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Searching the chemical space for effective magnesium
dissolution modulators: a deep learning approach using
sparse features
Elisabeth J. Schiessler 1, Tim Würger 2,3, Bahram Vaghefinazari2, Sviatlana V. Lamaka2, Robert H. Meißner 2,3, Christian J. Cyron1,4,
Mikhail L. Zheludkevich2,5,6, Christian Feiler 2,6✉ and Roland C. Aydin 1,4✉

Small organic molecules can alter the degradation rates of the magnesium alloy ZE41. However, identifying suitable candidate
compounds from the vast chemical space requires sophisticated tools. The information contained in only a few molecular
descriptors derived from recursive feature elimination was previously shown to hold the potential for determining such candidates
using deep neural networks. We evaluate the capability of these networks to generalise by blind testing them on 15 randomly
selected, completely unseen compounds. We find that their generalisation ability is still somewhat limited, most likely due to the
relatively small amount of available training data. However, we demonstrate that our approach is scalable; meaning deficiencies
caused by data limitations can presumably be overcome as the data availability increases. Finally, we illustrate the influence and
importance of well-chosen descriptors towards the predictive power of deep neural networks.
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INTRODUCTION
Magnesium (Mg) and its alloys have distinct properties that render
them promising materials for various applications, ranging from
aerospace and automotive to biomedical and energy storage.
However, it is essential to control the surface reactivity
characteristics of Mg to unlock its full potential in each particular
application field. For example, preventing corrosion is crucial for
transport applications (e.g., aerospace and automotive), while
medical applications (e.g., temporary biodegradable implants)
require tailored degradation rates. For batteries with a Mg anode,
the dissolution rate has to be adapted to maintain a constant
output voltage and to protect the utilisation efficiency, e.g., from
the occurring chunk effect1–3. Small organic molecules exhibit
great potential in controlling corrosion in these applications, for
which they are—depending on the target application— typically
incorporated into a complex coating system in transportation
applications or become a dissolved component of the electrolyte
in Mg-air batteries.
The chemical space of compounds with potentially useful

properties is practically infinite 4, rendering purely experimental
approaches insufficient despite impressive progress in the field of
high-throughput testing. Data-driven computational methods
have emerged as powerful tools for the prediction and identifica-
tion of useful corrosion inhibitors and can thus enable a more
efficient design of experiments. Exploring large areas of chemical
space can become orders of magnitude faster, allowing the pre-
selection of promising candidates for in-depth experimental
testing. At the same time, further insights into the underlying
chemical mechanisms of corrosion and its inhibition can be
obtained, which in turn provide additional input features for
predictive quantitative structure-property relationships (QSPRs).

To develop accurate and robust predictive models, a sufficiently
large, reliable, and chemically diverse database is required,
reflecting the complexity of the relevant chemical environment.
Cheminformatics software packages, such as RDKit and alvaDesc,
enable the structural encoding of the numerous different
functional entities and molecular features included in such
databases. Aside from that, advances in computing power and
simulation algorithms have enabled simulations (e.g., relying on
density functional theory or (semi empirical) force field calcula-
tions) that can provide a wide range of potentially useful
molecular descriptors5. By selecting only the most suitable
descriptors and using them as input for a QSPR model, a more
thorough and nuanced analysis of the potential effectiveness of a
given compound can be provided. As additional data becomes
available, the model can be continually refined and improved,
ensuring that the most effective dissolution modulators are
identified.
The predictive performance of the trained QSPR model depends

significantly on the selected molecular features, as high correla-
tion between input features or low correlation with the target
property can compromise the model. In recent years, machine
learning models have become increasingly popular in corrosion
modelling6–9. In Schiessler et al. 10, we compared the capabilities
of statistical methods, such as the analysis of variance
(ANOVA11–14), with recursive feature elimination (RFE15) based
on random forests16–18 in selecting suitable input features of 60
compounds for a deep neural network to predict the corrosion
inhibition efficiencies of chemical compounds for the magnesium
alloy ZE41. Descriptors derived from density functional theory
calculations could be identified as highly significant for predicting
the experimental performance of corrosion inhibitors, when
joined with input features derived from the molecular structure.
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Combining the sparse feature selection strategies with deep
learning forms a predictive QSPR framework that can be used for
the identification of promising corrosion inhibitors. However,
when working with small datasets there exists a risk of overfitting
on the training data, which will lead to results that do not
generalise well and may not be able to give useful insights
beyond the training domain19,20.
In this study, we predict and test the corrosion inhibition

efficiencies of 15 previously unseen compounds that were
selected using the ExChem21 routine to evaluate the limitations
of the models presented in Schiessler et al.10. The fundamental
concept of ExChem is based on molecular similarities calculated
from the Smooth Overlap of Atomic Positions (SOAP)22,23

approach. The molecules in the dataset that was used to train
the underlying supervised machine learning model are repre-
sented in form of a 2D map following a dimension reduction
approach, thereby visualising the relationships between molecular
structure and corrosion inhibition performance via the formation
of similarity clusters. Moreover, ExChem facilitates the projection
of a database of commercially available compounds onto the
landscape of known chemical space and thus enables a rational
selection of compounds for subsequent experimental evaluation
based on structural similarities between the two databases and by
providing estimates for the corrosion inhibition performance of
the untested small organic molecules. After confirming the
robustness of the feature selection process, the predictive
performance of the neural networks is evaluated. Identified
outliers are discussed with respect to their chemical features to
explain deviations occurring between experimental and predicted
corrosion inhibition properties. Furthermore we assess the effect
of integrating more data into the training set and confirm the
scalability of our approach.

RESULTS AND DISCUSSION
Similarity-based compound selection
Under the overarching goal to find promising magnesium
dissolution modulators for the magnesium alloy ZE41 in the vast
chemical space, we tested the limits of the machine learning
models as presented in our previous study10 with respect to
prediction performance and scalability. Therefore, we selected

blind test candidates using the ExChem routine from a database
of over 7000 commercially available chemicals, as provided by
Thermo Fisher Scientific21. A database of 60 magnesium dissolu-
tion modulators for ZE41, originally used to train the machine
learning models, served as foundation for the approach10,24.
Molecular similarities of the original training data and the
database of commercially available compounds were calculated
using the SOAP kernel with a cutoff radius rc= 2.0Å, a Gaussian
width ξ= 0.3Å and ζ= 2 (cf. Methods)22,23. We reduced the
resulting high-dimensional similarity matrix to two dimensions
using kernel principal component analysis. Correlating the two-
dimensional data with experimentally measured corrosion inhibi-
tion efficiencies for the respective compounds resulted in a
structure-property landscape, as shown in Fig. 1.
A clear relationship between molecular structure and corrosion

inhibition efficiency becomes evident, where compounds yielding
corrosion inhibiting effects are located predominantly on the right
side of the landscape (green circles) and compounds accelerating
corrosion are located mainly on the left side (purple circles). The
ExChem routine was used to identify potential test candidates in
the commercial database that exhibit high similarity to certain
compounds that were already experimentally validated. Initially,
20 compounds of interest were randomly selected from the
experimental database. Each compound served as reference
(‘parent’) to identify five highly similar structures (‘children’) in
the commercial database based on the underlying SOAP
similarities. Out of the resulting 100 structures, 20 were randomly
chosen for experimental blind testing. Since four of these 20 were
not soluble in water, they were removed from the pool of blind
test candidates. The remaining 16 selected compounds are listed
in Table 1 along with their respective indices, names and
experimentally measured inhibition efficiencies. The associated
parent structures are marked with crossed circles in Fig. 1 along
with the indices of the selected children, i.e., the chosen blind test
candidates. Compound 2 was excluded during the evaluation
phase as the required materials could not be delivered. In the
following, we evaluate the robustness of the feature selection
process given the availability of this additional dataset, as well as
the performance of the predictive models against the presented
blind test data, which have been withheld from the model training
process.

Feature selection robustness
We investigated the quality of selected features that were
presented in our previous study10 by exploring how susceptible
the feature selection results are to changes in input data. The
original 60 sample dataset10,24 was augmented by the 15 blind
testing samples given in Table 1, forming a combined dataset of
75 compounds. This gave us a number of dataset compositions
that we use throughout this manuscript:

● original dataset (60 compounds): DS60
● blind testing dataset (15 compounds): DS15
● combined dataset (75 compounds): DS75
On each composition, we performed grouped feature selection

using RFE based on random forests. Data were split into 10 cross-
validation folds (which differ per dataset composition), and on
each fold the process was repeated 100 times using varying
random seeds. From the resulting 1,000 top five groups per
dataset composition we report the ones that got selected most
often, cf. Table 2.
As we can see in Table 2, the top five feature sets FS60 and FS75

found for the original (DS60) and combined (DS75) dataset
compositions overlap in three out of five components. The
remaining two from each set (CATS3D_02_AP and Mor04m for
FS60, HOMO and E2s for FS75) do in fact come up in the other
dataset composition’s respective best feature sets list, just not in

Fig. 1 Structure-property landscape of 60 magnesium dissolution
modulators for the magnesium-based alloy ZE41. The axes
represent the two principal components (PC) resulting from the
kernel principal component analysis. Based on this map, untested
compounds of interest were selected for further investigation using
the ExChem routine. Twenty of the original 60 structures were
randomly chosen as `parents' (crossed circles), for which highly
similar compounds were determined out of a pool of commercially
available chemicals. The numbers indicate which of the selected test
candidates as defined in Table 1 correspond to which parents.
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first place. FS60 and FS75 were chosen in 38% and 30% of cases
respectively. The winning feature set FS15 for the blind testing
dataset composition DS15 on the other hand was chosen in only
12% of all runs, with a greater variation in included candidates.
This comes as no surprise, as 15 data points is quite few in most
machine learning contexts. The best features for the original
dataset, FS60, have no overlap with the blind testing set winners
FS15. From this we surmise a somewhat limited ability of FS60 to
accurately capture the specific properties of the blind testing
dataset, as well as a reduced capacity to generalise. The winning
feature set FS75 determined from the combined dataset composi-
tion includes descriptors from both FS60 and FS15. It is noteworthy
that HOMO, a DFT-derived descriptor denoting the highest
occupied molecular orbital energy level, was present in the
second best feature set for DS60, and came up in the shared first
place for best feature set in our original study10. This descriptor is
included in both FS75 and FS15 and seems to play a crucial role in
capturing properties of the presented corrosion inhibition dataset.
Feature selection robustness was furthermore investigated under

change of target metric (using inhibition power/dB instead of
inhibition efficiency/%,25) and exhibited qualitatively comparable
behaviour to the case we presented here. Since subsequent
predictive models trained on the thereby identified feature sets
did not lead to relevant performance increase, we elected to only
present inhibition efficiency/% results which are directly comparable
to our previous study10. Additional information regarding this metric
as well as results from the related feature selection process can be
found in the Supplementary Notes as well as Supplementary Table 1.

Generalisation ability of predictive models
One very important concern is the question of how well predictive
models trained on the original data are able to generalise and
capture the properties of completely unseen (i.e., blind testing)
data. To this end, we repeatedly fitted a deep neural network on
DS60, using only inputs based on the associated winning feature
set FS60. The training data were split into the same 10 cross-
validation folds that we used during the feature selection process,
and on each fold the network was trained 100 times using varying
random seeds. The blind testing dataset DS15 served as a
completely unseen test set. Figure 2 shows the distribution of
predicted inhibition efficiency values per compound in the blind
testing set, aggregated over all cross-validation folds and random
seeds. The detailed prediction means and standard deviations are
provided in Supplementary Table 2.
Only about half of the compounds in DS15 get predicted

correctly or within reasonable margins of error. The resulting root
mean squared error (RMSE) for the blind testing set is fairly high at
73 percentage points (pp), cf. Table 3 for more statistics. We can
see that the models have a tendency to underestimate inhibitors
(i.e., compounds with IE > 0), but overestimate accelerators, as can
be seen also in previous studies21,26. It is also notable that all but
two prediction means lie within approximately ± 50 IE, which is
where the majority of both the original as well as blind testing
target values are situated. It is a common problem in machine
learning that simply predicting the mean value of the target
variable distribution might lead to a lower training loss than trying
to find more complex dependencies. This behaviour can be

Table 1. Blind testing compounds.

Index Compound IE ZE41 / %

1 2-Amino-2-methyl-1,3-propanediol −152 ± 6

2 3-Aminophthalic acid −

3 3-Hydroxyacetophenone −33 ± 4

4 4-Hydroxybenzylalcohol −135 ± 3

5 4-Pyridinecarboxylic acid 40 ± 2

6 2,4-Dihydroxybenzoic acid −141 ± 2

7 3,4-Pyridinedicarboxylic acid 76 ± 1

8 D-Glucose −23 ± 2

9 Itaconic acid 64 ± 3

10 L-Sorbose 46 ± 2

11 L-Threonine −216 ± 10

12 Methylmalonic acid 35 ± 3

13 Pyridazine 16 ± 1

14 Tartronic acid −33 ± 4

15 Tricarballylic acid 50 ± 17

16 Vanillic acid −119 ± 13

Experimentally measured corrosion inhibition efficiencies for the selected
blind testing compounds. Compound 2 was excluded during the
evaluation phase as the required materials could not be delivered. The
initial pH of all tested compounds was adjusted to 7.0 ± 0.1 by NaOH
solution.

Table 2. Identified feature sets.

FS60 FS75 FS15

∗ P_VSA_MR_5 ∗ P_VSA_MR_5 E1s
∗ LUMO ∗ LUMO SHED_DL
∗ E1p ∗ E1p MATS6e

CATS3D_02_AP ∗∗ HOMO ∗∗ HOMO

Mor04m ∗∗ E2s ∗∗ E2s

Best feature sets identified by RFE. FS60 denotes the set found using DS60,
and so forth. Features that occur in more than one winning set marked
with single (overlap between FS60/FS75) and double (overlap between FS75/
FS15) asterisks respectively.

Fig. 2 Distribution of predictions across all cross-validation folds
and random seeds per compound in the blind testing set, for
neural networks trained on the original feature set FS60 and
dataset DS60. Boxes are coloured according to the compound’s
mean predicted IE values in %. Compounds are sorted by
descending mean experimental IE values, which are depicted as
coloured diamonds.
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indicative of overfitting or a suboptimal network architecture27.
Figure 3 shows the average predicted over experimental IE, with
the solid blue line representing the resulting linear regression
curve, and the orange dashed line marking the perfect fit.
Overall we can conclude that the model trained on the original

dataset, with features selected only for those data (denoted FS60/
DS60), is able to predict the behaviour of completely unseen
components only moderately well. This does not come as a huge
surprise for two main reasons: Firstly, there is no overlap between
FS60 and FS15. This need not necessarily mean that FS60 is entirely
unable to adequately capture the properties of compounds from
DS15, but it is an early indicator for results of reduced quality.
Secondly, with only 60 samples in the original dataset we have to
expect overfitting both for the feature selection process and
especially the training of deep neural networks. The network
architectures in Schiessler et al.10 where chosen to vary as little as
possible across a range of input feature counts, leading to
overparameterised networks especially when working with very
few features. With more fine-tuning of the network architecture
and training hyperparameters, improved results might well be
possible even on the blind dataset. However we can also make use
of existing outliers to both gain important insights into the
predictive domain of our models, as well as better understand the
involved corrosion processes, or even identify yet unknown
aspects of corrosion. In the following section we therefore include
an extensive discussion of several components that obtained
particularly conspicuous results.

Outliers
In Fig. 2 there are six compounds which are particularly salient,
and which we consider to be strong outliers from the perspective

of our deep learning models, cf. Fig. 4. These are compounds 9, 12,
and 15, which are moderate to strong inhibitors but get
qualitatively mispredicted as mild to strong accelerators, as well
as compounds 4, 6 and 16, which are very strong accelerators but
get predicted as only mild to moderate accelerators.
To better understand potential reasons why these compounds

appear as outliers for the prediction models, deeper insights into
their molecular structure shall be given. Analogously to Fig. 1, a
structure-property landscape was generated for the total dataset
of 75 compounds, where the compounds we consider to be
outliers are marked accordingly (see Fig. 4). Analysing the
resulting map, regions where compounds exhibit a similar
corrosion inhibition efficiency indicate a structure-property
relationship. Generally, it appears that corrosion accelerators are
predominantly on the left side of the map and corrosion inhibitors
on the right. Additionally, the structures are split into aliphatics
(top side of the map) and aromatics (bottom side of the map).
2,4-Dihydroxybenzoic acid (compound 6) is located in a cluster

predominantly populated by corrosion inhibitors, although
experimentally it turns out to be a strong corrosion accelerator.
It was still qualitatively correctly predicted as an accelerator.
Compounds 6 is projected directly on top of 3,4-Dihydroxybenzoic
acid, the strongest corrosion accelerator (-270% IE) of the original
dataset. However the strongest corrosion inhibitor present in the
blind testing set, 3,4-Pyridinedicarboxylic acid (compound 7), is
located in the direct proximity as well. Apparently both corrosion
inhibitors as well as accelerators contain mutual features in this
region, rendering them similar in structure, even though they
show different behaviours in the experiment. The trained models
recognised a corrosion accelerator based on the selected features,
but did not capture the subtle features that distinguish a strong
from a weak accelerator, which is why the IE was overestimated.
The overestimated IEs of 4-Hydroxybenzylalcohol (compound 4)
and vanillic acid (compound 16) are situated in the same area of
the map and can be explained accordingly. The structure-property
relationship is not obvious in this region, as the compounds
projected onto this area of the map exhibit structural features that
are connected to varying corrosion inhibition efficiencies.
Additionally, the experimental values of the three compounds 4,
6 and 16 lie at the lower edge of the target data distribution,
further complicating accurate predictions. Adding more data
points to this region, i.e., experimentally testing more compounds
that exhibit similar structural features, is likely to improve the
prediction performance for this domain.

Table 3. Prediction statistics.

Statistic FS60/DS60 FS60/DS15 FS60/DS75

RMSE 72.99 52.21 61.62

R2 0.36 0.74 0.64

r 0.60 0.86 0.80

p 0.02 < 0.01 < 0.01

Root mean squared errors (RMSE), coefficients of determination (R2),
correlation coefficients (Pearson’s r) and p-values of predictions on the
blind testing dataset, per feature set. RMSE is given in percentage points
(pp) w.r.t. the inhibition efficiency.

Fig. 3 Mean predicted inhibition efficiency values across all cross-
validation folds and random seeds for compounds in the blind
testing set, for neural networks trained using FS60/DS60. The solid
blue line marks the resulting linear regression curve, the dashed
orange line represents perfect fit.

Fig. 4 Kernel principal component analysis of the molecular
similarities for all 60 compounds of the original dataset (Training)
and 15 blind testing chemicals (Test). Compounds identified as
extreme outliers are marked accordingly (△) and illustrated along
with their measured (predicted) inhibition efficiency. Predictions
from FS60 / DS60 experiments.
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Analysis of compounds 9, 12 and 15 shows that they were
projected close to a region populated by weak corrosion inhibitors
and accelerators. All of these compounds yield a moderate IE in
the experiment and are mapped close to each other onto the
structure-property landscape. The significant underestimations of
the IEs probably stem from the absence of comparable corrosion
inhibitors in this region. Furthermore, the selected features do not
seem to capture the occurring structure-property relationship here
accurately. However, future predictions for this region of the
structure-property landscape are expected to improve with
additional data.

Generalisation ability of the winning feature sets
In order to guarantee comparability to Schiessler et al.10, we
abstained from adjusting network architecture and training details
in this work. Instead we examined the influence of using “better”
feature sets towards improving the predictive quality and ability
to generalise of our neural networks. In particular, we investigated
whether predictive models that were trained on the original
dataset DS60 could be improved if selected features were more
suitable for the blind testing data, i.e., when training occurred in
combination with FS15 or FS75.
Clearly this approach is not applicable in practice without

already having experimental values available for any data we wish
to investigate, as those values are already needed during the
feature selection process. Therefore the following results should
not be seen as claims to the predictive capabilities of our already
existing models. We can rather consider them as a lower bar on
how well we are able to do given feature sets that really generalise
well (recall that we still did not use the blind testing data during
training of these neural networks).
We repeated the training process for the neural networks, using

DS60 along with the same cross-validation folds as before as our
training data, and again aggregating predictions on the blind
testing set across all runs afterwards. The only difference was that
FS15 and FS75 features were used as input instead. With this
approach we hoped to improved predictive quality on the blind
testing compounds, as their most relevant properties now played
a direct role in adjusting the deep learning weights. Distributions
of predictions for the blind testing data generated by FS15 / DS60
and FS75 / DS60 models can be found in Fig. 5. Detailed prediction
means are provided in Supplementary Table 2.
In fact, in both cases we saw a drastic increase in accuracy with

much fewer outliers and reduced RMSE of 52 percentage points
(pp) and 62pp for the models using FS15 and FS75 respectively
compared to 73pp for the FS60 models, cf. Table 3. Especially in
the case of using features devised from only the blind testing data,

this RMSE is on par with what was presented in Schiessler et al.10,
but without ever seeing these data during the training process.
The hidden downside, however, is that FS15 / DS60 models

capture the qualities of the original dataset much more
inaccurately. The overall RMSE for predictions on both the blind
testing set and validation splits for this case is the highest of all
three at 80pp, opposed to 67pp for both the FS60 / DS60 and FS75 /
DS60 models.

Scalability
In order to further validate our approach we repeated the training
process with cross-validation splits drawn from the combined
dataset DS75 (the same that were used to determine FS75). In this
setup, there are no more blind testing data as they were
incorporated into the combined dataset, thus we only report
results aggregated from the respective validation sets per fold. At
64pp, the RMSE of the FS75 / DS75 models is on par with the mean
RMSE of 63pp reported in Schiessler et al.10, demonstrating that
previous results can be replicated with different training sets and
were not a consequence of for example overfitting.
From a machine learning perspective, a 25% increase of the

dataset is not huge, and most likely the properties of the original
data will still dominate overall results. From an experimental point
of view, however, a great amount of time and effort went into
performing the required analyses and already slight improve-
ments in predicting the inhibition efficiency of organic com-
pounds go a long way. At any rate we were able to increase the
domain of applicability of our predictive models by virtue of the
combined dataset, confirming the scalability of our method.

Discussion
In this work we investigated how well the predictive model that
performed best in our previous study10 holds up under blind
testing. To this end, 15 previously unused compounds were
randomly selected using the ExChem Routine21 and their
inhibition efficiencies w.r.t. the magnesium alloy ZE41 were
experimentally determined using the setup presented by Lamaka
et al.24, forming the blind testing dataset DS15.
Feature selection based on RFE suggested that the five features

determined via the original dataset DS60 might not be able to
generalise very well as there was no overlap between the winning
feature sets for DS60 and DS15. However, when regarding both the
original and blind testing data in the form of a combined dataset
DS75, winning features were a 3:2 mixture from the winners of
both individual sets, indicating that the feature selection process is
indeed robust and scalable when further information is added. It is

Fig. 5 Distribution of predictions across all cross-validation folds and random seeds per compound in the blind testing set, for neural
networks trained using FS15/DS60 (left) and FS75 / DS60 (right). Boxes are coloured according to the compound’s mean predicted IE values in
%. Compounds are sorted by descending mean experimental IE values, which are depicted as coloured diamonds.
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notable that the DFT-derived descriptor HOMO came up in the
runner-up second best feature set for the original data, and was
included in winning sets for both the blind testing and combined
dataset compositions, and in general seems to contain important
information w.r.t. the inhibition efficiency properties of magne-
sium dissolution modulators.
Predictive modelling using deep neural networks trained on the

original dataset and feature set confirmed that the originally
selected descriptors showed only moderate success in correctly
identifying the IE of the blind testing compounds. Training the
networks on the newly identified feature sets managed to
drastically improve the predictive quality even though the blind
testing data themselves were only used during the feature
selection step but never included in the training process. In
summary we conclude that the identified feature sets are not yet
able to thoroughly cover large parts of chemical space of potential
additive components and need to be updated on a regular basis
as more and more experimental data become available. Yet, even
when given knowledge only about a very limited amount of data,
our method already has a demonstrated predictive power in
estimating the inhibition efficiency of magnesium dissolution
modulators. Scalability of the method was confirmed via training
the neural networks on the combined dataset composition.
In general, the architecture of the neural networks appears to

be overparameterised given that we only used a total of five input
features for training. This occurred in order to ensure compar-
ability to the original setup presented in our previous study10. We
aim to address this in future works using automated neural
architecture search such as developed by Schiessler et al.28 which
can be helpful in choosing a better suited network topology while
limiting the risk of overfitting on the training data. One issue with
regression type machine learning is that there is less punishment
during the learning process when the model qualitatively
mispredicts target values (e.g., a positive target value is predicted
to be negative and vice versa). This can be mitigated using
classification type models, however, once higher levels of
granularity are desired (e.g., for discerning between moderate
and strong accelerators or inhibitors), custom loss functions are
required that take into account ordered classes.
Another goal for future extensions is to further explore outlier

detection using other related approaches such as autoencoders
which are restricted to the features used in the machine learning
models, as was briefly touched upon in Schiessler et al.10.

METHODS
Corrosion experiments
Since the dataset used to train the initial deep neural network in
this study was extracted from the work of Lamaka et al.24, the
model validation by blind testing was carried out with the same
experimental setup and under the same conditions. The inhibition
efficiency (IE) of the compounds selected by the ExChem routine
was calculated based on hydrogen evolution tests, in which the
amount of evolved hydrogen due to the corrosion of magnesium
is measured during immersion in a NaCl solution. 0.5 g of ZE41 Mg
chips with the surface area of 490 ± 15 cm2 g−1 from the same
batch used in Lamaka et al.24 were immersed in 0.5 wt.% NaCl
solution without (reference solution) and with the untested
compounds, respectively. The chemical composition of the ZE41
chips used for our experiments was identical to the work of
Lamaka et al.24 and is provided in Supplementary Table 3. The
concentration of compounds was 0.05 M and the pH of solutions
was adjusted to 7.0 ± 0.1 by adding NaOH. Compound 3 (3-
Hydroxyacetophenone) was used at its saturation, which was
measured as 0.03 M. Since compound 1 (2-Amino-2-methyl-1,3-
propanediol) has alkaline properties, 0.05 M of this chemical was
first dissolved in an HCl solution with a Cl− concentration

equivalent to that of a 0.5 % NaCl reference solution. This
solution’s pH was then adjusted to 7.0 ± 0.1 with NaOH, similar to
the other solutions.
The hydrogen evolution measurements were repeated three

times for each solution and the mean of the calculated IEs was
used for the corresponding blind test data point. IE is defined as
follows

IE ¼ V0
H2

� V Inh
H2

V0
H2

� 100% ; (1)

where V0
H2

and V Inh
H2

are the volumes of H2 evolved after 20 h of
immersion in the reference NaCl solution and the NaCl solution
containing the investigated chemical compound, respectively.
More details on the hydrogen evolution tests are available in the
original publication by Lamaka et al.24.

Molecular similarity
We selected suitable blind test candidates by using the ExChem
routine21. ExChem exploits molecular similarities to find structu-
rally similar chemical structures in a given database with respect
to a selected chemical compound of interest. We calculated the
underlying molecular similarities using the Smooth Overlap of
Atomic Positions (SOAP) kernel that represents a high-dimensional
similarity representation for the considered molecular com-
pounds22,23. For each given compound, a local environment is
first defined in a spherical region of radius rc around each atom
and then built by a superposition of Gaussian functions with width
ξ. The structural information around an atom that flows into the
similarity measure is directly dependent on the size of rc.
Calculating the translationally and rotationally invariant overlap
between two local environments results in the SOAP kernel. The
kernel can be further raised to a power ζ for improved
discrimination between small or large similarities. Averaging over
all local atomic environments enables the calculation of a global
similarity measure that contains the molecular similarities
between all chemical structures in a given dataset.
Interpretation of the molecular similarities in high-dimensional

space was facilitated by projection to a two-dimensional latent
space and correlation with experimental data. Distant (dissimilar)
or close (similar) structures in the high-dimensional space
maintain their relationships in the low-dimensional space. By
evaluating the relative positions of compounds with respect to the
formation of clusters in the two-dimensional similarity landscape,
we can reveal existing structure-property relationships.

Feature generation
First, the geometries of the 15 blind test molecules were
optimized using the quantum chemical software package
Turbomole 7.4.29 at the TPSSh/def2SVP30,31 level of density
functional theory. The optimized structures were subsequently
used as input for the cheminformatics software package alvaDesc
1.032 and combined with six properties (HOMO, LUMO, HOMO-
LUMO gap (ΔEHL) as well as Cp, Cv, μ calculated at 293 K) that are
directly derived from the output of the performed DFT calcula-
tions to generate the same pool of 1260 molecular descriptors
that have been used in our previous work10.

Feature selection
In Schiessler et al.10, features (i.e. molecular descriptors) were
selected using both ANOVA11–14 and recursive feature elimination
(RFE15) with a random forest regressor16–18 as the underlying
selector, and the corrosion inhibition efficiency as the target
variable. RFE is a feature selection method that fits a specified
regression (or classification) model given the available training
data, and then determines a number of features that least
influence the predictive result. These features are excluded from

E.J. Schiessler et al.

6

npj Materials Degradation (2023)    74 Published in partnership with CSCP and USTB



the available pool, and the whole process is repeated until only
the desired number or features remain.
Both methods were used to identify the group of top three, five,

as well as 63 (i.e. top 5%) features. In all cases, the experiments
were performed 100 times with a fixed train-test split of the
available dataset, and then the group was determined that got
selected most often (i.e., the selection mode). Subsequent
predictive models trained on the various feature groups identified
the set of five features as determined by RFE to be the most
relevant w.r.t. predictions of inhibition efficiency of the available
dataset. A full 10-fold cross-validation analysis confirmed both the
composition of the top performing group as well as its status as
most relevant set of features for predictive modelling.
In this work, we investigated the robustness of previous feature

selection results under expansion of the training data. The 15
compounds listed in Table 1 were added to the original dataset
used in Schiessler et al.10, resulting in a combined dataset of 75
compounds. The resulting dataset compositions were denoted by
DS60, DS15 and DS75, respectively.
Since in Schiessler et al.10 features selected by ANOVA and

groups of three features found by RFE produced significantly
worse results when used in predictive modelling, and the set of 63
features showed signs of having a high noise-to-signal ratio, we
focused our robustness analysis on grouped selection using RFE
for groups of five features only.
For each dataset composition, we repeated the steps described

in Schiessler et al.10, running RFE 100 times using various random
seeds per cross-validation fold, in order to select the grouped top
five features per setting. Cross-validating experiments, such as we
are doing, means splitting available datasets into n equal parts,
called the folds33. The same experiment is then run n times, where
a different portion of the data is withheld each time and serves as
validation set for this fold. In the end, predictive results on the
validation sets are averaged across all folds. This method is
especially relevant when working with small datasets, to reduce
overfitting and to reduce the influence of potential outliers that
may be contained withing the data19,20.
On DS60, the cross-validation folds reported in our previous

study10 we re-used. On the other dataset variations, separate folds
were drawn. Note that DS15 on its own, consisting only of
15 samples, is too small to expect consistent results under cross-
validation. The winning feature sets where the ones that got
selected most often per cross-validation fold and random seed.
We named these FS60, FS75 and FS15, respectively.

Predictive modelling
As before in Schiessler et al.10, we used deep learning to evaluate
the relevance of identified feature sets for predicting inhibition
efficiency of magnesium modulators. Since we restricted the feature
selection process to sets of five features, only the architecture for
what were called ‘small’ networks in Schiessler et al.10 was reused.
Our deep learning networks thus consist of the following layers:

● An input layer accepting inputs from the selected five
descriptors

● A Gaussian noise layer with hyperparameters μ= 0 and
σ= 0.1

● Three fully connected layers with 50, 20, and 10 units,
respectively, all using relu activation

● An output layer with one unit and no activation

The Gaussian noise layer adds some randomness to each input
during training, drawn from a normal distribution with mean μ
and standard deviation σ, which helps to counter the risk of
overfitting on the training data. This layer is only active during the
training phase. The networks were trained for 25 epochs using an
Adam optimiser with learning rate 0.01, and mean squared error
(MSE) as the loss function.

As a preprocessing step, all data that get passed through the
networks were scaled using min-max-scaling, with the target
variable being scaled into the range [0, 1], and the input variables
into the range [− 1, 1].
We applied the same cross-validation folds that were used

during the feature selection process. On each fold and setting, the
same architecture was trained 100 times using different random
seeds. Detailed software specifications are included in the
Supplementary Notes.
For statistical analyses such as calculating the root mean

squared error (RMSE) of the models, predictions for each
compound were first averaged across all cross-validation folds
and random seeds. Note that for the scalability analysis presented
in Section Scalability, the blind testing data were included in the
cross-validation folds. Analyses in this section were therefore not
performed specifically on the blind testing data, but on the
validation set results from each cross-validation fold.
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