paradigms. However,
a complete jump to the fourth paradigm will require a strong
empirical foundation. A recent review by Coelho et al.64 has
identified the main challenge of utilising machine learning for
corrosion research as the lack of high-quality datasets. Corrosion
datasets are found to be typically noisy, rarely shared in a
systematic machine-readable way, and lacking in time-dependent
multidimensional input, which was shown to increase the

accuracy of studied models. On the one hand, recent inhibitor
data management initiatives such as CORDATA database65

introduced open-source philosophies to inhibitor discovery and
selection—however although database contains hundreds of
entries, inhomogeneous data is still a problem. The database
contains data acquired on different raw batches of alloys, different
or poorly controlled ambient temperatures, and different experi-
mental methods and conditions. On the other hand, dedicated
state-of-the-art high-throughput datasets for aluminium alloys
have created data for hundreds of organic compounds28,36,59,63.
However, the lack of multidimensional input is a distinctive
shortcoming of high-throughput methods, where only one
parameter is collected to represent the inhibition performance.
For an alloy prone to localised degradation, such as pitting
corrosion of AA2024-T3, a data creation procedure that obtains
information on both the open circuit state as well as behaviour
under applied potentials is crucial to get the full mechanistic
picture.
We aim to address the need for a robust multidimensional time-

dependent electrochemical database with this study. We also
show the best practices for applying this multidimensional data to
train a predictive machine-learning model. AA2024-T3 samples
exposed to around 80 small organic molecules containing
electrolytes are electrochemically characterised through linear
polarisation resistance, electrochemical impedance spectroscopy
and potentiodynamic polarisation. The goal of this brute force
‘high-throughput’ approach that combines proven electrochemi-
cal methods is to demonstrate a methodology to create robust
data that contains mechanistic time-dependent information.
Gained mechanistic information spans double layer capacitance,
charge transfer resistance, diffusion of corrosive ions through a
protective inhibitor layer from electrochemical impedance spec-
troscopy, time-resolved corrosion resistance response from linear
polarisation resistance, and corrosion rate, potential, breakdown
potential, the kinetics of the electrochemical reactions and nature
of anodic and cathodic reactions at biased electrical potentials
from potentiodynamic polarisation. The obtained experimental
parameters can be employed directly as target parameters for
training a machine learning model that is predictive of the
performance of untested compounds to create a shortlist of
promising candidates. Moreover, the experimental investigation
yields additional input features that can be combined with
molecular descriptors derived from the molecular structure and
atomistic simulations. These input features exhibit the great
potential to develop augmented quantitative structure–property
relationships as they allow the direct inclusion of information on
the underlying mechanisms in the model training. The results of
this study are expected to support the development of faster
inhibitor screening techniques in the future, which can leverage
the link between the molecular structure of the inhibitor and its
corrosion inhibition activity.

RESULTS AND DISCUSSION
Experimental results
Figure 1 plots the potentiodynamic polarisation (PDP), electro-
chemical impedance spectroscopy (EIS), and linear polarisation
resistance (LPR) measurements of AA2024-T3 samples exposed to
0.1 M NaCl solution with and without the presence of 1 mM
inhibitor candidates of benzotriazole, 2,5-dimercapto-1,3,4-thia-
diazole, 2-mercaptobenzimidazole, 2-mercaptobenzoate, sodium
acetate, sodium mercaptoacetate, or ammonium pyrollidinedithio-
carbamate. The summary of values obtained from the experiments
is presented in Table 1. In order to showcase the broad spectrum
of behaviours observed in the electrochemical experiments,
inhibitor candidates with contrasting characteristics were selected.
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Figure 1a presents polarisation curves of AA2024-T3 samples
recorded after 24 h of immersion in inhibitor-containing solutions.
Polarisation curves show that the addition of small organic
molecules results in corrosion current densities varying up to 2
orders of magnitude. It is noteworthy that the best inhibitor
candidates reduced the corrosion current densities more than 10-
fold compared to the uninhibited samples. Analysis of corrosion
potentials shows that inhibitors act as mixed or anodic inhibitors.
Anodic inhibitors reduce the current densities of partial oxidation
reactions without affecting the partial reduction reactions, causing
the shift of the corrosion potential in the positive direction (and
vice versa for cathodic inhibitors)66. Albeit small, the addition of
organic molecules shifts the corrosion potentials to more positive
values, with the exception of ammonium pyrollidinedithiocarba-
mate. However, when breakdown potentials (potentials where a
sudden increase in current for the anodic curves) are observed it is
seen that the introduction of molecules resulted in negligible
shifts with the exception of 2,5-dimercapto-1,3,4-thiadiazole. The

distribution of electrochemical potentials among all inhibitor
candidates is analysed more deeply in section “Understanding and
Prediction Inhibition: Experimental Input Features for the Machine
Learning Model”.
Figure 1b shows the EIS impedance Bode modulus plots after

24 h of immersion in inhibitor-containing solutions. The impe-
dance modulus ∣Z∣ values observed at 10−2 Hz frequency are
treated as the Rp values calculated from EIS, as it was shown that it
reflects the corrosion resistance of the inhibitor–substrate inter-
face67. This approach is based on a simplification since the low-
frequency impedance modulus includes contributions from the
oxide film resistance, the charge transfer resistance, and often
from the diffusion-controlled processes. Moreover, in addition to
the real component, it includes the imaginary part. ∣Z∣ values show
more than a 2-order of magnitude range as was seen for corrosion
current density measurements. Corrosion resistance with respect
to the uninhibited samples showed more than a 30-fold increase.
A comparison of low-frequency impedance modulus values

Fig. 1 AA2024-T3 samples exposed to 0.1 M NaCl solution in presence and absence of 1mM inhibitors. a Potentiodynamic polarisation
curves and b electrochemical impedance spectroscopy Bode modulus and phase angle plots recorded after 24 h of immersion, c linear
polarisation resistance Rp values as functions of exposure time.

Table 1. Electrochemical information obtained from potentiodynamic polarisation, electrochemical impedance spectroscopy, and linear polarisation
resistance measurements of AA2024-T3 samples exposed to inhibitor-containing solutions

Inhibitor jcorr Ecorr Ebr ∣Z∣2h ∣Z∣24h Rp
��
24h Rp

� �
(nA cm−2) (mV) (mV) (kΩ cm2) (kΩ cm2) (kΩ cm2) (kΩ cm2)

Uninhibited (0.1 M NaCl) 604 (±108) −620 (±12) −486 (±2) 14 (±0) 14 (±3) 11 (±1) 11 (±1)

Benzotriazole 216 (±38) −500 (±3) −475 (±4) 79 (±31) 107 (±48) 100 (±44) 94 (±43)

2,5-dimercapto-1,3,4 thiadiazole 3822 (±399) −604 (±6) −479 (±6) 51 (±18) 3 (±0) 3 (±0) 16 (±4)

2-mercaptobenzimidazole 79 (±18) −523 (±6) −496 (±8) 80 (±30) 265 (±80) 253 (±85) 207 (±66)

2-mercaptobenzoate 261 (±65) −527 (±16) −472 (±19) 130 (±50) 38 (±16) 53 (±21) 135 (±7)

Sodium acetate 396 (±54) −563 (±14) −473 (±13) 16 (±2) 16 (±1) 13 (±2) 15 (±1)

Sodium mercaptoacetate 57 (±13) −572 (±25) −435 (±34) 203 (±47) 203 (±64) 561 (±191) 555 (±205)

Ammonium pyrollidinedithiocarbamate 38 (±4) −636 (±14) −488 (±14) 346 (±34) 480 (±106) 335 (±73) 356 (±173)

Corrosion current density jcorr, corrosion Ecorr and breakdown Ebr potentials vs. Ag∣AgCl, impedance modulus values ∣Z∣ observed at 10−2 Hz evaluated for 2
and 24 h, linear polarisation resistance Rp evaluated at 24 h and the time-weighted average of the measurements Rp

� �
are presented.
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observed at the 2nd and 24th hour presented in Table 1 shows
significant variation in inhibitor behaviour. This change from the
2nd to the 24th hour is more clearly observed in LPR plots, which
correspond well with EIS results.
Figure 1c shows estimated Rp results calculated from the LPR

measurements conducted throughout 24 h. The instantaneous
corrosion resistance of a system can be indirectly assessed by
measuring the polarisation resistance Rp. A higher Rp indicates a
more resistive interface between the electrode and the electrolyte.
The resistive interface hinders the flow of electrons and ions,
increasing the corrosion resistance68. From the LPR measure-
ments, it is clear that the action of inhibitor species is highly time-
and species-dependent. In some cases such as sodium acetate,
there is negligible change in behaviour compared to the
uninhibited solution. However, in most cases, it was observed
that instead of having a constant behaviour, Rp values evolve with
time. In cases such as benzotriazole, 2-mercaptobenzimidazole,
sodium mercaptoacetate and ammonium pyrollidinedithiocarba-
mate, there is an initial increase in Rp, and further development of
corrosion protection until the 6th hour and stable corrosion
protection after that. For 2-mercaptobenzoate it was seen that
after an initial increase and a gradual development of corrosion
resistance, the protection started to decrease to lower than initial
values. For 2,5-dimercapto-1,3,4-thiadiazole it was seen that after
the initial, more than an order of magnitude increase in Rp, the
protection starts to decrease. This decline continues until the 6th
hour and signifies stable active corrosion behaviour afterward.
In the specific case of 2,5-dimercapto-1,3,4-thiadiazole, we

conclude that this accelerated corrosion was caused by the pH
change of the electrolyte after the introduction of the inhibitor.
Analysis of pH measurements of the electrolytes prior to the
electrochemical experiments shows that compared to the pH
value of 6 of the uninhibited 0.1 M NaCl solution, 2,5-dimercapto-
1,3,4-thiadiazole containing solution had an acidic pH value of 3.
This is at the boundary of the thermodynamically stable region of
Al at 1M Al3+ but in the region of preferential stability of Al3+ at
lower than 1 M contraception of Al3+ 69, which is expected for OCP
corrosion of AA2024-T3. Therefore the considerable decrease in
pH must have disrupted the stable aluminium (hydr)oxide layer
and led to active corrosion of the samples.
Due to this dynamic corrosion and inhibition behaviour, it is

vital to capture the performance during the whole time-span. One
method to achieve this is to estimate the mean value of Rp
through a trapezoidal integration over time:

Rp
� � ¼ 1

tf � t0

Z tf

t0

RpðtÞdt (1)

� 1
tf � t0

XN
k¼1

Rp tk�1ð Þ þ Rp tkð Þ
2

tk � tk�1ð Þ (2)

where tf is the final measurement time, t0 is the initial
measurement time, and k is the indices for the performed discrete
measurements. The mean estimated this way can be used as a
screening metric that contains all time-dependent information in
one number. The power of this approach as an inhibitor screening
tool was recently shown for pure copper substrates exposed to
small organic molecules33.

Quantifying inhibitor performance
The electrochemical information obtained from the techniques
PDP, EIS and LPR can be used to compare the performance of
inhibitors. However, it is not possible to directly compare the
electrochemical information obtained from different measure-
ment techniques. To enable a more direct comparison between
techniques, the results can be converted into relative protection

values by comparing the results obtained from the inhibited
solutions to the uninhibited ones.
The most widely used metric for comparing the inhibitor

performance in the literature is the inhibition efficiency (IE). The
inhibition efficiencies are calculated from polarisation resistances
Rp obtained from LPR or EIS, the cases when the inhibitor value is
higher than blank:

η ¼ Rpinh � Rpblank

Rpinh
¼ 1� Rpblank

Rpinh

 !
´ 100% (3)

and corrosion current densities jcorr obtained from PDP, the cases
when the inhibitor value is lower than blank:

η ¼ jcorr
blank � jcorr

inh

jcorr
blank ¼ 1� jcorr

inh

jcorr
blank

� �
´ 100% (4)

where superscripts inh and blank stand for inhibited and
uninhibited samples, respectively.
Inhibition efficiency is used widely because it is an easy-to-

understand comparison tool. For inhibition, it has values between
0 (no protection at all) to 100% (complete prevention of
corrosion). Negative values indicate an acceleration of corrosion
compared to the uninhibited case. It is also favoured as under
simplifying assumptions it can directly be correlated to the surface
coverage by the inhibitor molecules. However, this ease of use
obscures the fact that as a mathematical function, this mapping
introduces a mathematical bias and as a result is highly non-linear.
Due to its form 1� a

b

� �
, inhibition efficiency introduces an

arbitrary 1 next to the relative values a
b

� �
that is of actual interest.

As a result, minor differences in performance are seen as large
jumps for the lower efficiencies (<90%), and major differences are
hidden from view at higher efficiencies (>90%). This also causes
researchers to wrongly conclude that good-performing inhibitors
would also have lower standard deviations since even major
variations in electrochemical values are suppressed at the higher
end of the inhibition efficiency metric. Therefore, it is not an
optimal metric to compare the protection performance of strong
inhibitors.
An alternative metric, inhibition power (IP), has recently been

proposed to address the limitations of inhibition efficiency52. It is
the ratio of inhibited and uninhibited inhibition information
presented in a logarithmic fashion. For polarisation resistance Rp it
is defined as

Pinh ¼ 10log10
Rpinh

Rpblank

 !
(5)

and for corrosion current densities jcorr it is defined as

Pinh ¼ 10log10
jcorr

blank

jcorr
inh

� �
(6)

By taking only the ratio of electrochemical values into account,
inhibitor power eliminates the influence of bias introduced by the
arbitrary (1� a

b) form of inhibitor efficiency determination. In this
form, an inhibition power increase of 10 from an uninhibited
condition corresponds to a corrosion resistance increase by 10-
fold, while an increase of 20 corresponds to a 100-fold corrosion
resistance increase.

Comparison of electrochemical techniques: inhibition
efficiency vs. inhibition power
The comparison of electrochemical results converted into inhibi-
tion efficiency and inhibition power metrics is presented in Fig. 2.
Example correlations between EIS measured at 24th hour with
time-weighted LPR average Rp

� �
for individual experimental runs

are visible in Fig. 2a. Figure 2b quantifies the correlation between
different electrochemical measurement techniques in the form of
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Pearson correlations. P-values (value describing how likely it is that
your data would have occurred under the null hypothesis of your
statistical test) of the Pearson statistical test correlations were
between 10−134 and 10−51, much lower than the commonly used
criteria 10−6, indicating statistical significance.
The differences between inhibitor efficiency and power

correlations are vividly seen in Fig. 2a. For inhibition efficiency,
the correlations are weak except for the top right part, the best-
performing inhibitors. This might falsely lead to the impression
that an increase in inhibitor performance results in a higher
correlation between experiments. This impression is misleading
and is an artefact of the mathematical function used for
converting raw electrochemical information into inhibition effi-
ciency. When the correlations are visualised in the form of
inhibitor power, higher correlations between the good-performing
inhibitors are lost. All compounds behave in a similar way and
cluster around the perfect correlation diagonal.
The only exceptions to the strong correlation seen for inhibitor

power are the compounds that change their corrosion protection
behaviour throughout time. Given that ∣Z∣24h measures the
protective properties at the 24th hour, and Rp

� �
captures

additional time-dependent information, this behaviour is com-
pletely expected.
Apart from being more consistent, inhibitor power facilitates

discerning between the better and best inhibitors. As more
conceptually argued in the previous section, the inhibition
efficiency metric squeezes the high-performing compounds
together. This is clearly visible from the clustering of experiments
for the efficiency metric, versus individually identifiable best-
performing compounds for the power metric in Fig. 2a.

The clustering seen for the inhibition efficiency metric also
creates an issue for training a predictive model. Imbalanced data
usually results in models that have poor predictive performance,
especially for the minority class70. The homogeneous distribution
of results is crucial in training an unbiased machine learning
model, which is better provided with the inhibition power metric.
Figure 2b presents the correlations between the electrochemi-

cal measurement techniques more quantitatively in the form of
Pearson correlations. The top-right triangle shows the correlations
between different electrochemical measurement technique
results converted into inhibition efficiency, and the bottom-left
triangle shows the same results converted into inhibition power.
Pearson’s bivariate sample correlations quantify linear correla-

tions between two sets of data with the following formula:

rx;y ¼
Pn

i¼1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � xÞ2Pn

i¼1 ðyi � yÞ2
q (7)

where n is the total number of experiments (in this work ~ 300), i is
the index representing different experiments, xi, yi individual
sample points from two different electrochemical measurement
methods, x, y sample means obtained from the different
electrochemical methods. The correlation coefficient rx,y can take
values from −1 to 1. 1 indicates a perfect linear relationship
between x and y, where all data points lie on a line where x
increases as y increases, and vice versa for −1. A value of 0
indicates that there is no linear relationship between the two
variables. For time-invariant electrochemical behaviour, a correla-
tion coefficient of 1 is expected between the different electro-
chemical measurement results71.
A quick comparison of the inhibition efficiency and power

correlation triangles shows that the correlations between

Fig. 2 The correlation between different electrochemical measurement techniques: EIS performed at the 2nd and 24th hour ∣Z∣2h and
∣Z∣24h, potentiodynamic polarisation performed at 24th-hour jcorr, LPR performed at the 24th hour Rp

��
24h and the time-weighted average

of LPR measurements Rp
� �

. a Example correlation between ∣Z∣24h and Rp
� �

, values from electrochemical measurements converted into top:
inhibition efficiency, bottom: inhibition power. Each dot represents an individual measurement, categorised in colours with respect to their
inhibitor species. b Pearson correlation coefficients between different electrochemical measurements, converted in top-right triangle:
inhibition efficiency, bottom-left triangle: inhibition power metrics.
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measurements are consistently lower for the inhibition efficiency
metric. For the inhibition efficiency, the correlations between
different techniques are all below 0.9, with the exception of LPR
and EIS measurements performed at the 24th hour. For the
inhibition power, LPR and EIS measurements carried out at the
24th hour and time-weighted LPR average Rp

� �
show very high

correlations. EIS performed at 2nd hour shows the lowest
correlations with the rest of the measurements. Trustworthy EIS
measurements require the electrochemical system to be linear,
causal, and time-invariant within the time-frame of the measure-
ment33,34. However, for dynamic systems similar to the ones
shown in Fig. 1c, time-invariance would not be often observed at
measurements done at 2nd hour, which would explain the low
correlations. The highest correlation of EIS performed at 2nd hour
was observed with a time-weighted parameter, Rp

� �
. This again

emphasises the time-variable inhibitor behaviour. For inhibition
power, higher correlation was observed between Rp

� �
and EIS

performed at 24th hour, compared to Rp
� �

and EIS performed at
2nd hour indicates that measurements at the 24th hour were
more representative of the time-dependent corrosion inhibition
behaviour. Surprisingly for inhibition efficiency, the opposite is the
case. This might be due to the volatility inherent to the inhibition
efficiency transformation.
PDP measurements show lower correlations with the rest. This is

most likely due to altered electrochemical behaviour caused by
the high overpotentials (±250 mV) necessary for the PDP
experiments. Due to the high overpotentials encountered during
the potentiodynamic scans, the physicochemical properties of the
surface are modified, potentially leading to an altered substrate
surface chemistry33,72. Another reason could be the increased user
input during the Tafel slope analysis required for corrosion current
density calculations, which is much higher than required for EIS or
LPR. Specifically for the case of AA2024-T3, the use of the Tafel
approach is not straightforward. On one side, the cathodic
behaviour is significantly influenced by oxygen diffusion limita-
tions. On the other, the anodic processes are not solely governed
by charge transfer but rather occur at localised regions such as
intermetallic particles and grain boundaries. Therefore, the
conventional Tafel approach cannot be employed since it is
applicable only under activation-controlled processes. Tafel
analysis in such conditions is a very simplified approach and can
lead to deviations.
For the reasons presented above, we argue that inhibition

power is a more ’efficient’ way of discerning between better and
best inhibitors, and a better approach to training an unbiased
predictive machine learning model. Therefore, it is used to
compare and rank the inhibitor performance in the next section.

Ranking of inhibitors
Figure 3 demonstrates the electrochemical measurement results
converted into inhibition power for the best-performing inhibitors.
LPR measurements are shown with line-scatter, EIS with black
framed scatter, and PDP with the final individual scatter plots. The
width of the EIS and PDP symbols was chosen so that it would
convey the time it takes to perform the measurements.
The presented inhibitors show stable behaviour after 6 h, with

the exception of 2-mercaptobenzothiazole which develops
inhibition until after 18 h, and of 4-mercaptobenzoic acid which
seems to show a minor decrease in inhibition performance with
time. LPR and EIS results correlate strongly with each other (except
for 2-mercaptopyridine EIS around 2 h), as expected from the
analysis in the previous section “Comparison of electrochemical
techniques: inhibition efficiency vs. inhibition power”. PDP results
demonstrated a lower inhibition power for all cases. This
systematic difference was attributed to the destructive nature of
PDP measurements.
Although a qualitative analysis is possible through such plots,

the quantitative ranking of a high number of inhibitors is not
feasible through such visualisations. To this end, the time-
weighted LPR average Rp

� �
is advantageous as it captures the

complete time-dependent behaviour in a single number. Addi-
tionally, it shows high correlation with other electrochemical
techniques as seen in Fig. 2b.
Figure 4 presents the ranking of inhibitor candidates in the form

of a box-plot, created from the time-weighted LPR average Rp
� �

values converted into inhibition power through Eq. (5). Inhibitor
candidates are ranked with respect to their mean inhibition power
values, and their medians are represented by horizontal bars. The
box part shows the main portion of the data, the interquartile
range. The edges of the box show the 25th and 75th percentile.
Whiskers show the minimum and maximum measurement results.
The importance of heteroatom presence, aromatic ring and

π-bond containing molecular structures on inhibitor performance
has been consistently mentioned in the literature30,73–75. It has
been argued that the availability of non-bonded lone pair
electrons of heteroatoms and π-electrons of double/triple bonds
facilitate electron transfer from the inhibitor to the d-orbitals of
the metal, acting as adsorption centres during metal–inhibitor
interactions. To identify such trends in this experimental data set,
the inhibitors have been categorised according to their molecular
structures: the presence of N, O, and S heteroatoms and their
aromatic vs. aliphatic bond structures.
Almost half of the inhibitor candidates behaved as corrosion

accelerators. This was in contrast to the findings of previous
studies28,59, which was the basis of the inhibitor selection procedure

Fig. 3 The representation of PDP, EIS, and LPR measurements converted into inhibition power for best performing among the tested
inhibitors. Small line-scatter plots represent LPR, larger plots with black edges represent EIS at 2nd and 24th hours, and the final larger scatter
plots represent the PDP measurement results converted into inhibition power. The solubilities of inhibitors denoted with italics were <1mM.
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of our paper. Non-adjusted pH could be one reason for this
behaviour. 80% of sole O heteroatom-containing compounds
behaved as accelerators, with the exception of sodium acetate and
vanillin. On the other hand, N and S heteroatom-containing organic

molecules performed consistently well. They had the highest
inhibition power values with none of them performing as corrosion
accelerators. Compounds that contained N, S and O together had in-
between inhibition properties. This leads us to suggest that N, S
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Fig. 4 The inhibitor candidate ranking visualised as boxplots. Colours indicate the nitrogen (N), oxygen (O), sulfur (S) heteroatom content
and presence/absence of aromatic ring structures. The solubility of molecules denoted with italics was <1mM.
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heteroatoms grant inhibitive properties to the organic molecule,
whereas O could potentially hinder inhibition. Specifically for
AA2024-T3 corrosion inhibition, it was observed that functional
groups with N and S heteroatoms form coordination complexes with
Cu-containing intermetallics, reducing the corrosion rate76–78. The
heteroatom trend is generally in line with the previously suggested
heteroatom electronegativity-inhibition effect, where heteroatoms
provided inhibition with inverse order of their calculated individual
electronegativity: P > S >N>O73. It is proposed that lesser electro-
negativity results in increased charge transfer and provide inhibition.
However, the real situation in a small organic molecule is much more
complex as the electronegativities of the heteroatoms will change
depending on the molecular structure.
The discussion above addresses only one of the important

molecular descriptors. Trends are not clear for the rest. The
comparison of aromatic and aliphatic behaviour shows no significant
difference. This is most likely because the tested aliphatic molecules
already contain excess π-bonds in their linear chain. The behaviour of
N and O, and S and O containing molecules are most complex. The
molecules are spread throughout the inhibitor/accelerator spectrum,
seemingly without an underlying order and act as best and worst
performing compounds, as seen in the behaviour of
4-mercaptobenzoic acid and thiobenzoic acid.

Understanding and predicting inhibition: experimental input
features for the machine learning model
It is clear that any predictive corrosion inhibition model requires a
more comprehensive description of the system than the presence
or absence of heteroatoms. Compared to analysing individual
properties like the presence of certain heteroatoms, π-bonds and
functional moieties, quantitative structure-property relationship
(QSPR) models have potential in exploring more complex physical
phenomena62,79–88. QSPR inhibition models relate predictor
variables, which can be physicochemical properties and/or
theoretical molecular descriptors of inhibitor compounds, to the
experimentally measured inhibition performance. Quantified
physicochemical properties or descriptors (obtained through
theoretical calculations and molecular modelling techniques such
as density functional theory and molecular dynamics) expressed in
a mathematical relationship, a quantitative structure-property
relationship, can be established to predict the performance of
untested organic molecules.
The inclusion of experimental physicochemical descriptors is

the next logical step to supplement the input feature pool and to
concomitantly improve the robustness of the predicted values as
well as the generalisability of QSPR models for small organic
corrosion inhibitors. Some important physical and chemical
experimental input features that are capable of increasing
prediction quality are presented below.

Molecular weight. Molecular weight–inhibitor power relationship
can be found in Supplementary Fig. 2. It seems that most organic
molecules cluster in the range of 100–200 gmol−1, and after around
250 gmol−1 there seems to be a decrease in the inhibitor
performance. This is most likely due to steric hindrance effects,
where an increase in the size of the molecule would hamper the
adsorption reactions with the substrate89. Based on this observation
we suggest that as a rule of thumb, small organic molecules with
molecular weights lower than 250 gmol−1 can hold more promise to
be inhibitor candidates. This would limit the chemical space to be
explored and facilitate the efficiency of novel inhibitor discovery.

Inhibitor concentration. The influence of concentration is cer-
tainly important for inhibition behaviour. An exploratory compar-
ison of 6 molecules at 0.1 and 1mM concentrations shows that
with increasing concentration, inhibitor systems become more
protective and accelerator systems become more corrosive
(provided in Supplementary Fig. 5). Typically as concentration
increases, a corresponding increase in inhibition is observed until
a critical concentration is reached. After this critical concentration
the inhibition either reaches a plateau or in certain cases starts to
decline90. It was previously argued that the decline in inhibition
was related to the formation of oligomers: either the molecule
concentration higher than the critical value causes adsorbed
inhibitor molecules to desorb due to interaction with free
molecules present in the solution, forming oligomers, or oligomers
that form in the solution beforehand reduce the concentration of
inhibitor available for adsorption91. Any analysis of an inhibition
system has to be aware of such behaviour when comparing
inhibition performance at different conditions.

Electrochemical potentials. Electrochemical information obtained
from the experiments can serve as target parameters to be
predicted (such as previously calculated inhibition power) and also
can be utilised as descriptors. This can augment the molecular
descriptors of the model by adding mechanistic insights related to
the electrolyte–electrode system, which were otherwise lacking
from the statistical nature of machine learning models.
The dominant degradation mechanism of AA2024-T3 is pitting

corrosion92,93. Furthermore, the alloy is used in combination with
composite structures in modern aeroplanes which triggers
galvanic corrosion. For this reason, parameters that represent
pitting and galvanic corrosion hold promise as either target
parameters to be predicted, or as additional descriptors that
provide mechanistic information to the models.
Figure 5 presents the distribution of corrosion potentials Ecorr,

pitting breakdown potentials Ebr where an instantaneous large
increase in anodic current is observed94, and the differences
between the two. It is seen that inhibitors can modify Ecorr

Fig. 5 The distribution of corrosion potentials Ecorr, pitting breakdown potentials Ebr where a sudden jump in anodic current is observed,
and the differences between the two. Histograms are shown as red bars, and kernel density estimates of the probability functions are shown
as black curves. μ and σ represent the mean and standard deviation, respectively.
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significantly, as seen from the 200mV range and high standard
deviation of 72.8 mV. On the other hand, Ebr values change
negligibly, with a standard deviation of 17.6 mV, leading us to
believe that this is an intrinsic property of the substrate. This is in
line with previous dealloying studies, where an alloy-dependent
intrinsic critical potential was observed for activating porosity
formation in an otherwise passive surface95. Ebr acts as the
threshold potential for preferential dealloying of the active phases,
which in the case of AA2024-T3 is the potential for initiating stable
pits resulting from active S (Al2CuMg) and θ (Al2Cu) phase
intermetallics96. The difference between potentials Ebr−Ecorr
describes the overpotentials required to reach this threshold,
which was shown to be highly influenced by the introduction of
inhibitors.
The influence of difference in potentials Ebr−Ecorr is denoted

here as passive range, and plotted with respect to inhibitor power
in Fig. 6 to see whether there is a correlation between the two
parameters. Different chemical groups are denoted with different
colours. No significant correlation was observed between the
passive range and inhibition performance. It was observed that
apart from NS aliphatic and OS aliphatic/aromatic compounds, a
weak negative correlation between the two parameters was
observed. However, this behaviour was not statistically significant
because of the high spread observed for the experiments. In any
case, the seemingly unsystematic behaviour with low correlation
highlights the need for further study. As the key parameter for
localised electrochemical activity, passive range holds promise
either as a target to be predicted on its own or as a descriptor to
be used in combination with the molecular descriptors.

Bulk pH. Apart from 4-mercaptobenzoic acid, sodium diethyl-
dithiocarbamate, and 1,3,4-thiadiazole-2,5-dithiol-dipotassium salt,
the pH did not change in the presence of compounds with good
inhibition performance (IP > 10, IE > 90%) and had neutral pH
values around 6. On the other hand, IP was lower in the presence
of compounds which caused the initial pH of the electrolyte to be
out of the 4.5–8.5 Al stability window97. The clustering of lower pH
values at the lower inhibition power segment suggests that this
results in active corrosion becoming the dominant degradation
mechanism.
It was seen that there is no correlation of inhibition power with

either the average or the difference in pH (Supplementary Figs. 3
and 4). It must be noticed that what is measured as bulk
electrolyte pH and what the actual pH observed on the substrate
surface can be very different, and bulk electrolyte measurements
do not fully reflect local behaviour such as concentration
gradients at the electrolyte–substrate interface and throughout
the diffusion layer98.
The lack of correlation does not mean that bulk pH information

is useless as a machine-learning model feature. It is very relevant
for explaining the outlier behaviour, as the pH difference caused
by the inhibitor molecule is not captured directly with computa-
tional descriptors. The addition of bulk pH as a feature can capture
such pH-based behaviour, and can be used as a forensic analysis
tool to explain outliers of the model.

Exploring experimental descriptors for machine learning
Experimentally measured pH shows the power of descriptors
obtained from experiments. To produce a short list of compounds
with possibly useful properties for further experimental testing.
The selection of relevant input features is a crucial step in the
development of QSPR models as features with low or no relevance
to the target property will degrade the model. The recursive
feature elimination (RFE) was carried out for the four distinct
groups of input features: structural features only, structural
features combined with DFT, structural features combined with
average pH, and structural features combined with DFT and

average pH. Feature elimination was performed for both IE and IP
targets. The whole feature selection process was repeated 100
times with different random seeds and the n-tuples that were
selected in the majority of the runs can be found in
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Supplementary Tables 2–5. To use the same technique for the
QSPR step that was employed for sparse feature selection, random
forest (RF) models have been trained using the experimental
database. By algorithmically eliminating the weakest features, it
allows automatic feature selection without user bias or interven-
tion62. Moreover, RF is an ensemble model that builds multiple
decision trees and combines their predictions. Naturally, this
ensemble approach helps reduce the risk of overfitting, which can
be crucial when dealing with small datasets. Another advantage is
robustness against outliers: outliers can have a significant impact
on smaller datasets, whose influence again can be mitigated by
aggregating predictions from multiple trees.
RF regression models predicting the quantitative inhibition

performance values were trained to create an active material
discovery loop to explore the vast chemical space for promising
compounds in an efficient manner. Out of the 78 organic
molecules that were tested, only 59 were fully dissolved in
solutions. These molecules corresponded to a target concentra-
tion of 1 mM and were used to train the ML models. As the input
to these models molecular descriptors (MDs) based on the
structure of the molecules, descriptors calculated by DFT as well
as selected experimental parameters have been used. The
accuracy and robustness of the trained models are assessed using
a cross-validation (CV) approach.
In aqueous solutions, aluminium alloys have a protective

passive (hydr)oxide layer preventing them from corrosion at a
pH range roughly between 4 and 1097. In this pH range, scratches
or mechanical damage to the passive layer are quickly repaired
but if the pH drops below or rises above the stable range,
aluminium starts to corrode actively. As the oxide layer is no
longer stable at such conditions, this influences the inhibitor-
substrate interaction. As a result, the pH makes for an effective
feature in an ML model because aluminium is typically more likely
to corrode at very high or very low pH levels. The pH is selected by
the RFE routine every time it is part of the set of input features.
This demonstrates emphatically that pH appears to be a key
feature in the prediction of the inhibition performance of organic
molecules.
In addition to pH, several properties derived from DFT

calculations are also selected by the RFE as soon as they are
included in the set of input features. The DFT parameter that was
selected most frequently, was the highest occupied molecular
orbital (HOMO). Additionally, the lowest unoccupied molecular
orbital (LUMO) and dipole were selected in at least half of the
cases, with n= 10 for the RFE step. This contrasts with recent
works, which have concluded that the correlation between DFT
properties and the corrosion-inhibiting effect of small molecules
seems absent.52,99 However, neither of these works mixed the DFT
features with molecular descriptors that encode the molecular
structure. It is noteworthy that the correlation between the HOMO
energy levels and IE/IP is essentially zero in this work as well,
corroborating these prior works.
When examining the results for one specific train test split in

Table 2, it is evident that at least for most of the cases where the
DFT parameters and/or pH value are added to the set of input
features, the R2 increases and the RMSE decreases. This indicates

that including these parameters enhances the prediction and
increases the reliability and robustness of the models. The only
case where this does not hold is the IE model with five input
features combining structural features and DFT. A closer
examination reveals that for IE ten input features allow for more
accurate predictions than five, whereas for IP the reverse is true.
Lowest RMSE and highest R2 were achieved for the model that
uses combined descriptors and IP as the target. In Fig. 7 the
measured IP is plotted against the IP predicted by the RF.
In order to perform CV, the dataset was divided into six folds

and thus six RF models were trained. The average R2 and RMSE
and the corresponding standard deviation of these models are
shown in Table 3. The evaluation of the models using different
classes of input features indicates that adding DFT parameters
and/or the pH value increases the prediction accuracy in most of
the cases according to the determined mean values for R2 and
RMSE. The models with the lowest RMSE and highest R2 include
pH and DFT parameters as input in addition to the structural
features, further supporting our claim that molecular descriptors
derived from atomistic simulations can be helpful to generate
QSPR models that predict the corrosion inhibition responses of
small organic molecules to lightweight engineering metals such as
aluminium and magnesium alloys. Unlike the specific train test
split case, the lowest RMSE was obtained for IE as a target, and the
highest R2 was achieved for IP as the target. Unfortunately, high
variation among different folds makes it difficult to state with
certainty whether IP or IE performs better targets for such models.
However, the comparably low R2 and RMSE values for all
considered models and the high standard deviations of these
metrics indicate that more training data is required to achieve
better generalisation. Furthermore, they are highly sensitive to
outliers in the blind test set.
In summary, we employed various standard electrochemical

techniques at different intervals to investigate the electrochemical
behaviour of around 80 small organic molecules. Our aim was to
capture the most comprehensive electrochemical picture of
AA2024-T3 immersed in inhibitor-containing electrolytes. The
performance of inhibitor candidates was quantified through
statistical analysis of their electrochemical response. This high-
lighted the need for complementary information from different
techniques to have a mechanistic understanding of an inhibition
system. For initial inhibitor screening purposes, time-weighted LPR
measurements showed very high correlations with other techni-
ques and are a good substitute for representing the protective
behaviour of the inhibitor. Time-dependent measurements
showed that for the majority of organic molecules electrochemical
measurements performed in less than 6 hours varied in time and
were unstable. To understand the true inhibitive properties of
inhibitor candidates, electrochemical studies should analyse the
inhibition performance at least after 6 hours for more reliable
results. Statistical analysis shows that inhibition efficiency is not an
’efficient’ way to distinguish between good inhibitors. Inhibition
power is a more suitable metric for discerning between “better”
and “best” inhibitors. Inhibition power eliminates clustering of
data observed in a higher efficiency range (>90%), which is an
important condition for training an unbiased machine learning

Table 2. Results of one specific train test split

Target #
Features

RMSE
structural

RMSE
structural+DFT

RMSE
structural+ pH

RMSE
structural+DFT+ pH

R2

structural
R2

structural+DFT
R2

structural+ pH
R2

structural+DFT+ pH

IE 10 0.24 0.23 0.18 0.18 0.17 0.19 0.49 0.51

5 0.22 0.24 0.2 0.19 0.27 0.13 0.42 0.43

IP 10 0.19 0.19 0.18 0.18 0.25 0.31 0.32 0.38

5 0.2 0.15 0.16 0.15 0.19 0.55 0.49 0.54
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model. The need for more complicated predictive models with
advanced descriptors was clear by categorising molecules based
on heteroatom content and the presence of aromatic moieties.
Compounds that contain both N and S heteroatoms performed
consistently well, however, the performance of compounds with
other chemical structures was spread over a large range.
Electrochemical information coming from corrosion potential
and passive range bears no linear correlation to inhibition power
and could be either a predictive descriptor in combination with
other features for predicting corrosion resistance or can be an
important prediction target as it is a key parameter for localised
corrosion. The machine learning model augmented with mechan-
istic information is key in exploring the complexity of corrosion
phenomena, which was highlighted by the predictive power of
pH. No linear relationship between bulk pH and inhibitor
performance was observed, however, information gained from
pH assisted in describing the system better by including
information about the environment not necessarily found in
computational descriptors, which increased the prediction rate
and assisted in outlier analysis of the random forest models.
At this stage rather than designing a final prediction system, we

have explored the use of machine learning models to create an
active learning loop for more efficient experimental discovery. The
obtained experimental parameters can be employed directly as

target parameters for training a machine learning model that is
predictive of the performance of untested compounds to create a
shortlist of promising candidates. Moreover, the experimental
investigation yielded additional input features like pH that can be
combined with molecular descriptors derived from the molecular
structure and atomistic simulations. These input features exhibit
great potential to develop augmented quantitative structure–activity
relationships as they allow the direct inclusion of information about
the underlying mechanisms in the training of the models. The results
of this study are expected to support the development of (i) faster
inhibitor screening techniques that can capture the same high-
resolution electrochemical information on a shorter time-scale, (ii)
more complex models that can leverage the link between the
physicochemical nature of the inhibitor and its protective
performance.

METHODS
Sample preparation
Aluminium alloy 2024 with a T3 temper (AA2024-T3) in the form of
2 mm-thick sheets is purchased (from Salomon’s Metalen B.V., the
Netherlands) to perform the electrochemical experiments. The
chemical composition of the alloy measured by the supplier in

Fig. 7 Prediction results for random forest models with 5 input features that uses the IP as target. Feature pool: a only structural features,
b structural features and DFT parameters, c structural features and pH, d structural features, pH and DFT parameters.

Table 3. Results of 6-fold cross-validation

Target #
Features

RMSE
structural

RMSE
structural+DFT

RMSE
structura+ pH

RMSE
structural+DFT+ pH

R2

structural
R2

structural+DFT
R2

structural+ pH
R2

structural+DFT+ pH

IE 10 0.22 (±0.03) 0.19 (±0.02) 0.14 (±0.02) 0.14 (±0.02) −0.47
(±0.33)

−0.12 (±0.18) 0.3 (±0.21) 0.35 (±0.21)

5 0.21 (±0.03) 0.23 (±0.02) 0.14 (±0.02) 0.14 (±0.02) −0.46
(±0.38)

−1.07 (±0.67) 0.27 (±0.22) 0.35 (±0.22)

IP 10 0.2 (±0.04) 0.19 (±0.04) 0.2 (±0.04) 0.18 (±0.04) 0.3
(±0.14)

0.35 (±0.14) 0.31 (±0.13) 0.41 (±0.13)

5 0.21 (±0.04) 0.2 (±0.03) 0.2 (±0.03) 0.18 (±0.03) 0.28
(±0.13)

0.33 (±0.14) 0.35 (±0.11) 0.41 (±0.11)
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accordance with the ASTM-E1251 standard is provided in
Supplementary Table 1.
The sheets were cut with an automatic shearing machine to

dimensions of 20 mm x 20 mm samples. The samples were
mechanically ground on a rotating plate polisher under a stream
of water using Struers waterproof SiC sandpapers with progres-
sively finer grits of 320, 800, 1200, 2000 and 4000. Subsequently,
the samples were polished using a fine diamond suspension
(Struers DiaDuo-2) with 3 and 1 μm particle sizes. After the
polishing procedure, samples were cleaned with isopropanol in an
ultrasonic bath (EMAG-EMMI 30HC) for 15 minutes and dried with
compressed air. Sample preparation resulted in a mirror-like
surface finish.

Inhibitors and electrolytes
The salt solutions without the addition of inhibitors (pH 5.9) were
prepared with NaCl powder with Milli-Q pure water (15.0 MΩ cm
resistance at 25 °C). For inhibitor-containing solutions, inhibitors in
quantities corresponding to 1mM concentrations were also added
during the mixture step. No additional compounds were added to
modify the pH and/or increase the solubility of inhibitors. 78 small
organic molecules were tested as corrosion inhibitors, resulting in
0.1 M NaCl–1mM inhibitor electrolytes.
Initial organic molecule choice was based on previous inhibitor

screening studies28,59. Tested organic molecules had both
aromatic/aliphatic moieties of thiol, amino, carboxyl and hydroxyl
groups. CAS numbers and common names of the compounds are
presented in the Supplementary Dataset. All chemicals were
purchased from Sigma-Aldrich, with the exception of sodium
chloride (J.T. Baker), 3-amino-5-mercapto-1,2,4-triazole, lithium
nitrate, cerium carbonate hydrate (Alfa Aesar), cerium chloride
heptahydrate, sodium acetate (Fluka), 2-mercaptobenzoate
(Thermo Fisher Scientific), 5-mercapto-1-phenyl-1H-tetrazole (TCI
Chemicals) and sodium mercaptobenzothiazole (Apollo Scientific).
Almost all inhibitors dissolved fully in 1 mM concentrations, with
the exception of thiosalycylic acid, 2-mercaptobenzothiazole, α-
benzoin oxime, 2,2’-dithiodibenzoic acid, 4-mercaptobenzoic acid,
2-(2-hydroxyphenyl)benzothiazole, quercetin hydrate, berberine
chloride hydrate and 2-(2-hydroxyphenyl)benzoxazole. The solu-
tions of these compounds were either murky, resulted in muddy
suspensions/emulsions or had visible undissolved particles in the
solution. The pH of the resulting solutions was measured with
Metrohm 913 pH meter, before and after the electrochemical
experiments.

Electrochemical experiments
Electrochemical measurements were conducted at room tem-
perature in open-to-air 0.1 M NaCl solutions, with (or without) the
added 1mM inhibitor candidates. A conventional three-electrode
electrochemical cell (flat corrosion cell, Corrtest Instruments,
China) with the sample as the working electrode, platinum mesh
as the counter electrode, and Ag∣AgCl (saturated KCl) as the
reference electrode were used to perform the experiments. The
designated electrolyte volume was 300ml and the exposed
surface area was 0.785 cm2 (1 cm diameter circle). Electrochemical
measurements were controlled with Biologic VSP-300 multi-
channel potentiostats through EC-Lab software (version 11.33,
Biologic, France).
The electrochemical measurements consisted of three different

techniques commonly used in the field of corrosion science: linear
polarisation resistance (LPR), electrochemical impedance spectro-
scopy (EIS) and potentiodynamic polarisation (PDP). The electro-
chemical investigations were initialised after observing the open
circuit potential (OCP) for 10 minutes. LPR was measured over a
potential range of ±10mV with a scan rate of 0.5 mV s−1 every
10 minutes for 24 hours. The polarisation resistance (Rp) values
were calculated by applying a linear fit to the observed linear

region of potential vs. current density plots. EIS measurements
were conducted at the 2nd and 24th hour. EIS measurements
were conducted by applying a sinusoidal AC perturbation with a
peak-to-peak amplitude of 10 mV in the 10 kHz–10mHz frequency
range with 10 frequency point per logarithmic decade with 3
repetitions per frequency point. OCP was observed in between
LPR and EIS measurements. After the EIS at the 24th hour,
potentiodynamic polarisation curves are recorded in a single
sweep with a scan rate of 0.5 mV s−1 from −250mV cathodic to
+250 mV anodic potentials with respect to open circuit potential.
Corrosion potentials and current densities were calculated with
Tafel extrapolation, by obtaining the intersection of tangents from
linear parts of anodic and cathodic curves of the log∣current
density∣-potential polarisation curves. Visual summary of electro-
chemical experiments is presented in Supplementary Fig. 1.
All electrochemical experiments were repeated at least three

times per inhibitor to ensure the reproducibility of the
experiments.

Molecular descriptor generation, feature selection and
evaluation of random forest models
The molecular descriptors based on the structure of the molecules
for the input to the random forest (RF) model, e.g. the molecular
weight or the number of certain functional groups, have been
generated using the open-source chemoinformatic software
package RDKit100. Additionally, DFT computations have been
carried out to determine electronic key properties like frontier
orbital energy levels using the commercial software package
Turbomole101 resulting in a pool of 216 molecular descriptors
(208 structural, 7 derived from DFT simulations and 1 experimental
parameter (the average pH, average of before and after
electrochemical measurements). The aim of the recursive feature
elimination (RFE) was, to reduce this number to five or ten input
features. Furthermore, experimental parameters, especially the
average pH, which were obtained from the experiments, were
used as additional input to the ML model. To determine the
influence of DFT and experimental parameters, the RF has been
trained on different sets of input features: on the structural
features only, on the structural features complemented by DFT or
experimental parameters or both.
Prior to training, RFE, a sparse feature selection approach based

on RF, has been carried out to select the most pertinent input
features. The purpose is to select n-tuples of features that perform
well together. Features that have low or no relevance to the
modelled property would degrade the model and using too many
input features will ultimately lead to overfitting on the training
data. Therefore, the five and ten most relevant features in each of
the four groups have been determined with RFE and subsequently
used as the input to the RF model.
RF is a supervised learning method where the output is

obtained by averaging the results of a set of decision trees. The RF
model can use both the IE and IP as targets. Examining the data
distribution for IE and IP (see Supplementary Figure 6), it can be
observed that there is no uniform distribution in either case which
may lead to an unintentional bias in the training data.
Preprocessing step consisted of the removal of minimally varying
and highly correlated features, and scaling the rest. Features with
variance lower than 0.1 have been removed with the Variance-
Threshold function of scikit-learn. Features with correlations
higher than 0.8 to rest of the features are dropped. All features
have been scaled using MinMaxScaler of scikit-learn. For the
implementation of RF models in this work, the default parameters
provided by scikit-learn have been utilised.
To evaluate the performance of the models, the coefficient of

determination (R2) and the root mean squared error (RMSE) have
been employed. The first step was to divide the data into a
training and test set, with the test set containing ten molecules, or
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roughly 17% of the total number of molecules in the dataset. To
be more confident in the model’s performance, in the next step, a
CV approach has been used to assess the model’s robustness. For
this purpose, the dataset was split into six different folds using the
KFold function of sci-kit learn and all folds but one are used for
training the models; this fold is held back and used as the test set.
Each fold also contained roughly 10% of the total number of
molecules in the dataset. In total, the models are trained six times
and the average of the errors is calculated to assess their
robustness. The results of a leave-one-out CV can be found in the
Supplementary Tables 6 and 7.
Unless otherwise stated, the error bars and bracketed values

(±e.g.) presented throughout the study represent the standard
error.
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