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Amachine learning microstructurally predictive framework for
the failure of hydrided zirconium alloys
Tamir Hasan1✉, Laurent Capolungo2✉ and Mohammed Zikry 1✉

Hydride precipitation within zirconium alloys affects ductility and fracture behavior. The complex distribution of hydrides and their
interaction with defects, such as dislocations, have a significant role in crack nucleation and failure. Hence, there is substantial
variability in the microstructural behavior of hydrided zirconium. A deterministic fracture model coupled to a dislocation-density
based crystalline plasticity approach was used to predict failure. Deterministic simulations were used to develop a database of crack
initiation for representative microstructural characteristics, such as texture, crystalline structure, hydride orientations and spacing,
and hydride geometry. The machine learning (ML) analysis is based on Extreme Value Theory (EVT) and a Bayesian based Gaussian
Process Regression (GPR). Fracture probability is significantly influenced by hydride orientation and dislocation-density interactions.
Furthermore, surrogate reduced order models (ROM) models were used to predict the likelihood of failure. This approach provides a
ML framework to predict failure at different physical scales.
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INTRODUCTION
Zirconium alloys play a significant role as cladding and protective
layers for high temperature applications, such as nuclear reactors,
hypersonics, and marine systems1,2. These alloys are generally
corrosion resistant at high temperatures, possess favorable high-
temperature mechanical characteristics, and are resistant to
thermal neutrons and irradiation. Zirconium alloys can, however,
thermo-mechanically degrade through the formation of hydrides
due to high temperature water exposure and long-term storage2–5

and during loss-of-coolant accidents (LOCA)6 for nuclear applica-
tions. Furthermore, these hydrides have different crystalline
structures than the parent zirconium alloy5, which renders these
material systems as multiphase and heterogenous.
Critically, hydride orientation, morphology, distribution, texture,

crystalline structures, spacing, and dislocation-densities all have
interrelated effects on thermo-mechanical behavior at scales
ranging from the nano to the micro7–9, and collectively affect
fracture nucleation and propagation5,7,8. Hsu et al.9 investigated
fracture toughness on thin-walled tubing for different tempera-
tures. They determined that hydride orientation, hydrogen
content, and temperature were all factors influencing fracture
toughness in hydrided zirconium alloys and concluded that the
presence of radial hydrides reduces the fracture toughness at
room temperature when compared with distributions of circum-
ferential hydrides, with Jmax values of pure circumferentially
hydrided samples up to 40 kJ/m2, and values for samples with
52.2% radial hydrides as low as 11 kJ/m29. Kim et al. performed
ring compression tests (RCTs) on both circumferentially and
radially hydrided zirconium alloys. Their results indicate that
radially oriented hydrides are more likely to fracture than
circumferentially oriented hydrides because of the favorable crack
propagation pathways associated with radial hydride arrange-
ments10. Experiments by Pierron et al.11 show that the elongated
grains associated with cold worked and stress relieved (CWSR)
samples compared with a recrystallized process had little impact
on fracture toughness. They also observed void nucleation ahead
of a crack in a hydrided material, which indicates that voids can be

sites of multiple ductile crack nucleation regions, and this
eventually can lead to crack propagation and material rupture11.
Hydride lengths and hydride spacing have also been shown to
affect fracture strengths. For lengths of less than 25 μm, ultimate
tensile stresses in the in Zr-2.5 Nb alloys can decrease by
approximately 1.4 MPa for every 1 μm increase in average hydride
length12.
Other approaches for understanding the relationship between

hydride behavior and fracture have focused on Delayed Hydride
Cracking (DHC)13,14. DHC occurs when hydrogen slowly diffuses to
a preexisting crack tip region, thereby resulting in crack
propagation. Hydride formation at preexisting crack tips leads to
further fracture growth after a delay due to the steadily increasing
presence of the formed hydrides at the crack tip. Sharma et al.15

investigated the fracture behavior of hydrided zirconium alloy
tubing material using mechanical testing. They were able to
change the hydride morphology by annealing a system with 100%
radial hydrides. Varying the annealing temperature between
300 °C, 325 °C, and 350 °C influenced the percentage of circumfer-
ential hydrides. Their findings indicate that a 100% circumferen-
tially hydrided material has more than four times higher critical
crack lengths when compared with a 100% radially hydrided
material, at room temperature. At higher temperatures (250 °C and
above), the radially hydrided critical crack length increases to
match that of the circumferential material. This indicates that the
greatest variation between the fracture response of circumfer-
ential and radial hydrided materials occurs at room temperature.
Additionally, the fracture toughness of predominantly radially
hydrided material was approximately three times lower than that
of the circumferentially hydrided material at room temperature.15.
These experiments clearly indicate that microstructural character-
istics, such as texture and dislocation-densities, need to be
quantified to understand how they specifically affect fracture
nucleation and evolution. Furthermore, most of these experi-
mental investigations pertain to crack propagation in systems with
preexisting cracks as opposed to crack nucleation in hydrided
systems, since crack nucleation is difficult, if not impossible, to
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experimentally quantify. Thus, modeling efforts can provide
further insights into fundamental fracture mechanisms.
In16, finite element (FE) models were used to understand how

hydrogen embrittlement affects cracking and DHC for pre-cracked
materials. Hydride-induced fracture depends on the hydride
microstructure that formed during operation, hydrogen diffusion
to the crack tip is also observed for fractured specimens and this
can also affect crack propagation.
Jernkvist17 also investigated DHC for pre-cracked or notched

zirconium and titanium alloys for different hydride orientations
and volume fractions. Suman18 investigated the impact of crack
and hydride lengths on crack propagation in simulated DHC.
While these studies have provided valuable insights, the link
between dislocation activity and fracture nucleation have not yet
been understood. Other insights were provided from Olsson
et al.19, where fracture toughness was modeled with an ab initio-
based approach using density functional theory (DFT). Their
findings indicated that increasing hydrogen content reduced
ductility by inhibiting dislocation nucleation and accumulation.
This provides a foundation on which to base larger scale fracture
simulations. While these approaches all provide valuable insights,
a comprehensive deterministic modeling approach that incorpo-
rates microstructural variation, the impact of dislocation-densities
on fracture at the microstructural scale is needed to provide
insights and understanding of fracture nucleation that account for
intergranular and transgranular failure. Furthermore, the question
of how to obtain statistical information pertaining to deterministic
fracture models has not yet been clearly addressed.
As these various experimental and computational investigations

indicate, the thermo-mechanical fracture behavior of hydrided
zirconium alloys is dominated by microstructural mechanisms,
such as hydride orientation, material orientation, grain morphol-
ogy, texture, hydride volume fraction and defects, such as
dislocation densities, which collectively can affect multiple crack
nucleation and failure. Deterministic models have provided
insightful understanding of how fracture at the microstructural
scale leads to failure [cf. 19,20], but they have not yet yielded a
comprehensive and quantitative description of microstructure-
induced epistemic uncertainty.
Different machine learning (ML) methods have also been used

to model material characteristics derived from deterministic
models and experiments. ML provides a data driven approach,
through supervised and unsupervised approaches, to determine
dominant properties or behavior from experimentally or compu-
tationally obtained measurements and predictions. For example,
regression neural networks and reduced ordered models (ROMs)
have been used to represent inelastic deformation in crystals and
defect models, such as dislocations and cracks, can be used to
guide predictions of material response for different loading
conditions20. One advantage of creating ROMs for material
models is the ability to use the resulting insights with limited

computational cost for larger scale simulations. For example,
models predicting failure should account for local variabilities
among material properties and behavior, in addition to geome-
trical effects. Hunter used multilayer perceptrons (MLP; artificial
neural networks) on a dataset based on FE element simulations of
a simple homogenous and elastic block-like material with pre-
existing cracks to determine how fracture can occur21. Crystal
plasticity simulations and fracture modeling are often based on
undetermined and unknown parameters that cannot be obtained
experimentally or computationally. Examples for crystal plasticity
can include determining how dislocation-densities accumulate at
GBS and interfaces of hydrides, precipitates, and grain-
boundaries22,23. Numerous ML techniques have been used in
mechanics, materials science, and applied mathematics. Com-
monly used methods are k-nearest neighbors (k-NN), decision
trees (DT), random forest (RF), artificial neural networks (ANN),
Bayesian networks, Gaussian Process Regression, and deep
learning24–26.
Other approaches have attempted a more direct path of using

deep learning methods to predict stress and other material
properties when given a purely spatial input of stresses, strains,
elastic strains, and plastic strains. These methods have shown
promise in simplifying models related to the elastic solution of
beam and plates27,28. These methods alone, however, have not
been used to obtain statistically significant predictions for
complex material systems that span multiple physical scales, such
as hydrided systems.
There is, therefore, a need for measurable ML link to

microstructural mechanisms and characteristics, such that domi-
nant microstructural mechanisms can be identified. Hence, we will
introduce a ROM to predict failure probability as a function of the
material characteristics. The ROM is obtained by mining a
database of crack responses of representative volume elements.
Specifically, the database is constructed using FEM simulations
based on our previously detailed and validated microstructural
deterministic fracture approaches that couple crystalline plasticity
and a microstructurally based fracture nucleation framework. We
will use a multiparametric ROM approach to generalize the results
and explicitly determine the probability of material failure.
Figure 1 shows the proposed approach to develop the fracture

probability models. The starting points are the deterministic
outputs from the dislocation-density based crystalline plasticity
simulations. The exploration and understanding of many dimen-
sions of the parametric space, such as dislocation density
accumulation, texture, shear-slip strains, and hydride distributions,
structure, and orientation, that are difficult, if not impossible, to
obtain experimentally, will provide the data necessary for this
approach. Table 2 shows the parameters modified in these
simulations and their range of values. The method then consists of
expressing the results in a compact form using Extreme Value
Theory (EVT), a Bayesian approach for developing the fracture

Fig. 1 An outline of the ML fracture failure probability model.
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criteria for probability, and a modeling scheme based on Gaussian
Process Regression (GPR) to obtain failure probabilities and the
uncertainty associated with the predictions. The models were then
verified on data that was not used to train them using a test-train
split method. The overall objective of this study is to provide a
database of deterministic FE fracture approaches that explore a
wide parameter space representing variations within hydrided
zirconium material systems, and then to develop Bayesian models,
based on these physically based datasets, to identify the dominant
microstructural characteristics and mechanisms that result in the
failure at different physical scales.
This paper is organized as follows: the multiple slip dislocation-

density crystalline plasticity formulation and derivation of
dislocation-density evolution equations and mobile and immobile
dislocation-density evolution are presented in Section I; the
computational and statistical approaches are outlined in Section
II; the results and discussion of the fracture nucleation probabilities
for different material configurations are given in Section III.

METHODS
Multiple-slip crystal plasticity dislocation-density
We will only present a brief outline of the dislocation-density
crystalline approach used in the present work. A detailed
presentation can be found in Zikry and Kao29 and Shanthraj
and Zikry30. In this approach, it is assumed that, for a given
deformed state of the material, the total dislocation-density of a
particular slip system α, ρα, can be additively decomposed into a
mobile and an immobile dislocation-density, ραm and ραim. Based
on a conservation of mass for mobile and immobile dislocation
densities, during an increment of strain on a slip system, a mobile
dislocation-density rate is generated, and an immobile
dislocation-density rate is annihilated30. Furthermore, the mobile
and immobile dislocation-density rates can be coupled through
the formation and destruction of junctions as the stored
immobile dislocations act as obstacles for evolving mobile
dislocations.
Evolution equations for mobile and immobile dislocation

densities can then be obtained by considering the generation,
interaction, immobilization, and annihilation of dislocation den-
sities to obtain evolution equations. These equations are
dependent on the plastic deformation rate and inform the
evolution of mobile and immobile dislocation densities as

dραm
dt

¼ _γαj j gαsour
b2

ραim
ραm

� �
� gαmnter� � ραm � gαimmob�

b

ffiffiffiffiffiffiffi
ραim

p� �
; (1)

dραim
dt

¼ _γαj j gαmnterþρ
α
m þ gαimmobþ

b

ffiffiffiffiffiffiffi
ραim

p � grecovρ
α
im

� �
; (2)

where gsour is the coefficient pertaining to an increase in the
mobile dislocation density due to dislocation sources, gmnter is the
coefficient related to the trapping of mobile dislocations due to
forest intersections, cross slip around obstacles, or dislocation
interactions, grecov is a coefficient related to the rearrangement
and annihilation of immobile dislocations, and gimmob is related to
the immobilization of mobile dislocations. These coefficients,
which have been nondimensionalized, are summarized in Table 1,
where f0, and φ are geometric parameters. H0 is the reference
activation enthalpy, lc is the mean free path of a gliding
dislocation, b is the magnitude of the Burgers vector, and ρs is
the saturation density. It should be noted that these coefficients
are functions of the immobile and mobile densities, and hence are
updated as a function of the deformation mode.

Orientation relationships (ORs)
ORs are needed for the multiphase system, such that the fcc
hydrides can be represented within the hcp matrix for accurate

interphase behavior. The approach for incorporating ORs
between the zirconium hydrides and hcp parent material was
detailed by Mohamed and Zikry31. In ref. 31, it was shown that
there can be 36 unique ORs between fcc and hcp material
systems. Here, we use the most commonly experimentally
relationship32 as

0001ð Þhcp== 111ð Þfcc and 1121
� �

hcp== 110
� �

fcc: (3)

Fracture approach
The fracture method used here is based on crack nucleation
within a finite element mesh by splitting the element into two
halves along the crack plane using an overlap method. The
method to nucleate and propagate cracks was refined by Wu and
Zikry33 for microstructurally based fracture. This method is
implemented by monitoring the maximum normal component
of traction across all the material cleavage planes. To avoid
numerical instability from the instantaneous release of elastic
energy within the newly cracked element, a traction-free surface is
generated by reducing the nodal forces over a set time step
interval until they reach zero. The crack is then nucleated by
adding phantom nodes to elements aligned to the crack plane.
The detailed approach is given in33.

Fracture stress nucleation and propagation predictions
The univariate branch of Extreme Value Theory (EVT) is a type of
statistics that is focused specifically on large deviations of a
parameter from the mean, and hence it is well suited for extreme
events, such as fracture nucleation. The applicability of the
Gumbel distribution to represent the distribution of maxima is
closely related to EVT, since it is exponentially related to maximal
events. which indicates that it is likely to be useful if the
distribution of the underlying sample data is of the normal or
exponential type20,34.
The generalized extreme value (GEV) distribution34 is a set of

distributions that are designed to capture the distribution of these
large deviations. The Gumbel formulation was chosen for this
study because it has neither a finite upper bound nor a heavy tail,
which is well-suited for fracture nucleation because elemental
fracture stresses are conceptually neither expected to accumulate
at the extremes without unloading (cracking) nor are large sections
of material expected to uniformly aggregate at a particular limit.
The Gumbel distribution It is also known as the Type 1 GEV, and

Table 1. Coefficients for dislocation-density equations (Eqs. 1, 2).
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the associated probability density function (PDF) is

P ¼ 1
β
e� zþe�zð Þ; where z ¼ x � μ

β
: (4)

To characterize element-wise stress in the form of a Gumbel
distribution, individual element stress responses were recorded at
incremental strain levels. The number of values at each stress level
were then normalized by element size. The Gumbel r statistical
function within the SciPy Python library was then used to fit a
Gumbel distribution to the 95th percentile of stress results34. To
test the adequacy of the fit for the use of Gumbel distributions,
the Pearson Coefficients for the individual Gumbel fits were
calculated. The Pearson coefficients are a measure between sets of
data, and hence it is the ratio between the covariance of variables
and the product of their standard deviation; thus, it is essentially a
normalized measurement of the covariance34.
To do this, the probplot function from SciPy34 was used to

generate both an estimate of the quantiles of the sample data and
associated quantile predictions of the fitted Gumbel distribution.
Filliben’s estimate, which is based on calculating the quantiles of
the observed data the quantile function for the Gumbel
distributions34,35. These data were compared and a “goodness of
fit” was calculated using the coefficient of determination. A value
of 1.0 indicates that the quantiles of both the fitted Gumbel
distribution and the observed data match perfectly. 4943 total
Gumbel fits were performed; one for every output print interval
for each simulation. Figure 2 shows these coefficient of
determination values together in histogram format. 90.4% of the
values are between 0.75 and 1.0, which indicates that the Gumbel
fit is an accurate method to approximate the stress response of
the system.
The μ parameters of the Gumbel distributions were individually

calculated and used to represent the extrema within the
representative volume elements (RVEs) being modeled. The shape
parameter also provides valuable information about fat-tailed
characteristics, and this information may be used in future studies.

Bayesian framework
Bayes’ rule was used to generate a framework for linking stress
levels with the associated probabilities of failure. Bayes’ Rule is
given by Eq. 5:

P AjBð Þ ¼ P BjAð Þ � P Að Þ
P Bð Þ : (5)

For this study, PðAÞ and PðBÞ were the probabilities of a crack
forming and of the existence of a stress state at a particular
nominal strain level. PðAÞ was generated by examining the

percentage of the database population at a given strain level that
had cracked. The probabilities of cracking at various stress states
and strain levels were calculated and stored.

Gaussian process regression
Gaussian Process Regression (GPR) was used to represent the
Bayesian framework probabilities in a continuous manner.
Gaussian ProDifferent GPRs were trained for each strain level to
reduce the resulting complexity of the models. The GaussianPro-
cessRegressor function within the SciKit-Learn package was used
to train the models35. To test the validity of our datasets, the data
were split into training and testing segments that comprised 80%
and 20%, respectively, of the total data set size. The included
scoring function was used to verify the accuracy of the
resulting GPRs.

RESULTS AND DISCUSSION
FE models and generated databases
A database of 210 crystal plasticity simulations was generated for
this study to identify the variation of stress and fracture
characteristics in hydrided zirconium. Each simulation was
performed with and without crack nucleation, so that the localized
material yielding associated with crack formation would not
interfere with the bulk stress measurements performed for this
study. The database was populated by randomly modifying five
parameters of interest using 4 predefined levels between a
minimum value and a maximum value. These parameters are
shown in Table 2. These parameters were chosen because they
belong to two general categories of interest: (1) material
orientation, (2) hydride population geometry and distributions.
These categories influence both dislocation-density activity and
material fracture5,12,15,22. Together, they comprise the material
fingerprint of individual simulations and are the only differentiat-
ing factor between them. The trajectory scheme from the
Elementary Effects method implemented using the SAlib library,
and was also used as the method of selecting random trajectories
throughout the solution space made of all possible material
fingerprints36,37. These models were designed to emulate the
material response of a cladding tube undergoing a uniform
internal pressurization. Symmetry boundary conditions were used
with plane strain loading. A representative tessellated hydrided
volume is shown in Fig. 3. A new multigrain representative volume
element (RVE) was developed for each simulation, with a
convergent mesh size of approximately 60,000 elements and 49
parent zirconium alloy grains with an average grain diameter of 25
microns. The mesh size was obtained after a detailed mesh
convergence analysis. The grain-shapes were generated by
Voronoi tessellation19. The material properties and hydrided
fracture behavior were validated using the work of Mohamed
and Zikry22 and the properties are given in Table 3.

Hydride orientation on crack probability
Crack probabilities at 1.25%, 1.50%, and 1.75% nominal strains
were obtained. It should be underscored that these are the global
nominal strains, and that the local shear slip associated with
different slip systems are significantly higher. For each nominal
strain, fracture critical stress levels were varied to understand the
impact of fracture critical stress on the resulting crack probabil-
ities. Three categories were used to define hydride orientations:
circumferential, radial, and mixed. Circumferential hydrides are
parallel to the loading direction, radial hydrides are perpendicular
to the loading direction, and mixed hydrides occur in all other
orientations.
The fracture stress obtained as a function of the probabilities

are shown in Figs. 4–6 for the fracture stress probability

Fig. 2 Pearson Coefficients for the trained Gumbel distributions,
n= 4943.
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corresponds to a nucleated crack. The circumferentially hydrided
zirconium has reduced fracture probability when compared to
radial and mixed hydrided materials at the same stress levels. At
the higher strain levels, such as at 1.75% nominal strain, the
difference between the fracture probabilities is lower because the
impact of aggregate nominal strain on the material as a factor
influencing fracture outweighs the impact of hydride orientation.
The probability of radial cracks nucleating at lower strains than
circumferential hydrides is consistent with experimental observa-
tions (cf.9,10.). These probabilities indicate that hydrided zirconium
alloys will eventually nucleate cracks and rupture no matter what
the hydride distribution, and this further underscore how hydrided
zirconium alloys are always a precursor to failure.

Models describing crack probability as a function of strain and
fracture stress
Gaussian Process Regressors (GPRs) were used to generate a
uniform function approximation of the relationship between the
probability of failure and the fracture stress at various strain levels.

The regressor predictions, as a function of the training data, are
shown in Figs. 7–10. At lower strain levels, such as 1.25%, fracture
probability is low until large fracture stress levels develop in the
material at approximately 1.5 GPa. Also note that the shaded areas
correspond to the uncertainties or standard deviations associated
with the GPR predictions. This is compared with the 2.0% strain
level, where any fracture stress level above 1.6 GPa is predicted for
failure. This indicates that the fracture stress and the nominal
strain both play a significant role in material failure; lower strain
levels require higher fracture stresses to fracture and at higher
strain levels, lower fracture stresses are required. The lower
fracture stress for nucleation is due to the increased ductility
associated with increased immobile dislocation density activity. In
Fig. 8, the fracture probability does not extend to 1.0 because the
sparse nature of the dataset resulted in a lack of sufficient fracture
data at this strain level.

Table 2. Hydride microstructural distributions.

Parameter name Category of Interest: Fingerprint Minimum value Maximum value

Hydride Length Hydride geometry 0.5E−5 m 3.0E−5 m

Parent Material Orientation Material Orientation 0° 90°

Hydride Volume Fraction Hydride geometry 5% 20%

Hydride Orientation Hydride geometry 0° 90°

Hydride Spacing Hydride geometry 2.5E−6 m 1.0E−5 m

Fig. 3 A cladding tube and loading diagram of a typical multiphase
hydrided zirconium alloy representative volume element.

Table 3. Material Properties.

Property Zircaloy-4 δ-hydrides

Young’s modulus (GPa) 35 132

Static yield stress (MPa) 220 220

Poisson’s ratio 0.349

Rate sensitivity coefficient (rate of change of
slip rate with respect to each resolved shear
stress based on a power law22)

45

Initial immobile dislocation density (m−2) 1 × 1010

Initial mobile dislocation density (m−2) 1 × 107

Burger’s vector 1 × 10–10

Fracture stress (MPa) (N/mm2) 700 1000

Applied tensile nominal strain (%) 12 800

Fig. 4 Bayesian crack probability analysis for 1.25% nominal strain.

Fig. 5 Bayesian crack probability analysis for 1.50% nominal strain.
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Assessing the accuracy distribution of fracture
To test the effectiveness of these ML models, the test-set data
were analyzed using the trained GPRs at 1.25%, 1.5%, 1.75% and
2.0% strain, such that the models were tested against data that
had not been used to train them, based on the 80-20% training set
approach, where we interrogate 20% of the data to assess the

probability of failure. Ideally, the models would predict a 100%
likelihood of failure at the strain levels that the individual test
simulations indicated a failure. The individual probability outputs
are shown as the histogram in Fig. 11 to demonstrate the
effectiveness of the modeling system on a population of input
data. The models demonstrate a high level of accuracy, with all
input data indicating a failure probability of least 94%.

Models for crack probability as a function of strain and shear
slip
Dislocation-densities play a dominant role in crack nucleation,
particularly at the interfaces within multiphase materials, such as
hydrided zirconium alloys. Dislocation densities can blunt crack
growth directions and nucleation sites38. Hence, shear slip, which
is the total accumulated slip on all slip systems, was used to
determine failure probability in the same manner as fracture
critical stress. Figures 12, and 13 show the predictions of failure
probability given by the interrogated data. The highest values of
shear slip at lower strain levels, such as 1.5%, inhibit crack
nucleation, reducing the probability of failure. This is consistent
with hydrides, particularly with the fcc crystal structure, being
dislocation sources within a material and allowing limited
amounts of ductility and crack-blunting until the interface-
induced effects become dominant at higher strain levels22,31,39

(Fig. 14).

Fig. 7 Fitted GPR representing the failure probability for fracture
critical stress levels at 1.25% nominal strain.

Fig. 6 Bayesian crack probability analysis for 1.75% nominal strain.

Fig. 8 Fitted GPR representing the failure probability for fracture
critical stress levels at 1.5% nominal strain.

Fig. 9 Fitted GPR representing the failure probability for fracture
critical stress levels at 1.75% nominal strain.

Fig. 10 Fitted GPR representing the failure probability for fracture
critical stress levels at 2.0% nominal strain.
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Figure 15 shows the failure probability predictions from the
models when provided with the already-failed test-set data. While
some level of accuracy is observed (all values greater than 68%
probability), the predictions are overall less accurate than those
trained on fracture critical stresses (99.7% vs. 90.6% average

prediction). While this does corroborate that there is a link
between dislocation-density activity and fracture probability, it
also demonstrates that this link is not as strong as that between
fracture critical stress and fracture probability. This is likely
because dislocation-density activity that occurs during material
strain can alleviate the probability of failure through crack
blunting effects but can also be an indicator of the excessive
plastic work that leads to fracture, as indicated by Elkhodary and
Zikry40.

Heatmaps predicting probability of failure
These GPRs can be used to generate cracking probability
predictions on a spatial element within a mesh where fracture
critical stress is known. The knowledge of where cracking is likely
to occur is helpful for examining the impact of hydrides in an RVE
and for adding additional functionality to simulations where crack
nucleation is not modeled. In Fig. 16, the process is visually
demonstrated. The normal stress results from the simulation at the
strain of interest and is used as element-wise input data to the
GPRs. The resulting predictions are then plotted to the same
elements, providing a spatial method for interpreting the results.
In this case, hydrided regions of the mesh are most likely to crack
due to factors such as hydride orientation and spacing. This is

Fig. 11 Predicted probability of failure on test-set data at 1.25%,
1.5%, 1.75% and 2.0% strains. The ideal value is 1.0, or 100%
probability.

Fig. 12 Fitted GPR representing the failure probability for shear
stress levels at 1.5% nominal strain.

Fig. 13 Fitted GPR representing the failure probability for shear
stress levels at 1.75% nominal strain.

Fig. 14 Fitted GPR representing the failure probability for shear
stress levels at 2.0% nominal strain.

Fig. 15 Predicted probability of failure on test-set data at 1.5%,
1.75% and 2.0% strain levels. The ideal value is 1.0, or 100%
probability.
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consistent with experimental observations and measurements and
fracture predictions5,12,15.

SLIP SYSTEM RESPONSE AND DISLOCATION DENSITY
EVOLUTION
The accumulation of dislocation-densities is an important micro-
structural characteristic that dictates material performance at high
strain levels22. The level of immobilization generated in individual
slip systems is indicative of the material’s ability to deform on
certain slip planes and directions. Therefore, this would be
essential for understanding one of the root causes of crack
nucleation. The dislocation-density data from all simulations in the
database were segmented by orientation, and then further by
material type (hydrided and non-hydrided). The average activation
for each slip system was then developed into separate bar charts
for mobile slip system activation and immobile slip system
activation. Figures 17–20 show the slip systems for the parent
zirconium hcp matrix, and Figs. 21–24 show the slip systems for
the fcc hydrides. Tables 3 and 4 have the slip systems that
correspond to each index referenced in the figures (Table 5).
Overall, the greatest slip system magnitudes of activation were

observed for the 0° case. This is significant because this orientation
is the preferential orientation for both dislocation mobility

(sources) and immobilization. In physical terms, the 0° orientation
corresponds to the material grains being oriented along the
circumference of a cladding rod. This phenomenon is demon-
strated at lower strain levels within hydrides (Figs. 21, 23) and is no
longer as apparent at higher strain levels (Figs. 22, 24). This means
that hydrides can contribute to both mobile and immobile
dislocation accumulation within a material at higher strain levels,
regardless of the parent material orientation. The accumulation of
immobile dislocation activity within the hydrides is a driving factor
for fracture at higher strain levels. Additionally, hydrides
consistently had higher slip system activation than the zirconium
(hcp) parent material at lower strain levels, and lower activity than
the parent material at higher strain levels, for both mobile and
immobile dislocation densities. However, the hcp parent material
had concentrated dislocation activity across a relatively small

Fig. 16 A sample microstructure showing visual cracking probabil-
ities as a heat map generated by the trained models, showing how
cracks are most likely to initiate near hydride tips.

Fig. 17 Average mobile slip system activation for parent material
(hcp) at 1.25% nominal strain.

Table 4. HCP Slip Systems.

Basal 1 (0 0 0 1) [2 1 1 0]

2 (0 0 0 1) [1 2 1 0]

3 (0 0 0 1) [1 1 2 0]

Prismatic 4 (1 0 1 0) [1 2 1 0]

5 (0 1 1 0) [2 1 1 0]

6 (1 1 0 0) [1 1 2 0]

Pyramidal <a> 7 (1 0 1 1) [1 2 1 0]

8 (0 1 1 1) [2 1 1 0]

9 (1 1 0 1) [1 1 2 0]

10 (1 0 1 1) [1 2 1 0]

11 (0 1 1 1) [2 1 1 0]

12 (1 1 0 1) [1 1 2 0]

Pyramidal <c+ a> 13 (1 0 1 1) [1 1 2 3]

14 (1 0 1 1) [2 1 1 3]

15 (0 1 1 1) [1 1 2 3]

16 (0 1 1 1) [1 2 1 3]

17 (1 1 0 1) [2 1 1 3]

18 (1 1 0 1) [1 2 1 3]

19 (1 0 1 1) [2 1 1 3]

20 (1 0 1 1) [1 1 2 3]

21 (0 1 1 1) [1 1 2 3]

22 (0 1 1 1) [1 2 1 3]

23 (1 1 0 1) [2 1 1 3]

24 (1 1 0 1) [1 2 1 3]

Table 5. FCC Slip Systems.

1 (1 1 1) [1 0 1]

2 (1 1 1) [1 1 0]

3 (1 1 1) [0 1 1]

4 (1 1 1) [0 1 1]

5 (1 1 1) [1 1 0]

6 (1 1 1) [1 0 1]

7 (1 1 1) [1 0 1]

8 (1 1 1) [1 1 0]

9 (1 1 1) [0 1 1]

10 (1 1 1) [0 1 1]

11 (1 1 1) [1 1 0]

12 (1 1 1) [1 0 1]
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number of slip systems. This indicates that the hcp parent
material’s ability to blunt cracks is limited to a small number of slip
systems and directions that heavily depend on material orienta-
tion, whereas the fcc hydrides are more capable of serving as a
dislocation source regardless of their orientation. Hence, the fcc

hydrides provide both (1) higher magnitudes of dislocation
activation at low strains and (2) relatively similar activation
regardless of parent material orientation to the loading axis.
Mobile dislocation density activity is also a significant indicator

of the ductility within a material. For the parent zirconium
material, the (0110) [2110], (0111) [2110], and (0111) [1123] slip
systems displayed the greatest mobile dislocation densities
throughout the strain interval from 1.25% to 2.0%. (Figs. 17,18)
This indicates that a combination of prismatic and pyramidal
planes is most responsible for the ductility in the parent zirconium
material. For the hydrides, Figs. 21 and 22 show that most of the
ductile slip activity occurs on the (1 1 1) family of planes, and that
as strain levels increase, the most active systems become the (1 1
1) [0 1 1] and (1 1 1) [1 1 0] systems.
Immobilized dislocation-densities can be representative of

dislocation pileups within a material that reduce ductility and
eventually lead to crack nucleation. For the parent material, most
active immobile slip systems correspond to the most active
mobile slip systems and are a combination of prismatic and
pyramidal <a> systems. The most active immobilized slip system
is the pyramidal (1 1 0 1) [1 1 2 0] system, but this system is
consistently most active for the 0° material orientation, indicating
that preferential material orientations that correspond to reduced
levels of dislocation pileups exist. (Figs. 17, 18) Furthermore, while
the basal cleavage planes do accumulate some immobile
dislocation-densities, they are not as active as the prismatic
system at higher strain levels. Within the hydrides (Fig. 24), the

Fig. 18 Average mobile slip system activation for parent material
(hcp) at 2.0% nominal strain.

Fig. 22 Average mobile slip system activation for hydride material
(fcc) at 2.0% nominal strain.

Fig. 19 Average immobile slip system activation for parent material
(hcp) at 1.25% nominal strain.

Fig. 20 Average immobile slip system activation for parent material
(hcp) at 2.0% nominal strain.

Fig. 21 Average mobile slip system activation for hydride material
(fcc) at 1.25% nominal strain.
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immobile slip system activation was far more uniform across all
slip systems when compared with the parent material activations
(Fig. 20) This is consistent with hydrides typically serving as
embrittling agents where cracks form and propagate within a
larger material, regardless of their orientation.
Crack nucleation predictions were obtained using a database of

210 FE deterministically obtained hydrided zirconium fracture
models and a Bayesian framework. The deterministic predictions
were obtained using a dislocation-density based crystalline
plasticity approach and a nonlinear FE and microstructurally
based fracture model. Extreme Value Theory was used to
characterize the fracture nucleation critical stress and shear slip
levels within the simulations, and interrelated GPRs predictions
provided probabilities of fracture nucleation with uncertainty
bounds for a myriad of microstructural characteristics, such as
hydride orientations and distributions, texture, and crystalline
structures, such that dominant mechanisms can be identified.
Orientation relations between the material phases provided an
accurate representation of the complex interaction between the
fcc and hcp materials for these multi-crystalline and phase
systems. The effects of fracture critical stress and shear slip on
crack nucleation were investigated, and these were dominant
characteristics related to failure.
Gumbel distributions were shown to be an accurate form for

describing the extrema of the stress response of a material. The
GPR ML approach was used to quantify uncertainties in the
resulting ROMs. Crack nucleation was accurately predicted using
both shear slip and fracture critical stress as dominant output
categories. These output features are also directly related to the
accumulation of immobile and mobile dislocation densities. As the
GPR predictions indicate, these dislocation-densities are related to
shear stain accumulation and the competing effects of crack
nucleation and crack blunting. Hydride orientation is another
significant factor for the likelihood of failure at lower strain levels.
At specified failure strains, radial hydrides have a higher
probability of failure at similar stress levels than do circumferential
hydrides. Hydrides displayed the greatest dislocation-density
activation at lower strain levels and serve as dislocation sources
within the multiphase material. These predictions of mechanistic
behavior, such as the identification of how immobile and mobile
densities on specific slip systems, can only have obtained with our
Bayesian based GPR predictions. Models of failure probability were
used to accurately create heatmaps showing cracking likelihood.
These proposed predictions provide a needed link and coupling

between validated deterministic and ML approaches for a compre-
hensive understanding of the crack nucleation and propagation of
fracture for hydrided zirconium alloys. This approach can be used to

predict failure in other multiphase materials, such as alloys with
inclusions or precipitates and coated material systems, at different
physical scales ranging from the nano to the micro, such that
validated deterministic models can be used to generate physically
accurate datasets for ML approaches, trained datasets, and ROMs.

DATA AVAILABILITY
All the relevant data for the manuscript is provided in https://github.com/tshasan-
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