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Effect of hydrogen on the passivation for ultra-thin 316 L SS
foil
Xiaoqi Yue 1,2✉, Zhile Yang 1, Alfred Larsson3, Huajie Tang1,2, Stephan Appelfeller 4, Birhan Sefer5, Alexei Preobrajenski 4, Jun Li6,
Lei Zhang1 and Jinshan Pan 2

The reformation and characterisation of the passive film formed on ultra-thin 316 L after hydrogen charging is investigated by
combining EBSD, TMDS, XRD, Synchrotron-based XPS, and electrochemical experiments. The results show that ultra-thin foil
reforms a passive film after 12 h of hydrogen release in NaCl solution. The reformed passive film is half the thickness of the as-
received passive film and is dominated by Cr oxides/hydroxides. The lattice extension caused by residual hydrogen accelerates Cr
migration to form Cr2O3; while the diffusible hydrogen occupies the cation vacancies and results in high defect density for the
reformed passive film within 12 h.
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INTRODUCTION
Nowadays, reducing the thickness of stainless steel (SS) foil
appears as an effective solution to achieve the lightweight of
precision component structures served in aggressive environ-
ments where Al foil is no longer suitable1. TISCO Steel first
manufactured the SS foil as thin as 0.02 mm, which showed bright
application prospects2. Strong and ductile features for ultra-thin
316 L SS foil that show potential with high resistance to corrosion
and hydrogen embrittlement are essential for realising safety-
critical energy components, hydrogen production industries, and
flexible display solutions. For example, in the process of clean
energy generation, the ultra-thin 316 L SS foil can be used as the
flexible substrate and functional wrapping layers.
316 L SS with a face-centre-cubic (FCC) austenite structure has

been reported to have a high solubility for hydrogen3, thus shows
relatively low hydrogen embrittlement susceptibility, compared with
materials with body-centre cubic (BCC) structure, such as martensi-
tic4 and ferrite5 SSs. However, it has been noticed that hydrogen can
adversely affect the passive film formation and pitting susceptibility
of SS. Many studies have observed an increase in passive current
density after the introduction of hydrogen4,6–9. As an amorphous
nanoscale surface film, the passive film of 316 L SS consists of inner
oxides and outer hydroxides10,11. Notably, the oxide layer acts as an
effective barrier against corrosive ions12,13. The reduction of oxide
caused by cathodic polarisation during hydrogen charging has been
widely known6, which corresponded to the passive film with a high
density of defects in that period. The point defect model (PDM)
suggests that the generation of defects enhances ionic transport
across the oxide film, explaining why under some corrosive
conditions, 316 L SS may lose passivity14,15. Furthermore, it has been
suggested that the diffusion of hydrogen away from the substrate to
the film can accelerate the anodic dissolution after hydrogen
charging8. Hydrogen was proposed to deteriorate the stability of the
passive film by enhancing the deprotonation (removal of a proton)9,
thus rendering the passive film less protective. The resistance to
pitting affected by hydrogen was suggested to be more related to
chromium, the reformed passive film16,17.

Recently, the prominent passivation behaviour of ultra-thin
316 L foil has been reported, showing a clean material (no obvious
inclusions) with significantly lower passive current density and
higher breakdown potential in NaCl solution than wrought
316 L18. The reduction of thickness involved multiple cold rolling
and bright annealing procedures that induced fine grains,
preferential {110} plane, high-angle boundaries, and the absence
of harmful MnS in the microstructure18. All these features facilitate
the formation of a continuous compact passive film on the surface
and thus reduce susceptibility to pitting corrosion of the ultra-thin
316 L foil. The formation and nature of passive film on the surface
are essential to its safety application considering the unique
dimensions. However, no work has been done with ultra-thin
316 L foil with as-received passive film to focus on the influence of
hydrogen charging on the corrosion resistance and passive film
nature. This work investigates the knowledge gap for ultra-thin
316 L foil affected by hydrogen charging in NaCl solution. The
microstructure and passive film reformation mechanism of ultra-
thin 316 L foil after hydrogen charging are analysed by a
combination of EBSD, TMDS, XRD, synchrotron-based XPS, and
electrochemical experiments.

RESULTS
Microstructure and deformation for H charging sample
The microstructures of the ultra-thin 316 L SS foil before and after
hydrogen charging at 5 mA cm−2 are displayed in Fig. 1a–c.
Several cold rolling processes reduce the thickness of the foil
down to approximately 20 μm18 and produce an average grain
size of 4 μm in microstructure, accompanied by many twin
boundaries remarked as green lines (Supplementary Fig. 1a).
Figure 1d–f shows the Kernel average misorientation (KAM) or
local misorientation histogram for ultra-thin 316 L austenite SS foil
before and after hydrogen charging. KAM is associated with a
misorientation (less than 5°) between neighbours which belongs
to the same grain19. The high KAM values belong to the hydrogen-
charged 316 L foils and are seen in irregular grains. The localised
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distribution of high KAM value in Fig. 1e, f indicates the local
plastic strain in ultra-thin 316 L austenite SS foil, especially near
the grain boundaries of the orientation of (110). Besides, hydrogen
was proposed to reduce the stacking fault energy20, thus
enhancing the dissociation of dislocations and the formation of
stacking faults. Many parallel stacking faults arise in (110) grains
with the infusion of H into ultra-thin 316 L SS foil, marked as red
dash circles in Fig. 1c and Supplementary Fig. 1c, g shows the
hydrogen desorption rate curves for ultra-thin 316 L austenite SS
foil in 3.5 wt% NaCl solution for subsequent hydrogen charging
times. With the increase of the hydrogen charging time from 6 to
12 h, the diffusible hydrogen content increased from 159.98 ppm
to 339.27 ppm. Large and broad diffusible hydrogen peaks with
many peak maxima indicate different trapping sites with varying
binding energies. The distribution of diffusible hydrogen peaks (all

below 250 °C) indicates that the hydrogen is mainly located in
shallow traps21,22. However, the desorption of hydrogen tends to
be at higher temperatures as hydrogen charging time progresses,
indicating the potential for residual hydrogen after long-term
hydrogen charging.
The residual hydrogen after hydrogen release can result in the

subsequent lattice deformation that was detected via XRD
patterns after 12 h of hydrogen release in 3.5 wt% NaCl solution.
Fig. 1h illustrates the peak shift for the (110) phase, which shows a
higher tendency of misorientation (Fig. 1f). 316 L foil shows a
broadened peak with a larger full width at half maximum (FWHM)
after 12 h of H charging at the position for (110), in comparison
with a sharp and narrow peak before H charging. Near the original
(110) peak, a broad peak arises, which represents the lattice
expansion of the (110)-austenite. The average lattice deformation
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Fig. 1 Microstructure and deformation caused by hydrogen charging. a–c IPF Z map, d–f KAM maps, g TDMS patterns, and h XRD patterns
for ultra-thin 316 L austenite SS foil before and after electrochemical hydrogen charge at −5mA cm−2 in 3.5 wt% NaCl at pH 7.
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induced by H at (110) was evaluated by Bragg’s law as shown in
Eq. (1):

2d sin θ ¼ nλ (1)

Where n is a positive integer, and λ is the wavelength of the
incident X-ray wave. The lattice deformation of the (110) phase for
316 L SS foil was 0.24% according to the relationship between d-
spacing and strain as follows:

εlattice ¼ dH�charging � d0
d0

¼ sin θ0 � sin θH�charging

sin θH�charging
(2)

It has been proposed that the total dislocation density is
dominated by geometrically necessary dislocation (GND) density
as the true strain is below 6%23, suggesting that the strain
originates from the effective accumulation region shown in KAM
maps in Fig. 1e, f. The inhomogeneous dislocations are considered
reversible hydrogen traps where the hydrogen atoms can
accumulate at their interfaces with the matrix and provide a
pathway for atoms to move along these traps24.

Passive film reformation after hydrogen charging
Figure 2a shows the potentiodynamic polarisation curves for the
ultra-thin 316 L SS foil in 3.5 wt% NaCl solution after proceeding

with various hydrogen charging times. The passive current density
increased from approximately 10−5 mA cm−2 for the uncharged
sample to a value of approximately 10−1 mA cm−2 for the 12-h-
charged sample. The increase in the passive current density is
proposed to be attributed to the fact that the hydrogen charging
procedure modified the passive film composition13. As shown in
Fig. 2b, the pitting potentials decreased from 735mV to 587mV
vs. Ag/AgCl with the increase of charging time from 0 to 12 h,
combined with the dramatic decrease of corrosion potential from
51mV to −614mV vs. Ag/AgCl. It should be noted that the
deterioration of passive current density and pitting corrosion
potential has already significantly occurred after 4 h of charging.
Many studies have proposed that the passive film can dissolve by
reduction reactions during the hydrogen charging at cathodic
polarisation25,26. After stopping hydrogen charging, the reforma-
tion of the passive film can occur on the matrix with residual
hydrogen, accompanied by the diffusible hydrogen away from the
matrix, which may impact the reformation of the passive film.
Figure 2c shows the electrochemical impedance evolution of

the ultra-thin 316 L SS foil after 12 h of H charging and subsequent
hydrogen release periods in 3.5 wt% NaCl at pH 7 over 24 h of
immersion. After 200 s of hydrogen release, the impedance
exhibits a relatively small semi-arc and a diffusion tail at low
frequencies. This indicates hydrogen desorption at the metal and
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Fig. 2 Electrochemical characteristics after hydrogen charging. a Plots of potential dynamic curves, b the corrosion potential, corrosion
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solution interface. The semi-arc gradually increased as the
immersion time prolonged, which indicates the reformation of
the passive film against corrosion. As shown in Fig. 2d and
Supplementary Table 1, upon 12 h of immersion, the impedance
value reached the magnitude of the as-received passive film, with
the diffusion tail disappearing, indicating that there is no diffusible
hydrogen remaining in the matrix and only residual hydrogen that
causes lattice expansion is left.
As stated above, the impedance of passive film on ultra-thin

316 L SS foil in the experimental solution was restored after H
release in an immersion period of 12 h. A comparison was made
between the reformed passive film in the aqueous phase with the
as-received passive film in its as-received state using flexible
photoelectron spectroscopy (FlexPES), where detection was done
with varying surface sensitivity by different photon energy (soft
X-rays with a photon energy of 300–1450 eV, Supplementary Table
2). All spectra were calculated using the fermi level for specific
levels at different photon energies.
Figure 3 shows the XPS spectra of the as-received sample and

sample covering reformed passive film, respectively. For the
chosen photon energy range, the detection depth is increased for
higher photon energy. As shown in Fig. 3a, b, the Intensity of the
oxide peak increases at higher photon energy; whereas the
hydroxide peaks are more surface sensitive, showing high
intensity at low photon energy. This indicates the outer layer of
the passive film is rich in hydroxides, while the inner layer is
dominated by oxides. Hydroxides are present in high proportions
in the outer layer of the reformed film in all detection depths
when compared with the as-received passive film, indicating the
composition and structure of passive film change on the matrix
with lattice extension by residual hydrogen.
As shown in Fig. 3c, d, the high-resolution spectra of Fe 2p3/2

ionisation reveal Fe in the metallic state (707.1 eV), FeII (709.8 eV)
and FeIII (710.8 eV) in oxide form, and FeIII in the form of
hydroxides (711.8 eV)27,28. As a Fe-based SS, the detection of the
Fe0 peak indicates the detection depth has penetrated the entire
passive film and reached the matrix. The Fe0 peaks can be
detected at 807 eV photon energy for the reformed passive film in
Fig. 3d, which suggests that the reformed passive film is thinner
than the as-received passive film. Fig. 3e, f illustrate the spectra of
Cr 2p3/2, which can be split into Cr0 (574.1 eV), Cr2O3 (576.4 eV),
and Cr(OH)3 (577.2 eV)29,30. However, it is noted that three
compounds are not enough to fit the curve, therefore the CrN
(575.7 eV) was introduced to fill the valley between metallic and
oxidation states, which is consistent with the chemical composi-
tion showing the addiction of N in the matrix. In addition, the
signals obtained from Mo and Ni depress after the charging
procedure, as shown in Supplementary Fig. 3a–d, respectively. In
the reformed passive film, Ni and Mo compounds appear in
relatively lower valence states than as-received passive film.
By quantitively analysing, the composition of the outer

hydroxide layer, inner oxide layer, and it is beneath the metallic
layer of as-received and reformed passive film was calculated, as
shown in Fig. 4.
As seen in Fig. 4a, b, the Cr(OH)3 content decreases and the

Fe(OH)3 content increases for both passive film as approaches the
interface with aqueous. The Fe(OH)3 dominates the outer layer of
the as-received passive film, whereas the reformed passive film
shows a high composition of Cr(OH)3, which implies that the
formation of Cr(OH)3 by the following reactions was enhanced:

Cr2O3 þ 3H2O�!2CrðOHÞ3 (3)

Cr3þ þ 3H2O�!CrðOHÞ3 þ 3Hþ (4)

Furthermore, the outer layer of the reformed passive film also
shows significant changes in Ni compounds, despite their scarcity.
The distribution of Ni hydroxide in the as-received passive film

was near the interface with the oxide layer. However, it was
detected near the interface with aqueous in the reformed passive
film.
As for the oxide layer shown in Fig. 4c, d, the reformed passive

film contains a higher composition of Cr oxides than the as-
received passive film, indicating the acceleration of the following
reaction:

2Crþ 3H2O�!Cr2O3 þ 6Hþ þ 6e� (5)

Besides, the composition of molybdenum oxides was relatively
higher for the reformed passive film, which was also observed for
the reformation after passive film breakdown29,30.
As seen in Fig. 4e, f, Ni is enriched in the metallic layer beneath

both the as-received and the reformed passive film, however, it is
more abundant within the metallic layer beneath the reformed
passive film, which can be related to the consumption of Cr and Fe
during the reforming process. The depletion of Cr is particularly
evident at the interface with the oxide layer of the reformed
passive film, indicating that the promotion of forming Cr
compounds can be attributed to the accelerated Cr migration in
the matrix with lattice extension.
Moreover, the migration of Cr is also related to the minor

amount of N in the matrix. As referred to in the works of
literature31–34, N has a high affinity for Cr, thus restricting the
migration of Cr. Fig. 5a compares the N 1 s spectra for a-received
passive film and reformed passive film at 1000 eV photon energy,
where the peaks represent the formation of Cr–N and N–H bonds
at 396.6 eV and 398.7 eV, respectively32,35–37. It is noted that the
proportion of Cr–N bond is reduced for the reformed passive film,
whereas the Cr–H bond increases after hydrogen charging. The
disruption of the Cr–N bond by hydrogen relieves the binding of N
on Cr, thereby facilitating the migration of Cr.
Figure 5b shows the Mott–Schottky plots for the as-received

passive film of ultra-thin 316 L SS foil and the reformed passive
film in the various hydrogen release periods, and the space-charge
capacitance (C) of the defective semiconductor can be expressed
as follows:

1

C2 ¼
2

εε0eND
E � Efb � kT

e

� �
n� type (6)

1

C2 ¼
2

εε0eNA
E � Efb � kT

e

� �
p� type (7)

where ε is the dielectric constant of the passive film, usually taken
as 15.638, ε0 is the permittivity of vacuum (8.854 × 10−12 F m−1),
e is the electron charge (1.60 × 10−19 C), k is the Boltzmann
constant and T is the absolute temperature; ND and NA represent
the donor density for n-type semiconductor and acceptor density
for p-type semiconductor, Efb represents the flat band potential.
As for the as-received passive film, the positive slopes of the

experimental C−2 vs. E plots indicated the n-type semiconductor
properties, which are mainly dominated by oxygen vacancies or
interstitial metals as defections in passive film. However, the ND

increases for the reformed passive film, especially in the early
periods (200 s–1 h), which suggests the increase in defects for the
reformed passive film after hydrogen charging. Yang et al.39

reported that hydrogen atoms can increase the ND by entering the
passive film and increasing the degree of compositional disorder.
This accounts for the hydrogen-induced increase of the passive
current density, as shown in Fig. 2b.
It is noted that the negative slopes were obtained in the

relatively negative potential region, which indicated the p-type
semiconductor properties and therefore developed for a single
p–n junction, which is consistent with the results from Örnek
et al.40. The p-type semiconductors correspond to the layer
dominated by chromium oxide with cation vacancies, while n-type
semiconductors correspond to the layer dominated by iron oxide
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with oxygen vacancies36,41–43. The results in Fig. 5b indicate that
the as-received passive film is dominated by Fe oxides, which
matches the results detected by XPS. The apparent donor density
of the as-received passive film is 4.23 × 1021 cm−3, which matches
the published results for 316 L SS18,44–46.

After stopping hydrogen charging, hydrogen escapes from
the material and affects the reforming of the passive film. As
shown in Supplementary Table 3, the high acceptor density
dominated the defects in re-formed passive film, especially in
the early period. The hydrogen atoms were proposed to enter
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into the Cr vacancy of Cr2O3 and bond with the surrounding O16.
However, the formation of vacancies by the interaction of O–H is
difficult to detect since it shows the indistinguishable binding
energy (BE) as hydroxides. It is worth noting that the ultra-thin
316 L foil sample was dopped with a trace amount of N, which
can bond with hydrogen. The high intensity of the N–H bond
explained the appearance of acceptors for the reformed
passive film.

DISCUSSION
Based on the above analyses, the iron oxides, combined with inner
Mo oxides and chromium oxide doping with nitrogen, play a
decisive role in the corrosion resistance of the as-received passive
film. During the hydrogen changing procedure, the as-received
passive film was removed by cathodic polarisation (around −1.6 V
vs. Ag/AgCl). The reformation of the passive film occurred and was
combined with the release of diffusible hydrogen after stopping
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hydrogen charging. The diffusible hydrogen occupied cation
vacancies and resulted in high acceptor density for reformed
passive film in the early period; while the residual hydrogen
caused the lattice extension of the matrix and accelerated the
migration of cations. The activation energy for migration of Cr was
reported to be the lowest, followed by Fe, Ni and then Mo47,48, so
Cr migration was more promoted, forming Cr2O3. Furthermore,
compared with bulk 316 L SS, the microstructure of the ultra-thin
316 L foil was characterised by fine grain size with more high-
angle grain boundaries, more favourable {110} grain orientation,
generation of stacked dislocations, fine oxide inclusions, and
absence of harmful MnS inclusions18. As a result of hydrogen
charging, stacking faults are formed in (110) grains (Fig. 1e, f) in
which Cr diffuses more quickly than Fe or Ni47 and forms Cr2O3

with a higher BE than other orientations49. Figure 6 presents the
thickness of the as-received and reformed passive film (calculated
by normalisation of PES results). The thickness of the reformed
passive film is much thinner than the as-received passive film,
especially for the oxide layer. One one hand, the lattice extension

accelerates the migration of cations to form oxides, especially for
Cr. On the other hand, the high density of defects caused by
diffusible hydrogen renders the reformed passive film more
permeable to ion transport (higher dissolution rate), which would
allow the film to reach an equilibrium composition faster (at the
thinner condition).
Figure 7 illustrates the schematically of hydrogen effects on the

reformation of the passive film of ultra-thin 316 L SS foil. Most
hydrogen was found to be diffusible and affected the early period
of passive film reformation. A minor amount of residual hydrogen
was found to induce lattice extension in a small range, which
accelerates the migration of cations to reform a passive film,
especially for Cr. The thermodynamic calculation shown in
Supplementary Fig. 4 indicates that the metallic phases are
thermodynamically stable in the hydrogen charging region,
corresponding to the removal of the oxide layer. Based on the
results of Rct in Fig. 2c, the surface oxide film reforms when
electrochemical hydrogen charging is stopped. As the passive film
reforms, the potential rises from the cathode region to the
corrosion potential. For the samples after 12 h of hydrogen
charging, the corrosion potential is −597mV vs. Ag/AgCl (−400
mV vs. SHE), as shown in Fig. 2a. From the hydrogen charging
region to the corrosion potential marked in Supplementary Fig. 4,
the migration of Cr to form Cr oxides first becomes thermo-
dynamically favourable (at relatively low potential), followed by Fe
and then Mo, consistent with the Cr2O3-dominated film shown in
XPS results (Fig. 4d). The diffusible hydrogen can be caught by the
subsequently formed Cr2O3 by entering Cr vacancies, showing a
high defect density. However, defect density was decreased as the
hydrogen release time was prolonged, which can be attributed to
the enhancement of Cr2O3 formation by lattice extension from
residual hydrogen. In this paper, we recorded the thickness of the
reformed passive film after 12 h of hydrogen release and found it
was half thinner than the received passive film. However, we can
assume that as the immersion time prolong, all the hydrogen-
occupied parts of the re-formed passive film would dissolve. And
the Cr2O3 formation rate remains high, which would allow the film
to reach an equilibrium composition with the thicker condition.
In summary, the characteristics of passive film and microstruc-

ture of ultra-thin 316 L foil after hydrogen charging in 3.5 wt%
NaCl solution has been compared with the as-received foil sample.
The study focused on the reformation of passive films on the
matrix affected by hydrogen charging, and the following main
conclusions can be made:
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● The reformation of passive film on ultra-thin foil in NaCl
solution was affected by two kinds of hydrogen: I, the
diffusible hydrogen released away from the matrix; II, the
residual hydrogen caused lattice extension, especially in the
orientation of (110). The diffusion of hydrogen can enter Cr
vacancies and result in high defect density of reformed
passive film; whereas the lattice extension accelerates the
diffusion of Cr in the metallic layer to form Cr2O3.

● The as-received passive film for ultra-thin foil mainly contains
Fe oxides and hydroxides. However, after hydrogen charging,
the reformed passive film is mainly comprised of Cr2O3 in the
oxide layer and Cr(OH)3 in the hydroxide layer.

● The thickness of the reformed passive film after hydrogen
charging is 12.5 Å and is only half the thickness of the as-
received passive film. A thin oxide layer with high cation
defects was the main reason for reaching an equilibrium
composition with the thinner condition.

METHODS
Material and methods
The test material used was an ultra-thin 316 L SS foil supplied by
TISCO Steel from China with I chemical composition (wt%): C
0.016%, Si 0.45%, Mn 1.18%, Cr 17.17%, Ni 12.14%, Mo 2.10%, N
0.10%, S ≤ 0.001%, P ≤ 0.001%, and Fe balance. The material was
thinned from raw material (1 mm) to foil (20 μm) through five cold
rolling passes, followed by bright annealing after each cold rolling.
The surface roughness (Ra) of the as-received ultra-thin 316 L foil is
approximately 0.2. The species with a dimension of 20mm,
310mm and 320 μm were used for electrochemical tests and
subsequent synchrotron-based X-ray photoelectron
spectroscopy study.
Thermal desorption spectroscopy with mass spectrometry

(TDMS) was applied to perform the diffusible hydrogen analysis
for samples after different hydrogen charging time foils by
heating the foils from room temperature to 600 °C using a heating
rate of 0.33 °C s−1. The samples were stored in liquid nitrogen
before TDMS tests.
After 12 h of hydrogen release, electron backscatter diffraction

(EBSD) was carried out on foil specimens using a Nordlys MAX3
(OXFORD) instrument to assess the microstructure before and
after hydrogen charging. The orientation of interest was selected
based on the KAM, which measured the local grain misorientation.
All the information was collected with a high-resolution CCD of

6403480 pixels. Further, the lattice extension caused by residual
hydrogen for specific orientation was conducted via X-ray
diffraction (XRD) spectrum after 12 h of hydrogen release using
Cu Kα radiation with an active area of 10mm × 10mm, employing
a step size of 0.0048°.

Electrochemical tests
The hydrogen charging experiments were carried out with a Pt
counter electrode and Ag/AgCl reference electrode in 3.5 wt%
NaCl solution at pH 7 and ambient temperature, using a Gamry
reference 600+ workstation. For the austenite phase, the solubility
of atomic hydrogen is high due to the abundant occupation sites
(octahedral voids), which induce mutative microplastic deforma-
tion for austenite grains (20 μm depth) within 9.5 h6. A constant
cathodic current density of 5 mA cm−2 was applied for a period
from 4 to 12 h. After the hydrogen charging procedure, the
samples were stored in liquid nitrogen for subsequent analyses,
followed by other electrochemical tests in 3.5 wt% NaCl solution,
including potentiodynamic polarisation, electrochemical impe-
dance spectroscopy (EIS), and Mott–Schottky plot. The potentio-
dynamic polarization measurements were conducted from 0.1 V
vs. OCP with a sweep rate of 0.127 mV s−1. The potentiodynamic
polarisation needs to terminate in a short period after breakdown
potential otherwise, it will be perforated. The EIS measurements
were performed from 100 kHz to 10 mHz with 10 mV sinusoidal
potential modulation in a potentiostatic condition. The
Mott–Schottky plots were measured with 100 Hz and 10mV
sinusoidal potential from the passivation region to the cathodic
region with a rate of 20 mV s−1. The open circuit potential (OCP)
was recorded before the tests in both potentiodynamic/potentio-
static conditions. The OCP values were measured for 200 s after
hydrogen charging, followed by the measurement of 600 s.

Synchrotron-based X-ray photoelectron spectroscopy study
The XPS experiments were conducted at the FlexPES beamline at
MAX IV Laboratory, Lund, Sweden50. The tunable energy at
modern synchrotron facilities allows the photon energy to be
varied such that the kinetic energy of the photoelectrons is the
same for each core level. Here the photon energy was chosen
such that the kinetic energy was conducted at 100, 200, 400, and
600 eV for each core level separately. This results in a constant
probing depth of the XPS signal from each alloying element. The
probing depth can be calculated from the inelastic mean free path
of the electrons51. A survey spectrum was measured at 1200 eV for

Fig. 7 Schematically of hydrogen effects on the reformation of passive film of ultra-thin 316 L SS foil. Residual hydrogen induces lattice
extension and accelerates the Cr migration, while the d diffusible hydrogen results in Cr vacancies in the reformed passive film.
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each sample, followed by high-resolution spectra collected at the
following core levels: Ni 2p, Fe 2p, Cr 2p, O 1s, Mo 3d, and N 1s. A
summary of the core levels and the respective photon energy
used are listed in Supplementary Table 2. The BE for each
spectrum was calibrated against the measured Fermi edge.

DATA AVAILABILITY
The datasets used and/or analysed during the current study are available from the
corresponding author upon reasonable request.
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