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Estimating pitting descriptors of 316 L stainless steel by
machine learning and statistical analysis
Leonardo Bertolucci Coelho 1,2✉, Daniel Torres 1, Vincent Vangrunderbeek2, Miguel Bernal1, Gian Marco Paldino3,
Gianluca Bontempi 3 and Jon Ustarroz1,2✉

A hybrid rule-based/ML approach using linear regression and artificial neural networks (ANNs) determined pitting corrosion
descriptors from high-throughput data obtained with Scanning Electrochemical Cell Microscopy (SECCM) on 316 L stainless steel.
Non-parametric density estimation determined the central tendencies of the Epit/log(jpit) and Epass/log(jpass) distributions.
Descriptors estimated using conditional mean or median curves were compared to their central tendency values, with the
conditional medians providing more accurate results. Due to their lower sensitivity to high outliers, the conditional medians were
more robust representations of the log(j) vs. E distributions. An observed trend of passive range shortening with increasing testing
aggressiveness was attributed to delayed stabilisation of the passive film, rather than early passivity breakdown.
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INTRODUCTION
Despite considerable achievements in the predictive modelling of
pitting corrosion1–6, more research is still undoubtedly needed.
The challenge of estimating relevant pitting descriptors from
experimental data is still seldom addressed in literature7.
Potentiodynamic polarisation (PP) curves are one of the main

electrochemical techniques used for corrosion research in
academia, also with a particularly high acceptance in the industry8,
as a benchmark test for examining the resistance to localised
corrosion. As summarised by Hughes et al.1: “the cyclic polarisa-
tion (CP) method, such as the standard ASTM G619, is probably the
only standardised, traditional electrochemical method used to
determine the relatively localised corrosion susceptibility. It
involves the anodic polarisation of a specimen until localised
corrosion initiates, as indicated by a large increase in the applied
current. An indication of the susceptibility to initiation of localised
corrosion in this test method is given by the potential (E) at which
the anodic current increases rapidly, i.e., the breakdown potential.
The nobler (more positive) this potential, the less susceptible the
alloy is to initiate localised corrosion. The conventional under-
standing is that the breakdown potential is the potential above
which pits are initiated”1.
Not only do corrosion experts7,10 often rely on a rather

qualitative description of the pitting potential (“Epit is defined as
a potential above which there is a rapid increase in the current on
a polarisation curve”10), but also the referred standard9 is vague
on the extraction of the descriptor out of PP (or CP) curves (“the
potential in which a sharp rise in current is observed”). According
to another standard, ISO 1515811,12, “Epit is defined as the
potential corresponding to the anodic current density of
10 μA cm−2 in the region of stable pit growth”. Nonetheless, such
a definition (yet quantitative) is potentially problematic since it is
based on a fixed, static value, not considering the likely high
variability of responses.
Beyond the sensitivity to the concentration and combination of

aggressive species13 and the scan rate14, the determination of Epit

was found to be dependent on the experimental method used15.
Simple potentiodynamic polarisation experiments have shown
extremely variable results in pitting potential16, exhibiting wide
experimental scatters of hundreds of millivolts6.
Previously, it was believed that Epit had a sharp threshold value

below which all specimens would exhibit infinite immunity to
pitting, and any observed data scatter was attributed to poor
experimental control17. However, Nathan and Dulaney18 were the
first to challenge this notion, emphasising the importance of
statistical approaches to localised corrosion. Subsequently, Shibata
and Takeyama19 demonstrated that the random variation in data
is an intrinsic property of pitting corrosion and should be analysed
statistically. More recently, Nyby et al.7 precisely observed that the
rapid increase in current density (j) occurs “when the applied
potential is more noble than a specific range of values”. One
research paper even argues that it is questionable that exact
values of pitting potential can be experimentally measured10.
Difficulties in determining a generalised value for Epit are

associated with events (stable pitting growth) that are very
dynamic in nature (e.g., high pit growth rates and extreme pit
chemistry changes) and take place on a nano-metre scale15.
Aggressive species (Cl-), in combination with surface heterogene-
ities, trigger a dynamic degradation process in which transient
passivity breakdown/repassivation events occur over a large
population of initiated pits4. The study of localised corrosion
triggered by chloride remains a relevant topic within the scope of
the targets set by the blue economy, as pitting corrosion is
particularly harmful in marine environments and coastal areas20.
The development of advanced scanning electrochemical techni-
ques, such as the scanning vibrating electrode technique (SVET)
and scanning electrochemical microscopy (SECM)21, has facilitated
substantial progress in research on localised corrosion1. The
Scanning Electrochemical Cell Microscopy (SECCM) is the next
generation of the well-known electrochemical droplet cell
technique22 and differs from the more commonly used SECM23,24,
as only small portions of a surface are exposed to electrolyte
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through brief meniscus contact from a nanopipet probe, and
electrochemical signals are measured directly25,26. In this work, the
SECCM was selected as an experimental tool mainly due to its
proven high-throughput capabilities22,27,28. The collection of
statistically representative amounts of data is key when high
variance is expected in the target feature29.
Only a limited amount of works in localised corrosion have used

data-driven approaches2,7,30–38 so far. The major reasons for their
limited application are the community traditionally relying on low-
throughput means for data generation, focusing on specific input-
output relationships; and complicated feature engineering due to
the vast number of influencing variables. The conjecture of pitting
corrosion should ideally be faced in the light of data-centric
approaches. As shown in our previous work29, the distributions of
the local current density at potential regions associated with
pitting are potentially uniform (high randomness). This means
that, as the observation error tends to decrease with increased
sample size39, if only a few samples are considered, the actual
underlying distributions are not captured (subrepresentation).

Similarly to what has been done for ML modelling of corrosion
inhibitors40–45, the creation of structured databases for pitting
corrosion is urged31,37,46.
As explained by Weaver et al. in a 2022 communication on the

unsupervised learning of voltammetric data47, deviations from the
model behaviour can significantly enhance the complexity of the
data extraction. Therefore, instead of performing the task by hand,
as traditionally done by electrochemists47, there is an emerging
call for recording data in (semi-) automated ways, including high-
throughput screening48.
This work elaborates on 5 datasets of log(j) vs. E (PP) curves

obtained in a high-throughput fashion with the SECCM on 316 L
stainless steel. We provide a methodology for estimating Epass
(passive potential) and Epit from: 1. typical log(j) vs. E curves with a
straightforward passivity breakdown (using an algorithm based on
linear regression (LR)); 2. PP curves with more unique profiles
mainly due to metastable events (using artificial neural networks
(ANNs) trained on the LR estimates). The estimated Epit and Epass

Fig. 1 Kernel density estimation of the bivariate distributions of Epass/log(jpass) and Epit/log(jpit). All plots share the same colorbars
(green for Epass/log(jpass) and red Epit/log(jpit)), expressed in normalised density. The descriptors were estimated by the hybrid LR-based/ANN
method. a 0.005 M NaCl—100mV s-1, b 0.01 M NaCl—100mV s-1, c 0.01 M NaCl—50mV s-1, d 0.05 M NaCl—100mV s-1 and e and f 0.05 M NaCl
—50mV s-1 (Epass/log(jpass) and Epit/log(jpit), respectively).
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descriptors of 316 L are included in this article (Dataset 1,.ipynb
files) and available to download in a public repository49.
Furthermore, as there are cases where the estimate of the

conditional distribution of y given x (log(j) given E) is not always a
conditional mean (although this is most common50), we also
considered the analysis of quantiles curves (the conditional median,
in particular). The main advantage of conditional quantiles is to give
a more comprehensive analysis of the relationship between E and
log(j) at different points in the conditional distribution of log(j)50.
Therefore, we also propose a simplified methodology for determin-
ing the central tendency of the Epit/log(jpit) and Epass/log(jpass)
distributions using the conditional median (or mean) of the log(j) vs.
E curves. These proxy estimations were compared against the
outputs of non-parametric density estimations, considered as the
ground truth of the central tendencies of the descriptors. The
related code is available (https://github.com/bcoelho-leonardo/
Estimating-pitting-descriptors-of-316L-stainless-steel-by-machine-
learning-and-statistical-analysis/tree/
5c7c8eac41907667f94c22881650f23a6aee0d64), and is expected to
serve as a toolkit for future localised corrosion works dealing with
big data. The same code can be a basis for extracting meaningful
descriptors for other potentiostatic or potentiodynamic experiments
important in electrodeposition, electrocatalysis, and other electro-
chemical processes51,52.
Many decades ago, Evans53 noted that studying the probability

of corrosion is more practically important than determining the
exact corrosion rate values. We expect to provide a foundation for
the future development of monitoring tools (based on current or
potential measurements) capable of predicting stable pitting with
secure margins.
This work provides three main contributions: 1. a robust ML-

based method for estimating Epit/log(jpit) and Epass/log(jpass)
descriptors from individual polarisation curves; 2. an accurate
proxy model (conditional median of log(j) for estimating the
central tendencies of the descriptors distributions for a given
dataset; 3. insights into localised corrosion mechanisms gained by
interpreting the proxy models and also by selecting a subset of
log(j) vs. E examples presenting the highest activities (high
outliers).

RESULTS AND DISCUSSION
Density estimation of passivity and pitting descriptors
In this work, we were initially concerned with the problem of
estimating conditional quantiles, as such analysis often results in

further insights out of the distributions of our random variable
(log(j)|E)50.
Figure 1 shows the kernel density estimations of the Epass/

log(jpass) and Epit/log(jpit) for the 5 experimental datasets. The
quantiles of the log(j) vs. E curves are superimposed in the plots to
illustrate the high dispersion of both passivity and pitting
descriptors. As a general trend, the high dispersion of the
descriptors observed in the log(j) direction seems relatively
constant for all sets, while the dispersion in the E direction seems
to increase with the testing aggressiveness. The distributions of
Epass/log(jpass) and Epit/log(jpit) generally extend as far as the
corresponding Qmin and Qmax curves, except in cases of
individual outliers present (such as in Fig. 1c, d). In any case, the
distributions of the descriptors clearly spread beyond the so-called
interquartile ranges (the IQR is the middle half of a dataset,
comprising the range between the second and third quartiles).

Central tendency estimations of descriptors based on the
mean and median models
While the estimation of descriptors based on the conditional
mean of distribution might serve, there exists a large area of
problems (outliers detection54,55, risk assessment56) where esti-
mating a quantile, such as the median, would be a better choice50.
The same hybrid LR-based ANN approach employed on each

individual log(j) vs. E curves was applied to the conditional mean/
median curves of the populations, to estimate their central
tendency values. The Figs. 2 and 3 show the Epass/log(jpass) and
Epit/log(jpit) values obtained from the mean and median curves
for extreme case datasets (the least and the most aggressive
conditions, respectively). The results corresponding to the
intermediate conditions are displayed in Supplementary Figs. 1,
2, 3. In plots a of Figs. 2 and 3, the conditional means (with their
conditional standard deviations (SD) and errors (SE)) are plotted
with the Epass/Epit estimates provided by the mean model; while
plots b of Figs. 2 and 3 display the conditional medians (with their
conditional median absolute deviations (MAD)) with the outputs
of the median model (all estimates are represented by cross
markers, in reference to “dart attempts”). In all of these plots, the
ground truth for the central tendencies of the descriptors
(maximum kernel density estimation (KDE) values) is plotted as
a benchmark (represented by circle markers in reference to “target
locations”).
It could be observed that the conditional mean of log(j), as a

function of E, was generally a poor representative of a polarisation
curves set (in line with the log(j) distributions scrutinised in ref. 29).

Fig. 2 Central tendency estimation. The central tendency values of Epass/log(jpass) (in green) and Epit/log(jpit) (in red) estimated by the:
maximum KDE of the descriptors distributions (ground truth), represented as “target” markers; mean and median models, displayed as “dart
attempt” markers. Superimpositions as a function of potential (V) of the: a conditional mean of the log(j) (with conditional SD and SE); b the
conditional median of the log(j) (with conditional MAD). Results related to the 0.005 M NaCl (100mV s-1) set.
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Fig. 3 The central tendency values of Epass/log(jpass) (in green) and Epit/log(jpit) (in red) estimated by the: maximum KDE of the
descriptors distributions (ground truth), represented as “target” markers; mean and median models, displayed as “dart attempt”
markers. Superimpositions as a function of potential (V) of the: a conditional mean of the log(j) (with conditional SD and SE); b the
conditional median of the log(j) (with conditional MAD). Results related to the 0.05 M NaCl (50mV s-1) set.

Fig. 4 Residuals of the central tendency estimation of the passivity/pitting descriptors (with respect to their ground truth) obtained by
the mean model (in blue tone) and the median model (in green) as a function of testing aggressiveness. a log(jpass) and Epass (left and
right vertical axes, respectively); b log(jpit) and Epit (left and right vertical axes, respectively). In a, to make the mean bar visible at 0.005, 100,
the edges of the median bar were traced in dashed lines.
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As illustrated in Fig. 3a (0.05 M NaCl, 50 mV s-1), the averaged
values do not outline a typical polarisation curve. In this most
aggressive condition, the Epass feature could not even be
estimated from the mean curve. On the contrary, the conditional
median seemed to capture further the expected overall behaviour
of this set of curves (Fig. 3b).
By analysing the Epass/log(jpass) and Epit/log(jpit) ground truth

values with respect to the conditional mean, one could see they
were relatively far from these curves, mostly lying outside the
standard error limits (plot a, Fig. 2; Supplementary Figs. 1, 2, 4).
This mismatch between the “target locations” and the mean
curves explains the mean model’s failure to provide accurate
values for the descriptors (as those are estimated by fitting the
conditional mean curves).
On the contrary, estimating the Epass/log(jpass) and Epit/

log(jpit) values from the conditional median curve of a set
provided an accurate alternative for obtaining their central
tendencies. One could observe the median curves generally
crossing (or at least touching) the “target” markers (plot b, Fig. 2,
Supplementary Fig. 1, Supplementary Fig. 2, Supplementary Fig.
3); the only exception was the Epit in 0.05 M NaCl (50 mV s-1),
which was the most difficult value to be appraised out of the 10
descriptors considered (high uncertainty of j values in E regions
associated to pitting29).
Moreover, one could see that the data distribution (KDE)

extended beyond the standard deviation (by comparing plots a of
Fig. 2, Fig. 3, Supplementary Fig. 1, Supplementary Fig. 2,
Supplementary Fig. 3 with Fig. 1). The analysis of the quantile
curves was illustrative of the high data dispersion, with the
descriptors distributions extending as far as the Qmin and Qmax
curves in some cases.

Evaluation of the central tendency estimates based on
residuals
At 0.05 M (50mV s-1), the estimated location of Epit from the
conditional median curve lagged behind this descriptor ground
truth for this set (Fig. 3b). When evaluating the accuracy of
estimation, not only the absolute distance between the estimate

and the actual value is relevant, but also the sign of that
difference; in other words, the sign of the model bias.
Residual analysis provides a basis for diagnosis checking while

assessing model biases. The following bar charts present the
residuals of estimation of log(jpass), Epass, log(jpit) and Epit, as a
function of testing corrosiveness (Fig. 4). The shorter the bar, the
more accurate the model estimation. Again, the ground truth for
the central tendencies of the descriptors was the maximum KDE
values of their distributions. The horizontal line (residual equal to
zero) represents the ideal benchmark, where a regression would
be 100% accurate. Results from both the conditional mean and
conditional median models are displayed.
When estimating the central tendency of passivity descriptors

(Fig. 4a), the residuals of log(jpass) were consistently and
significantly smaller for the median-based model than the
mean-based one. With respect to Epass, the median-based
approach was also generally more accurate, the only significative
exception being at 0.005 M NaCl, but with a relatively small
residual (–0.0067 V) still. Again, the residual comparison from both
strategies is not possible for the most aggressive scenario (0.05 M
NaCl, 50 mV s-1), as the mean model could not even provide
passivity descriptors. In the following most aggressive condition
(0.05 M NaCl, 100mV s-1), the estimation errors related to log(jpass)
and Epass were generally the largest for both models. None-
theless, even in this case, the median model could reduce the
estimation residuals by 54.2% and 73.2%, respectively, compared
to the mean model.
Regarding estimating the central tendencies of pitting descrip-

tors (Fig. 4b), the same overall observations made for the passivity
features could be replicated here. First, the log(jpit) residuals of the
median model were systematically lower than the mean model
(reduction in residuals of 89.5, 77.4, 53.8, 25.8 and 97.1% for
increasing testing aggressiveness). Secondly, the median model
generally yielded smaller residuals than the mean for Epit; when
not lower, the magnitude of the error was still acceptable
(0.0047 V for 0.01 M NaCl (50 mV s-1)). The only case where the
median estimator underperformed was for Epit in 0.05 M NaCl
(50 mV s-1).

Fig. 5 Definition of passive ranges. The passive current density range (a) and the passivity range (b), as respectively defined by the ground
truth values of the log(jpass)/log(jpit) and Epass/Epit pairs, as a function of testing aggressiveness. Superimposed to these ranges, the central
tendency estimates obtained by the mean model (in blue) and the median model (in green). In b indication of the preferable sign of the
model bias (if any).
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As already mentioned, the picture was somewhat less clear in
the most aggressive set, likely the most challenging condition for
the regression of features. Nevertheless, in the addressed cases
where the median model produced larger residuals than the mean
model, it is important to note that the estimations were at least
negatively biased (positive residuals). When attempting the
prediction of pitting corrosion, as no model is perfectly accurate,
the negative bias would be favoured in comparison to positive
bias: underestimation of Epit (or log(jpit)) is preferable to its
overestimation. In other words, if estimation errors are unavoid-
able to a certain degree, it is more desirable to have stable pitting
growth occurring at higher potentials (or current densities) than
the expectations; as the opposite situation would imply in
catastrophic failure based on overly optimistic predictions.
The magnitude and sign of the estimations of log(Epass) and

log(Epit) can be appraised in Fig. 5a, in which the “passive current
density ranges” are defined by the yellow bars. One can judge that
the median model (green markers) outperformed to the mean
model (blue markers) in accurately estimating the central
tendency ground truth values for both current density descriptors.
Similarly, Fig. 5b presents the estimates of Epass and Epit

compared against the corresponding “passivity ranges” (yellow
bars). Both models produced relatively tight errors, although the
median model resulted in overall better estimations. In general,
the residuals of estimation were proportionally lower for the E
descriptors than for the log(j) ones (further discussed in the
section “Proxy models for estimating the central tendency of
pitting descriptors”, including the analysis of coefficients of
variation). As mentioned above, when the median model under-
performed, at least an underestimation of Epit was verified
(“preferable sign of bias” indicated in the plot). If one task is utterly
crucial for the models, this would be the estimation of the Epit
feature.
Larger errors of estimation were achieved in the two most

aggressive conditions (0.05 M NaCl media) in general (considering
all descriptors in Fig. 5), while the errors related to log(jpass) and
log(jpit) in particular, increased with the testing corrosiveness
(Fig. 5a).
This investigation provides a solid and simplified framework for

estimating the central tendency of passivity/pitting descriptors.
Instead of individually assessing an entire set of log(j) vs. E curves,
estimating Epass/log(jpass) and Epit/log(jpit) from the conditional
median curve can provide satisfactory outcomes, assuming that
the data size is large enough. In the present case, all estimations of
Epass and Epit (either from the conditional median of log(j)) of a
set or the individual log(j) vs. E curves) were done using the same

hybrid LR/ANN approach for a fair basis of comparison. By doing
so, the authors avoided introducing additional sources of bias to
the estimations. Nonetheless, other simplified median-based
methods could be thought of (an expert could even proceed
with “by hand” selection47 of Epass/Epit).

Interpreting the higher robustness of the median model
In the case of polarisation curves displaying pitting corrosion, the
conditional median of log(j) has qualitatively shown to be
representative of the population of curves. As exemplified in
Fig. 6, the location of the conditional median curve (plot b, green
curve) was significantly coincident with the regions with the
highest data density in the corresponding log(j) vs. E plot (plot a).
Figure 6 illustrates the effect of high outliers (log(j) vs. E curves
lying more than 1.5 times the IQR above Q3) on the conditional
mean of log(j). The result is the shift of the conditional mean to
log(j) values consistently higher than the conditional median
curve.
The difference between the conditional mean and the

conditional median tends to increase with E, because the high
outliers present particularly high log(j) values at high potential
regions (E > 1.15 V (vs. Ag/AgCl)). As demonstrated in29, the log(j)
distributions become more positively skewed with increased
corrosiveness (more positive potential and higher [Cl-]). The
occurrence of high outliers with particularly high j values at high E
regions results from pitting corrosion processes. Indeed, applying
more positive potentials increases the likelihood of metastable
pitting (accompanied by repassivation events), which may
gradually change into stable pitting growth.
As stated by Koenker50, assessing a set of conditional quantile

curves provides a more informative description of the relationship
among variables, especially in cases of: 1. non-constant variance;
2. non-normality of the noise distribution. The described picture
illustrates well the datasets in question, in which: 1. the log(j)
distributions are heteroscedastic (increased conditional variance
as a function of E and testing aggressiveness)29; 2. the anomalous
high j values at high potentials, observed for the high outliers
(Fig. 6), could be seen as “noise”, as they positively skewed
conditional means that would otherwise (in the absence of
pitting) be normally distributed; as expected for electrochemical
descriptors derived from PP curves of passive systems57,58. If the
pitting activity could be considered as “noise”, it would
undoubtedly implicate the referred “non-normality of the noise
distribution”, as most of the population (grey curves in Fig. 6b)
would have relatively low and similar noise levels with only a few

Fig. 6 Schematic of the data distribution from the 0.05M NaCl (100mV s-1) set illustrating how high outliers shift the conditional mean
of log(j) from the regions with the highest data density. a Data density estimated by KDE (proportional to the colourmap); b population of
the log(j) vs. E curves (grey) superimposed to the conditional mean and median of log(j) (in red and green, respectively).
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examples (the high outliers) displaying significantly higher levels
of noise.
To illustrate the positive skewness of log(j) beyond their

conditional distributions, Fig. 7 displays the histograms of the
log(jpass) and log(jpit) descriptors for the 5 datasets. From Fig. 7, it
is confirmed that the medians of the log(jpass) and log(jpit)
descriptors are more representative of the underlying distributions
than the respective means, as the former were closer to the
ground truth central tendencies of the distributions (maximum
KDE values). Similar to what was observed for the conditional
log(j) distributions (Fig. 6), the means of the descriptors were
generally higher than the corresponding medians due to the
presence of high outliers (Fig. 7). The only exception (median
larger than mean) was at 0.05 M NaCl (100 mV s-1) (Fig. 7d), where
low outliers were more prominent than the high outliers (the
lowest conditional Qmin curve was computed for this dataset,
Fig. 1d).
These statistical analyses further explain why quantile analysis

(the conditional median of log(j), in particular) provided a robust
model for a simplified estimation of passivity/pitting descriptors.
In future investigations on predictive ML, instead of traditional
least square regression, quantile (or robust) regression59,60 might
be a promising route for approaching pitting corrosion50,61. As a
perspective, the analysis of the quantile curves (Fig. 1) might also
help locate data clusters (preliminary defined before the applica-
tion of the rule-based algorithm).

Effect of corrosiveness on the pitting susceptibility
Comparison of the central tendency values of the log(j) descriptors
did not indicate a clear trend with increased testing aggressiveness
(Fig. 7). On the contrary, by comparing the distributions of Epit (and
Epass) (Fig. 8), a few tendencies as a function of corrosiveness could

be appraised. First, similarly as previously determined for the
conditional log(j)29, the higher the aggressiveness, the more spread
the distributions of the E descriptors (clear trend in Fig. 8, from b to e)
tend to be. Secondly, all these distributions were continuous and
roughly unimodal, with increased multimodality with corrosiveness,
ultimately leading to a uniform function-like behaviour at 0.05M
NaCl, 50mV s-1 (Fig. 8e). Despite Shibata and Takeyama’s conclusion
that the random variation of the Epit of stainless steels (in macro-
scale polarisation) obeys a normal distribution6,19, all the achieved
unimodal distributions failed to be formally described as normal,
even with the removal of outliers (for illustration purposes, the
normal curves plotted in Fig. 8 were fitted to data without outliers).
Even when considering the highest p-values obtained (from
D’Agostino and Pearson’s Test), these values consistently equalled
or were lower than the significance level: 0.00 and 0.03 (0.05M NaCl,
50mV s-1), 0.05 and 0.00 (0.05M NaCl, 100mV s-1), 0.00 and 0.00
(0.01M NaCl, 50mV s-1), 0.00 and 0.00 (0.01M NaCl, 100mV s-1), 0.01
and 0.00 (0.005M NaCl, 100mV s-1). In summary, the null hypothesis
“the data is normally distributed” was consistently rejected for all sets
based on the various normality tests employed.
Most importantly, the Epass distribution generally presented a

linear increase as a function of the considered testing corrosive-
ness; while the Epit distribution displayed a relatively constant
behaviour in the least aggressive conditions (Fig. 8a–c), with a
pronounced decrease in the most aggressive scenario (Fig. 8e).
These trends could be appraised by following the evolution of the
descriptors’ maximum KDE, as punctuated by the two arrows in
Fig. 8. It should be noted that the 0.05 M NaCl set (100 mV s-1)
(Fig. 8d) was again as a group outlier (the same reason as
elaborated above for the log(j) descriptors, Fig. 7d).
As expected, the combined effect of the Epass and Epit

progression with increased corrosiveness resulted in an overall
decrease in the passivity range. Analysis of Fig. 8 also reveals that

Fig. 7 Histograms of the estimated log(jpass) and log(jpit) descriptors for different testing aggressiveness. a 0.005 M NaCl—100mV s-1,
b 0.01 M NaCl—100mV s-1, c 0.01 M NaCl—50mV s−1, d 0.05 M NaCl—100mV s−1 and e 0.05 M NaCl—50mV s−1. Each distribution’s mean and
median are plotted as solid and dashed lines, respectively. The maximum KDE values are represented by empty circle markers (located at the
frequency axis origin for illustrative purposes). The arrows indicate the effect of the high outliers, which shift the mean to values larger than
the corresponding median.
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this passivity range shortening was generally more affected by the
increase in Epass than by the decrease in Epit. Although
corrosionists often accredit more attention to the upper end of
the passivity range, framing Epit as the main predictor of passivity
breakdown, our data-driven analysis suggests that the robustness

against pitting (related to the passivity range1,62) would be highly
sensitive to the lower end of passivity (Epass). i.e., the trend of
passive range shortening seemed to be primarily influenced by
the delayed stabilisation of the passive film rather than its early
disruption. For instance, based on XPS measurements, Cl- was

Fig. 8 Histograms of the estimated Epass and Epit descriptors for different testing aggressiveness. a 0.005M NaCl—100mV s-1, b 0.01 M
NaCl—100mV s-1, c 0.01 M NaCl—50mV s−1, d 0.05 M NaCl—100mV s−1 and e 0.05 M NaCl—50mV s−1. Dashed lines indicate the maximum
KDE values. All plots are in the same E scale. The two arrows indicate the overall trends observed for Epass and Epit, from a to e (except for d,
which presented low outliers in larger amounts). The normal distribution fitting lines excluded data outliers, which were here defined based
on the Z-score threshold of 3: points more than 3 standard deviations away from the mean were considered outliers (in d, the low outliers
were pre-filtered by removing points lower than the first quartile).
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reported to cause thinning of the Fe passive film, even under
conditions where pitting did not occur (passivity)63. Based on the
film-breaking mechanism of pit initiation, the thin passive film is in
a continual state of breakdown and repair64,65; and in chloride
media, there would be a lower likelihood for such a breakdown to
heal (inhibition of repassivation by chloride)6.
In Shibata’s stochastic theory of pitting corrosion19, the

coefficient of variation (CV) of Epit was calculated for the polished
316 stainless steel dataset, and a value of 9.6% was obtained. In
our cases, the following CV values were obtained for the Epit
distributions, from the least to the most aggressive conditions: 4.3,
1.8, 11.1, 11.4 and 32.7%. If we remove the uncertain Epit values
assigned as 0.5 V by default, the obtained CVs were even lower:
2.6, 1.8, 3.0, 7.0, and 7.9% (highest variations obtained at 0.05 M—
50mV s-1, as expected). Interestingly, the CV values obtained were
relatively lower than the 9.6% reported for 316 under classic PP19;
which is somewhat surprising, as our Epit values, derived from
micro-scale PP measurements, are more sensitive to local surface
heterogeneities. The reasons for the overall low relative variability
of our sets as compared to the referred benchmark19 might be
related to: the 316 L grade being more resistant to corrosion than
the 316; the expected higher surface quality of our electropolish-
ing in comparison to (2/0) emery polishing; and our Cl- media
being at least 1 order of magnitude less aggressive than their 3.5%
NaCl solution; and, most importantly, our large number of
samples, generally over one hundred per set (in 19, estimated
to be only ~20). As a higher CV might indicate a greater degree of
uncertainty in the shape of the underlying distribution, our sets
arguably provide more representative distributions of Epit as
compared to the Shibata’s set19 (mostly likely resulting from the
referred discrepancy in the sample sizes).

In any case, the CVs calculated for the log(jpit) without
considering the 0.5 V data points (10.0, 8.1, 10.3, 21.8 and
17.1%) were much larger than the corresponding values
determined for Epit (3.8, 4.5, 3.4, 3.1 and 2.2 times larger,
respectively), as a function of aggressiveness. Being the CV a
statistical measure that represents the relative variability in a set,
this quantitative outcome illustrates why the comparison of the
distributions across the sets was less straightforward for log(jpit)
(Fig. 7) than for Epit (Fig. 8); and also the reason for the generally
more accurate estimation of the E descriptors than the log(j)
descriptors (Figs. 4 and 5).
To further assess the different susceptibility to pitting among

the sets, as suggested in Fig. 8, one extends the comparative
analysis to a selection of the largest log(jpit) values achieved
(Fig. 9) aligned with the “weakest link” theory applied to pitting
corrosion19.
The “weakest link” concept has allowed advances in the

statistical strength theory66,67, explaining the high randomness
observed in fracture stress resulting from flaws with varying
dimensions in a solid material68. The stochastic approach
developed for the effect of the body volume on fracture stress69,
and often applied to describe sensitive structure properties such
as fatigue life68, was generalised to pitting corrosion69,70.
Concerning failure by pitting, the presence of a precursor or
active state in the film is responsible for pit generation19. Extreme
value analysis developed by Gumbel71 was applied to pitting
corrosion of Al by Aziz72 and Eldredge73.
Likewise, the “weakest link” concept applies to other electro-

chemical fields beyond pitting corrosion. For instance, in
electrodeposition, nucleation of a new phase on a foreign
substrate is primarily driven by the most active sites, similar to
pit nucleation. In both cases, the growth of a film (or pit) is driven

Fig. 9 The top 4 highest log(j) vs. E curves for each dataset superimposed with their Epit/log(jpit) estimates. The ranking was based on the
mean of log(j). Epit estimation was not possible for a few curves (absence of passivity in the considered range and/or early pitting cases).
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by the most active sites where nucleation (or initiation) preferably
takes place. Recently, we demonstrated that the macroscopic
electrodeposition response, described by the onset potential for
nucleation, corresponds to that of the most active sites (more
positive onset potentials) of a distribution of hundreds of
voltammetric curves obtained by SECCM51,52.
Hence, in our “weakest link” problem, one could expect the

most active sites to ultimately determine the overall macroscopic
electrochemical response in the pitting corrosion of stainless steel.
Attempting to trace the most active pits, the top 4 highest log(j) Vs
E examples of each set was plotted with their corresponding Epit/
log(jpit) pair of estimates (Fig. 9). It could be observed that the
higher the testing aggressiveness: 1. the higher the “top 4 highest
log(j) Vs E curves” (ranking based on the mean of log(j)); 2. the
lower the Epit and the higher the log(jpit). For a few particularly
active log(j) vs. E curves, the Epit could not be determined due to a
large uncertainty or an absence of a passivity breakdown (Epit
modelled as 0.5 V by default). Likewise, the same tendency was
appraised by examining the “top 4 conditional jmax curves as a
function of E”, as presented in Supplementary Fig. 4. To conclude,
by selecting only high j examples, we corroborate the notion (seen
as tacit knowledge in macro-scale polarisation) that Epit substan-
tially drops with corrosiveness.
As the range of applicability of the models is somewhat

restricted to the limits of the training data, modelling based on
local techniques is hardly generalisable. Additional log(j) vs. E
datasets obtained at varied conditions (macro experiments,
different substrates, alternative PP parameters, etc) would be
recommended for evaluating the robustness of the developed
modelling methodology. Particular efforts should be focused on
validating the approach extended to classic potentiodynamic
polarisation curves. Our estimation modelling strategy is expected
to perform well on the macroscale, as less variability could be
imagined. In fact, as only the most active pitting sites (Fig. 9)
would drive the resulting overall corrosion behaviour of a macro
surface, they would likely dominate the intensity of the electro-
chemical signal measured; thus possibly resulting in fewer data
dispersion. Whether the conditional median of log(j), as proxy

model for estimating the central tendencies of pitting descriptors
from a population of micro-scale polarisation curves, would also
be accurate in macro-scale experiments warrants further
investigation.
In conclusion, our hybrid rule-based/ML approach, combining

an LR-based algorithm with supervised ANN, was able to
determine relevant pitting corrosion descriptors of electropolished
316 L from populations of localised polarisation curves with
different testing aggressiveness. The rule-based LR provided initial
estimates of Epit (or Epass) descriptors by fitting two independent
linear regression lines to smoothed polarisation curves. However,
unsatisfactory results were observed for some sets, indicating the
need for an improved estimation strategy. To address this
limitation, we leveraged supervised deep learning: the ANN was
trained on sets with satisfactory estimates and then deployed on
the sets with unsatisfactory estimates, significantly improving the
estimation task. The ANN model was designed with feature
engineering methods for selecting input features representative of
the researched behaviour (passivity or pitting). To ensure the
network’s ability to handle the complexity of the data, a data
reduction step was performed, reducing the curves to a selection
of log(j) values linearly spaced in terms of their “potential
distances”. The training process involved hyperparameter tuning
and pruning to achieve satisfactory validation performances. The
resulting ANN demonstrated accurate mapping of the relation-
ships in the data, with impressive final MSE and R² values, ensuring
the generalisation ability on the unseen (unlabelled) data (our
method was somewhat similar to active learning). Throughout this
study, ML played a pivotal role in addressing the challenges of
estimating pitting-related predictors and interpretating high-
throughput data for improved mechanistic understanding. Look-
ing ahead, the potential of ML as a framework for pitting
prediction is promising. The automated extraction developed for
pitting descriptors could be extended to larger datasets and
diverse experimental conditions, seeking improved robustness
and generalisability of the models.

Fig. 10 Schematic of the supervised hybrid rule-based/machine-learning approach employed for estimating Epit (or Epass). As a “zero
step”, a linear regression algorithm was employed but could not generalise well to all examples of curves. The sets with satisfactory estimates
were used to train supervised artificial neural networks (1). Then, the trained ANN was deployed on the set of unsatisfactory estimates (2) and
considerably improved the task of estimating Epit (or Epass) (3).
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METHODS
The employed substrate and the data acquisition methodology
were identical to the ones described in29. Briefly, an industrial
electropolished 316 L stainless steel sample was subjected to
potentiodynamic Polarisation (PP) tests using an SECCM platform
in hopping-mode protocol27,28. Five different combinations of
[NaCl] and voltammetric scan rates were employed: 0.005 M NaCl
—100mV s-1, 0.01 M NaCl—100mV s-1, 0.01 M NaCl—50mV s-1,
0.05 M NaCl—100 mV s-1, 0.05 M NaCl—50mV s-1. Single-barrel
pipets (borosilicate) with a final internal circular diameter of ~2 μm
were used as SECCM probes. The starting potential was –0.5 V, and
the end anodic potential was 1.355 V (vs. Ag/AgCl) (LabVIEW
(2019, National Instruments) interface running Warwick’s software
(WEC-SPM, www.Warwick.ac.UK/electrochemistry)).

Data analysis
The code for data processing and visualisation was written in
Python 3.8 language and was made available on GitHub (as
Jupyter Notebook files): https://github.com/bcoelho-leonardo/
Estimating-pitting-descriptors-of-316L-stainless-steel-by-machine-
learning-and-statistical-analysis/tree/
5c7c8eac41907667f94c22881650f23a6aee0d64.
The log(j) vs. E datasets: this work employed the same datasets

reported in ref. 29. The only difference is that eventual existing
missing values were filled with an iterative imputer. The
IterativeImputer class (from sklearn.impute) models each feature
with missing values as a function of other features and uses that
estimate for imputation. All 955 data samples (polarisation curves)
with the referred update (filled missing values) are accessible at
Mendeley Data74.
As in ref. 29, the datasets considered were sliced upward from

0.5 V (considerably more positive than the open circuit potential
(OCP)). Passivity was presumably reached at potentials less
positive than 0.5 V for only a few examples of curves; while in
another few cases, passivity was not observed within this potential
range. In those respective cases, as an approximation, the 0.5 V
value was assigned to Epass and eventually assigned to Epit (early
passivity and pitting occurrences, respectively). The self-
passivation behaviour of 316 L (relative passive state already at
OCP) was not considered.

Supervised hybrid rule-based/machine-learning algorithm
A deterministic rule-based algorithm, based on linear regression
(LR), was developed to estimate Epit/jpit (or Epass/jpass) descrip-
tors pairs (continuous values) from polarisation curves. Figure 10
schematically shows the overall hybrid rule-based/ML approach
employed comprising the LR steps. As illustrated in the plots with
borders (in green and grey), two independent linear regression
lines fit the smoothed data, one fitted line starting at “low E” and
the other ending at “high E” values (~0.7 and ~1.25 V,
respectively). The obtained location for Epit (or Epass) is the one
that maximises the sum of the R² (goodness of fit) for the two LRs.
This hand-crafted method (rules manually created by domain

experts to define the system’s behaviour) is adaptive, requiring the
user input for defining threshold values for the potential (thereby
separating the “low E” and “high E” regions to which the LRs are
separately applied). The different E thresholds define the existing
groups (classes) of log(j) vs. E curves. The definition and validation
of classes were qualitatively based on the degree of similarity
among the PP curves7. Therefore, the developed code is dataset-
specific, with specific condition statements for the different
classes.
In summary, the described method was our initial labelling

strategy, thus providing labels (target attributes) to the unlabelled
data. The label validation was done by visual examination of the
Epit/log(jpit) (or Epass/log(jpass)) in the individual curves. Although

the LR-based model generally led to satisfactory estimates, for the
0.05 M NaCl (100 mV s-1) and 0.005 M NaCl (100mV s-1) sets,
unsatisfactory results were eventually observed (exemplified in
the plot with grey border (Fig. 10)).
In the case of unsatisfactory estimates, instead of further hand-

crafting the algorithm to improve the performance of the linear
regressors, the strategy was to employ supervised ANN for this
task. The ANN was trained on the set of satisfactory estimates and
then deployed on the set of unsatisfactory examples (schematic
plots with green and grey borders, respectively, in Fig. 10).
Contrary to standard practice where a fixed proportion of the data
(e.g., 20%) is randomly selected for testing, our test sets comprised
specifically challenging samples. This “stress-testing” approach
offered a more stringent test of the models’ robustness and
generalisation ability, as the predictions were made on samples
where the simpler model presented failed estimations. As a result,
the proportion of samples in our test sets relative to the entire
datasets varied (10%, 17%, and 3%, depending on the set).
The selection of input features was based on feature engineer-

ing, aiming to identify relevant features representative of the
descriptor of interest, thus allowing the ANN to estimate the data
targets accurately. To focus specifically on the relevant regions of
the PP curves that encompass the passivity/pitting descriptors, the
log(j) vs. E (smoothed) curves were partitioned through a data
slicing procedure (Supplementary Fig. 5). The sliced curves
presented 700 or 500 data points (0.539 or 0.385 V, in potential
range), sufficiently capturing the regions related to Epass or Epit
with high security margins. Given the complexity that an ANN
would face in processing thousands of data points as features, a
second data reduction step was undertaken to decrease further
the dimension of the log(j) input array. Sparse sampling was
conducted at every 40th (or 60th) point from the sliced log(j) array,
leading to a final selection of 13 (or 12) log(j) values (for Epit or
Epass, respectively). These numbers of input features were found
to represent the target regions of the PP curves adequately.
Reducing the curves to a selection of log(j) values that are

linearly spaced in terms of their “E (V) stamps” was sufficient to
describe the relevant regions in the curves. This is demonstrated
by the 13 “descriptor blue dots” in the “1. neural network training”
plot (Fig. 10), which represent the selected log(j) input features
(equidistant on the potential (V) scale). The potential was treated
as a constant feature, and related values were not included as
input. Finally, to improve the model convergence, we applied the
StandardScaler method (sklearn.preprocessing package) to the
sliced log(j) data for standardisation of both the input and output
data. This method standardises features by removing the mean
and scaling to unit variance.
A sequential model (keras.models.Sequential) was defined,

generating a classic multi-layer perceptron networks (also known
as feedforward neural networks). As shown in Fig. 10, the number
of nodes in the input layer was equal to the number of input
descriptors (12 or 13 log(j) values). The output layer consisted of a
single node, providing only one output (either Epit or Epass). Given
that log(j) is a function of E, the Epit and Epass estimates sufficed
for finding the corresponding log(jpit) and log(jpass) values. The
network’s topology, including the optimal number of hidden
layers and nodes within each layer, was determined through
exploratory testing and visual validation. Specifically, it was found
that two hidden layers were sufficient to accurately map the
relationships in the data, with the optimal number of nodes in the
first and second hidden layers consisting of 12 and 11,
respectively. Attempts to reduce the number of nodes in these
hidden layers led to an unsatisfactory generalisation of the
learning process (increasing the number of nodes beyond 12
would deviate from the logical progression of reducing the node
count as approaching the output layer).
The training started with 20-fold cross-validation (CV) (KFold

function from sklearn.model_selection), allowing hyperparameter

L.B. Coelho et al.

11

Published in partnership with CSCP and USTB npj Materials Degradation (2023)    82 

http://www.Warwick.ac.UK/electrochemistry
https://github.com/bcoelho-leonardo/Estimating-pitting-descriptors-of-316L-stainless-steel-by-machine-learning-and-statistical-analysis/tree/5c7c8eac41907667f94c22881650f23a6aee0d64
https://github.com/bcoelho-leonardo/Estimating-pitting-descriptors-of-316L-stainless-steel-by-machine-learning-and-statistical-analysis/tree/5c7c8eac41907667f94c22881650f23a6aee0d64
https://github.com/bcoelho-leonardo/Estimating-pitting-descriptors-of-316L-stainless-steel-by-machine-learning-and-statistical-analysis/tree/5c7c8eac41907667f94c22881650f23a6aee0d64
https://github.com/bcoelho-leonardo/Estimating-pitting-descriptors-of-316L-stainless-steel-by-machine-learning-and-statistical-analysis/tree/5c7c8eac41907667f94c22881650f23a6aee0d64


tuning by monitoring the loss function of the validation set. The
loss function was the mean squared error (MSE) with Adam
optimiser. The ReLU activation was used in the input/hidden layers.
The number of batches was equal to the number of training
samples (110 and 278 for in 0.05M and 0.005 M NaCl (100mV s-1)).
Although after 200 epochs of training, the validation losses were
generally fairly low (below 0.0001 (μA cm-2)²), for a few validation

sets, the losses reached relatively higher values (~0.025 (μA cm-2)²).
After this initial training, the network was pruned (using the
tensorflow_model_optimization module) and further validated by
random sampling (validation_split=0.1) of the labelled dataset. The
number of epochs increased to 4500–6000 for the pruned network,
and the learning rates eventually decreased from 10-3 (default) to
10-12–10-5. After achieving satisfactory validation performance, the

Fig. 11 Schematic of the two modelling strategies for estimating the central tendencies of the pitting descriptors. a Population of
experimental log(j) vs. E curves (here exemplified with the 0.005 M NaCl (100mV s-1) dataset). b Descriptors distributions obtained by the
hybrid rule-based/machine-learning algorithm. c Density estimation of the descriptors distributions using KDE. d Definition of the central
tendencies of the descriptors as the maximum KDE values (ground truth). e Proxy model (mean or median-based) for representing an entire
set of polarisation curves. f Simplified approach for estimating the central tendency values of Epass, log(jpass), Epit, log(jpit): estimation of the
pitting descriptors directly from the conditional median curve (e). For the sake of comparison, the same ML algorithm was employed in both
modelling approaches (between steps a and b and between steps e and f).
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final stage consisted of retraining the model with the entire
labelled dataset. The final MSE (Eq. 1) values were 9.87 × 10-5,
1.35 × 10-4 and 1.72 × 10-4 (μA cm-2)²; and the final R² (Eq. 2) values
achieved were 0.9025, 0.9707 and 0.9653, respectively for 0.005M
NaCl 100mV s-1 (Epit) and 0.05M NaCl 100mV s-1 (Epass and Epit).

MSE ¼ 1
N

X
ðyi � ŷiÞ2 (1)

R2 ¼ 1�
P

iðyi � ŷiÞ2P
iðyi � yiÞ2

(2)

Such as the LR-based estimates, the validation of the ANN
estimates was conducted through visual examination of the
obtained Epit/log(jpit) (or Epass/log(jpass)) in the individual log(j)
vs. E curves. Again, the cost for pre-labelling the deployed set
would be prohibitively high, implying further hard coding of the
rule-based model. It is important to note that if the LR-based
approach alone could solve our estimation problem, resorting to
ML would not be necessary. It was precisely because the labels
obtained were unsatisfactory that the rule-based algorithm was
leveraged with ANN. In summary, we employed a supervised
learning strategy on unlabelled targets75. Our ANN strategy, in
particular, is somewhat similar to a transductive transfer learning
framework, where labelled data is only available for the source
domain but not for the target domain75,76. In our case, the
unlabelled sets from the target domain served as our test sets,
allowing us to evaluate the models’ generalisation ability on the
unseen data in the target domain.
An alternative strategy based on active learning could be

thought of: when the LR estimation is uncertain, human expertise
could proceed with labelling. This process could be repeated
iteratively, selecting the most informative instances for labelling
based on the model’s uncertainty, thus improving the accuracy of
ulterior ML modelling77,78. As a perspective, convolutional neural
networks (CNNs) may be a promising alternative for feature
extraction from similar univariate electrochemical signals, given
their ability to capture local patterns and spatial hierarchies in
data79,80.

Ground truth for the central tendencies of passivity and
pitting descriptors
As explained above, a hybrid rule-based/ML supervised approach was
used to estimate passivity/pitting descriptors from the populations of
log(j) vs. E curves from the 5 different sets (Fig. 11a and b). Next, the
bivariate distributions of the Epass/log(jpass) (or Epit/log(jpit))
estimates obtained for each set were modelled with Gaussian KDE
(kde.gaussian_kde, scipy.stats module) and qualitatively validated
(Fig. 11c). The maximum KDE values of the distributions were
considered the ground truth of the central tendency values of Epass/
log(jpass) and Epit/log(jpit)) (Fig. 11d).

Epass and Epit distributions: normality tests
We applied three normality tests to assess whether the E
descriptors followed a normal distribution: Shapiro-Wilk, D’Agostino
and Pearson’s test, and Anderson-Darling. We used the shapiro,
normaltest and anderson modules from the scipy.stats package to
perform these tests. The null hypothesis for all tests was that “the E
descriptors followed a normal distribution”. The decision whether
or not to reject the null hypothesis was based on comparing the
obtained p-values (or the test statistic values for Anderson-Darling)
with the significance level (alpha= 0.05 by default).

Proxy models for estimating the central tendency of pitting
descriptors
Two statistical estimation strategies were tested to verify whether
the central tendency values of the Epass/log(jpass) and Epit/log(jpit)

distributions could be estimated in a reduced manner. These
simplified approaches were either mean-based or median-based
(illustrated with the median in Fig. 11e). Our research question was
whether the conditional mean (or conditional median) of log(j), as
a function of E, could be used as a proxy model for accurate
estimation of the central tendencies of the pitting descriptors. To
test such hypotheses, the conditional mean and conditional
median of log(j) were used as input features in the ANN (Fig. 10)
to obtain Epass (or Epit) outputs (Fig. 11f). The biases of the trained
ANN were transmitted to the median/mean-based estimations,
thus establishing a fair basis of comparison with the ground truth
data (also derived from the ANN estimates from individual curves).
Quantiles are data values that divide a dataset into adjacent

intervals containing the same number of data samples81.
Quantiles display variation in population samples without making
assumptions about the underlying distribution. They are useful to
gain insight into the distribution of a random value compared to
its mean value. The conditional quantiles 0.35, 25, 50, 75 and
99.65% (referred to as Qmin, Q1, median, Q3 and Qmax) were
used for representing the log(j) distributions as well as for
estimation purposes (median).
The model assessment of the mean and median-based

approaches was based on separate residual analysis for the central
tendencies of Epass, log(jpass), Epit and log(jpit). The actual central
tendencies of the descriptors corresponded to their maximum KDE
values. As presented in Eq. 3, residuals are calculated by
subtracting the estimated ŷi from the actual yi value for the
different descriptors y (Epass, log(jpass), Epit, log(jpit)) and sets i.

residuals ¼ actual y yið Þ � estimated y ŷið Þ (3)
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