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Interpretable machine learning for maximum corrosion depth
and influence factor analysis
Yuhui Song 1, Qinying Wang 1✉, Xingshou Zhang1, Lijin Dong1✉, Shulin Bai2, Dezhi Zeng3, Zhi Zhang3, Huali Zhang4 and
Yuchen Xi 1✉

We have employed interpretable methods to uncover the black-box model of the machine learning (ML) for predicting the
maximum pitting depth (dmax) of oil and gas pipelines. Ensemble learning (EL) is found to have higher accuracy compared with
several classical ML models, and the determination coefficient of the adaptive boosting (AdaBoost) model reaches 0.96 after
optimizing the features and hyperparameters. In this work, the running framework of the model was clearly displayed by
visualization tool, and Shapley Additive exPlanations (SHAP) values were used to visually interpret the model locally and globally to
help understand the predictive logic and the contribution of features. Furthermore, the accumulated local effect (ALE) successfully
explains how the features affect the corrosion depth and interact with one another.
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INTRODUCTION
The current global energy structure is still extremely dependent
on oil and natural gas resources1. Metallic pipelines (e.g. X80, X70,
X65) are widely used around the world as the fastest, safest, and
cheapest way to transport oil and gas2–6. Nevertheless, pipelines
may face leaks, bursts, and ruptures during serving and cause
environmental pollution, economic losses, and even casualties7.
Most investigations evaluating different failure modes of oil and
gas pipelines show that corrosion is one of the most common
causes and has the greatest negative impact on the degradation
of oil and gas pipelines2. Lam’s8 analysis indicated that external
corrosion is the main form of corrosion failure of pipelines.
External corrosion of oil and gas pipelines is a time-varying
damage mechanism, the degree of which is strongly dependent
on the service environment of the pipeline (soil properties, water,
gas, etc.), age, and whether and how external protection is
applied1. All of these features contribute to the evolution and
growth of various types of corrosion on pipelines. Among all
corrosion forms, localized corrosion (pitting) tends to be of high
risk. Therefore, estimating the maximum depth of pitting
corrosion accurately allows operators to analyze and manage
the risks better in the transmission pipeline system and to plan
maintenance accordingly.
In recent years, many scholars around the world have been

actively pursuing corrosion prediction models, which involve
atmospheric corrosion, marine corrosion, microbial corrosion,
etc.9–13. To predict the corrosion development of pipelines
accurately, scientists are committed to constructing corrosion
models from multidisciplinary knowledge. Initially, these models
relied on empirical or mathematical statistics to derive correla-
tions, and gradually incorporated more factors and deterioration
mechanisms. The increases in computing power have led to a
growing interest among domain experts in high-throughput
computational simulations and intelligent methods. It is a trend
in corrosion prediction to explore the relationship between

corrosion (corrosion rate or maximum pitting depth) and various
influence factors using intelligent algorithms.
ML has been successfully applied for the corrosion prediction of

oil and gas pipelines. Ren et al.14 took the mileage, elevation
difference, inclination angle, pressure, and Reynolds number of
the natural gas pipelines as input parameters and the maximum
average corrosion rate of pipelines as output parameters to
establish a back propagation neural network (BPNN) prediction
model. The predicted values and the real pipeline corrosion rate
are highly consistent with an error of less than 0.1%. Xie et al.15

and Liao et al.16 employed the BPNN to predict the growth of
corrosion in pipelines with different inputs. Meanwhile, other
neural network (DNN, SSCN, et al.) models were widely used to
predict corrosion of pipelines as well17–22. Support vector machine
(SVR) is also widely used for the corrosion prediction of pipelines.
Luo et al.23 established the corrosion prediction model of the wet
natural gas gathering and transportation pipeline based on the
SVR, BPNN, and multiple regression, respectively. Compared with
the the actual data, the average relative error of the corrosion rate
obtained by SVM is 11.16%, but 19.54% and 25.32% are obtained
by the ANN and multivariate analysis methods, respectively.
Zhang et al.24 combined modified SVM with unequal interval
model to predict the corrosion depth of gathering gas pipelines,
and the prediction relative error was only 0.82%. In addition, El
Amine et al.2 proposed an efficient hybrid intelligent model based
on the feasibility of SVR to predict the dmax of offshore oil and
gas pipelines. Although the single ML model has proven to be
effective, high-performance models are constantly being
developed.
EL is a composite model, and its prediction accuracy is higher

than other single models25. Ben et al.25 developed corrosion
prediction models based on four EL approaches. In addition, they
performed a rigorous statistical and graphical analysis of the
predicted internal corrosion rate to evaluate the model’s
performance and compare its capabilities. AdaBoost and Gradient
boosting (XGBoost) models showed the best performance with
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RMSE values of 0.052. However, these studies fail to emphasize the
interpretability of their models. Despite the high accuracy of the
predictions, many ML models are uninterpretable and users are
not aware of the underlying inference of the predictions26. That is,
the prediction process of the ML model is like a black box that is
difficult to understand, especially for the people who are not
proficient in computer programs. Interpretable ML solves the
interpretation issue of earlier models. It converts black box type
models into transparent models, exposing the underlying reason-
ing, clarifying how ML models provide their predictions, and
revealing feature importance and dependencies27. In recent
studies, SHAP and ALE have been used for post hoc interpretation
based on ML predictions in several fields of materials science28,29.
However, how the predictions are obtained is not clearly
explained in the corrosion prediction studies.
In this work, we applied different models (ANN, RF, AdaBoost,

GBRT, and LightGBM) for regression to predict the dmax of oil and
gas pipelines. Then the best models were identified and further
optimized. More importantly, this research aims to explain the
black box nature of ML in predicting corrosion in response to the
previous research gaps. The study visualized the final tree model,
explained how some specific predictions are obtained using SHAP,
and analyzed the global and local behavior of the model in detail.
Moreover, ALE plots were utilized to describe the main and
interaction effects of features on predicted results. This study
emphasized that interpretable ML does not sacrifice accuracy or
complexity inherently, but rather enhances model predictions by
providing human-understandable interpretations and even helps
discover new mechanisms of corrosion.

RESULTS AND DISCUSSION
Data analysis and pre-processing
Variance, skewness, kurtosis, and coefficient of variation are used
to describe the distribution of a set of data, and these metrics for
the quantitative variables in the data set are shown in Table 1.
Specifically, the kurtosis and skewness indicate the difference
from the normal distribution. The coefficient of variation (CV)
indicates the likelihood of the outliers in the data. It is generally
considered that outliers are more likely to exist if the CV is higher
than 0.15. As shown in Table 1, the CV for all variables exceed 0.15
excluding pp (pipe/soil potential) and bd (bulk density), which
means that outliers may exist in the applied dataset. In addition,
the variance, kurtosis, and skewness of most the variables are
large, which further increases this possibility.
The violin plot reflects the overall distribution of the original

data. Box plots are used to quantitatively observe the distribution
of the data, which is described by statistics such as the median,
25% quantile, 75% quantile, upper bound, and lower bound. The

box contains most of the normal data, while those outside the
upper and lower boundaries of the box are the potential outliers.
Figure 1 shows the combination of the violin plots and box plots
applied to the quantitative variables in the database. It can be
found that there are potential outliers in all features (variables)
except rp (redox potential). Considering the actual meaning of the
features and the scope of the theory, we found 19 outliers, which
are more than the outliers marked in the original database, and
removed them.
Although the coating type in the original database is considered

as a discreet sequential variable and its value is assigned
according to the scoring model30, the process is very complicated.
To make the categorical variables suitable for ML regression
models, one-hot encoding was employed. Table 2 shows the one-
hot encoding of the coating type and soil type. For example, each
soil type is represented by a 6-bit status register, where clay and
clay loam are coded as 100000 and 010000, respectively. The
status register bits are named as Class_C, Class_CL, Class_SC,
Class_SCL, Class_SL, and Class_SYCL accordingly. The one-hot
encoding also implies an increase in feature dimension, which will
be further filtered in the later discussion.

Performance evaluation of the models
This section covers the evaluation of models based on four
different EL methods (RF, AdaBoost, GBRT, and LightGBM) as well
as the ANN framework. It is noted that the ANN structure involved
in this study is the BPNN with only one hidden layer. Five
statistical indicators, mean absolute error (MAE), coefficient of
determination (R2), mean square error (MSE), root mean square
error (RMSE), and mean absolute percentage error (MAPE) were
used to evaluate and compare the validity and accuracy of the
prediction results for 40 test samples.
Table 3 reports the average performance indicators for ten

replicated experiments, which indicates that the EL models
provide more accurate predictions for the dmax in oil and gas
pipelines compared to the ANN model. In general, the superiority
of ANN is learning the information from the complex and high-
volume data, but tree models tend to perform better with smaller
dataset. The pre-processed dataset in this study contains
240 samples with 21 features, and the tree model is more
superior at handing this data volume. The results show that RF,
AdaBoost, GBRT, and LightGBM are all tree models that outper-
form ANN on the studied dataset.
As shown in Fig. 2a, the prediction results of the AdaBoost

model fit the true values best under the condition that all models
use the default parameters. The scatters of the predicted versus
true values are located near the perfect line as in Fig. 2b. Further
analysis of the results in Table 3 shows that the Adaboost model is

Table 1. Description of the overall distribution of the variables.

Variable Variance Kurtosis Skewness CV

dmax 4.18 7.07 2.52 1.011

t 83.14 0.58 0.72 0.397

pH 0.86 0.52 0.51 0.152

pp 0.06 3.90 −1.18 −0.273

re 3127.03 8.73 2.53 1.115

wc 44.35 7.43 1.51 0.279

bd 0.008 −0.18 0.12 0.068

cc 5648.94 22.42 3.99 1.575

bc 641.6 17.45 3.76 1.288

sc 28285.2 15.73 3.33 1.099

rp 7307.5 −0.86 0.23 0.512 Fig. 1 Data distribution and outliers. A combination of box plot
and violin plot to visualize the distribution and outliers of the data.
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superior to the other models in all metrics among EL, with R2 and
RMSE values of 0.895 and 0.624, respectively. The reason is that
AdaBoost, which runs sequentially, enables to give more attention
to the missplitting data and constantly improve the model,
making the sequential model more accurate than the simple
parallel model.

Adaboost model optimization
The AdaBoost was identified as the best model in the previous
section. The screening of features is necessary to improve the
performance of the Adaboost model. A preliminary screening of
these features is performed using the AdaBoost model to calculate
the importance of each feature on the training set via “feature_-
importances_” function built into the Scikit-learn python module.
As shown in Fig. 3, pp has the strongest contribution with an
importance above 30%, which indicates that this feature is
extremely important for the dmax of the pipeline. The pp
(protection potential, natural potential, Eon or Eoff potential) is a
parameter related to the size of the electrochemical half-cell and is
an indirect parameter of the surface state of the pipe at a single
location, which covers the macroscopic conditions during the
assessment of the field conditions31. The industry generally
considers steel pipes to be well protected at pp below −850 mV32.
pH and cc (chloride content) are another two important

environmental factors, with importance of 15.9% and 12.3%,
respectively. The acidity and erosion of the soil environment are
enhanced at lower pH, especially when it is below 51. Chloride
ions are a key factor in the depassivation of naturally occurring
passive film. At concentration thresholds, chloride ions decom-
pose this passive film under microscopic conditions, accelerating
corrosion at specific locations33. The service time of the pipeline is

also an important factor affecting the dmax, which is in line with
basic fundamental experience and intuition. The contribution of
all the above four features exceeds 10%, and the cumulative
contribution exceeds 70%, which can be largely regarded as key
features. Meanwhile, the calculated results of the importance of
Class_SC, Class_SL, Class_SYCL, ct_AEC, and ct_FBE are equal to 0,
and thus they are removed from the selection of key features. It is
worth noting that this does not absolutely imply that these
features are completely independent of the damx. Probably due
to the small sample in the dataset, the model did not learn
enough information from this dataset.
In order to identify key features, the correlation between

different features must be considered as well, because strongly
related features may contain the redundant information. They
may obscure the relationship between the dmax and features,
and reduce the accuracy of the model34. Figure 4 reports
the matrix of the Spearman correlation coefficients between the
different features, which is used as a metric to determine the
related strength between these features. bd (soil bulk density) and
class_SCL are closely correlated with the coefficient above 0.75,
and t shows a correlation of 0.78 with ct_CTC (coal-tar-coated
coating). Correlation coefficient 0.6–0.8 can be considered as
strongly correlated. Based on the data characteristics and
calculation results of this study, we used the median 0.7 as the
threshold value. Strongly correlated (>0.7) features imply the
similarity in nature, and thus the feature dimension can be
reduced by removing less important factors from the strongly
correlated features. As an example, the correlation coefficients of
bd with Class_C (clay) and Class_SCL (sandy clay loam) are −0.80
and 0.75, respectively, which indicates a close monotonic
relationship between bd and these two features. Specifically,
class_SCL implies a higher bd, while Claa_C is the contrary. As
determined by the AdaBoost model, bd is more important than
the other two factors, and thus so Class_C and Class_SCL are
considered as the redundant features and removed from the
selection of key features. Only bd is considered in the final model,
essentially because it implys the Class_C and Class_SCL. Similarly,
ct_WTC and ct_CTC are considered as redundant.
Table 4 summarizes the 12 key features of the final screening.

Among soil and coating types, only Class_CL and ct_NC are
considered. In addition, the association of these features with the
dmax are calculated and ranked in Table 4 using GRA, and they all
exceed 0.9, verifying that these features are crucial. The accuracy
of the AdaBoost model with these 12 key features as input is
maintained (R2= 0.96) and the model is more robust.

Table 2. One-hot encoding of coating and soil type.

Variable One-hot code

Class_C Class_CL Class_SC Class_SCL Class_SL Class_SYCL

Class C 1 0 0 0 0 0

CL 0 1 0 0 0 0

SC 0 0 1 0 0 0

SCL 0 0 0 1 0 0

SL 0 0 0 0 1 0

SYCL 0 0 0 0 0 1

ct_AEC ct_CTC ct_FBE ct_NC ct_WTC

ct AEC 1 0 0 0 0

CTC 0 1 0 0 0

FBE 0 0 1 0 0

NC 0 0 0 1 0

WTC 0 0 0 0 1

Table 3. Average performance of models.

Average Evaluation
Metrics

Model

RF AdaBoost GBRT LightGBM ANN

MSE 0.892 0.406 0.669 0.716 1.176

RMSE 0.934 0.624 0.799 0.814 1.084

MAE 0.639 0.430 0.552 0.576 0.792

R² 0.764 0.895 0.830 0.804 0.733

MAPE 30.585 25.772 31.293 30.843 37.278
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There are numerous hyperparameters that affect the perfor-
mance of the AdaBoost model, including the type and number of
base estimators, loss function, learning rate, etc. In this study, the
base estimator is set as decision tree, and thus the hyperpara-
meters in the decision tree are also critical, such as the maximum
depth of the decision tree (max_depth), the minimum sample size
of the leaf nodes, etc. Figure 5 shows how the changes in the
number of estimators and the max_depth affect the performance
of the AdaBoost model with the experimental dataset. The line
indicates the average result of 10 tests, and the color block is the
error range.
It can be found that as the estimator increases (other

parameters are default, learning rate is 1, number of estimators
is 50, and the loss function is linear), the MSE and MAPE of the
model decrease, while R2 increases. The model performance
reaches a better level and is maintained when the number of
estimators exceeds 50. In addition, the error bars of the model also
decrease gradually with the increase of the estimators, which
means that the model is more robust. The max_depth significantly

affects the performance of the model. The overall performance is
improved as the increase of the max_depth. However, once the
max_depth exceeds 5, the model tends to be stable with the R2,
MSE, and MAEP equal to 0.950, 0.225, and 0.302, accordingly.
To further determine the optimal combination of hyperpara-

meters, Grid Search with Cross Validation strategy is used to
search for the critical parameters. In this study, only the
max_depth is considered in the hyperparameters of the decision
tree due to the small sample size. The candidate for the number of
estimator is set as: [10, 20, 50, 100, 150, 200, 250, 300]. The
candidates for the loss function, the max_depth, and the learning
rate are set as [‘linear’, ‘square’, ‘exponential’], [3, 5, 7, 9, 12, 15, 18,
21, 25], and [0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1], accordingly. The total
search space size is 8×3×9×7. Finally, the best candidates for the
max_depth, loss function, learning rate, and number of estimators
are 12, ‘liner’, 0.1, and 50, accordingly.

Model visualization and interpretation
Previous ML prediction models usually failed to clearly explain
how these predictions were obtained, and the same is true in
corrosion prediction, which made the models difficult to under-
stand. To explore how the different features affect the prediction
overall is the primary task to understand a model. In this work,
SHAP is used to interpret the prediction of the AdaBoost model on
the entire dataset, and its values are used to quantify the impact
of features on the model output. A negative SHAP value means
that the feature has a negative impact on the prediction, resulting
in a lower value for the model output. Conversely, a positive SHAP
value indicates a positive impact that is more likely to cause a
higher dmax.
Figure 6a depicts the global distribution of SHAP values for all

samples of the key features, and the colors indicate the values of
the features, which have been scaled to the same range. Blue and
red indicate lower and higher values of features. As can be seen
that pH has a significant effect on the dmax, and lower pH usually
shows a positive SHAP, which indicates that lower pH is more
likely to improve dmax. Conversely, a higher pH will reduce the
dmax. In addition, previous studies showed that the corrosion rate
on the outside surface of the pipe is higher when the
concentration of chloride ions in the soil is higher, and the
deeper pitting corrosion produced35. This is consistent with the
depiction of feature cc in Fig. 6a, where higher values of cc
(chloride content) have a reasonably positive effect on the dmax
of the pipe, while lower values have negative effect. Similarly,
higher pp (pipe/soil potential) significantly increases the

Fig. 3 The relative importance of 21 features according to
AdaBoost. The important features will be used for the subsequent
optimization step.

Fig. 2 Prediction results of models. a Predictions of different models on the test set, b scatter plot of predictions using Adaboost model.
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probability of larger pitting depth, while lower pp reduces the
dmax. This is because sufficiently low pp is required to provide
effective protection to the pipeline. t (pipeline age) and wc (water
content) have the similar effect on the dmax, and higher values of
features show positive effect on the dmax, which is completely

opposite to the effect of re (resistivity). The remaining features
such as ct_NC and bc (bicarbonate content) present less effect on
the pitting globally.
The average SHAP values are also used to describe the

importance of the features. As shown in Fig. 6b, cc has the
highest importance with an average absolute SHAP value of 0.54.
It means that the cc of all samples in the AdaBoost model
improves the dmax by 0.54mm on average. The next is pH, which
has an average SHAP value of 0.48. pp and t are the other two
main features with SHAP values of 0.27 and 0.3, respectively.
Globally, cc, pH, pp, and t are the four most important features
affecting the dmax, which is generally consistent with the results
discussed in the previous section.
Although the overall analysis of the AdaBoost model has been

done above and revealed the macroscopic impact of those
features on the model, the model is still a black box. Visualization
and local interpretation of the model can open up the black box
to help us understand the mechanism of the model and explain
the interactions between features. As previously mentioned, the
AdaBoost model is computed sequentially from multiple decision

Fig. 4 Matrix of the Spearman correlation coefficients between the different features. Strongly correlated (>0.7) features indicate the
presence of redundant variables, which guide the screening of features.

Table 4. The result of gray relational analysis.

Gray relational analysis

Feature Association Rank Feature Association Rank

t 0.977 1 rp 0.968 7

wc 0.976 2 sc 0.967 8

bd 0.974 3 bc 0.965 9

pH 0.973 4 re 0.96 10

cc 0.972 5 Class_CL 0.943 11

pp 0.972 6 ct_NC 0.940 12

Y. Song et al.
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trees, and we creatively visualize the final decision tree. According
to the optimal parameters, the max_depth (maximum depth) of
the decision tree is 12 layers. Figure 7 shows the first 6 layers of
this decision tree and the traces of the growth (prediction) process
of a record. Taking the first layer as an example, if a sample has a
pp value higher than −0.60 V, then it will grow along the right
subtree, otherwise it will turn to the left subtree. The sample
tracked in Fig. 7 is branched five times and the prediction is locked
at 0.97 after discriminating the values of pp, cc, pH, and t. It should
be noted that this is the result of the calculation after 5 layer of
decision trees, and the result after the full decision tree is 0.71,
which is very close to the actual result. This decision tree is the
basis for the model to make predictions. Once the values of these
features are measured in the applicable environment, we can
follow the graph and get the dmax.
In addition to the global interpretation, Fig. 8 shows the

instances of local interpretations (particular prediction) obtained
from SHAP values. The gray vertical line in the middle of the SHAP
decision plot (Fig. 8a) marks the base value of the model, and the
colored ones are the prediction lines, which show how the model
accumulates from the base value to the final outputs starting from
the bottom of the plots. Figure 8a shows the prediction lines for
ten samples numbered 140–150, in which the more upper
features have higher influence on the predicted results. It is
consistent with the importance of the features. Further, pH and cc
demonstrate the opposite effects on the predicted values of the
model for the most part. Figure 8b shows the SHAP waterfall plot
for sample numbered 142 (black dotted line in Fig. 8a), which

interprets the unique contribution of the variables to the result at
any given point. In this plot, E[f(x)]= 1.9 is the baseline (average
expected value) and the final value is f(x)= 1.57, which is also the
predicted value for this instance. The SHAP value in each row
represents the contribution and interaction of this feature to the
final predicted value of this instance. For example, the pH of 5.56
has a positive effect on the damx, which adds 0.32 to the
prediction from the baseline. However, cc (14.4 ppm) has a
negative effect on the damx, which decreases the predicted result
by 0.28. It indicates that the content of chloride ions, 14.4 ppm,
has not yet reached the threshold to promote pitting. Interest-
ingly, the rp of 328 mV in this instance shows a large effect on the
results, but t (19 years) does not. However, none of these showed
up in the global interpretation, so further quantification of the
impact of these features on the predicted results is requested.
Figure 8c shows this SHAP force plot, which can be considered as
a horizontal projection of the waterfall plot and clusters the
features that push the prediction higher (red) and lower (blue).
To further depict how individual features affect the model’s

predictions continuously, ALE main effect plots are employed.
Figure 9 shows the ALE main effect plots for the nine features with
significant trends. The ranking over the span of ALE values for
these features is generally consistent with the ranking of feature
importance discussed in the global interpretation, which indirectly
validates the reliability of the ALE results.
As shown in Fig. 9a, the ALE values of the dmax present a

monotonically increasing relationship with the cc in the overall.
That is, the higher the amount of chloride in the environment, the

Fig. 5 Performance of the model with different hyperparameter values. a Variation of AdaBoost model performance with maximum depth
of decision tree, b Variation of AdaBoost model performance with the number of base estimators.

Fig. 6 SHAP global interpretation. a SHAP value for all samples of key features, b Mean SHAP value of features.
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Fig. 7 Visualization of decision trees. The splitting logic for the first six layers of the part of the decision tree generated by AdaBoost, and the
variables that have been calculated are marked in yellow in the bottom box.

Fig. 8 SHAP local interpretation. a SHAP prediction lines for ten instances, b SHAP waterfall plot on selected instance, c SHAP force plot on
selected instance.

Y. Song et al.

7

Published in partnership with CSCP and USTB npj Materials Degradation (2023)     9 



larger the dmax. It is interesting to note that dmax exhibits a very
strong sensitivity to cc (chloride content), and the ALE value
increases sharply as cc exceeds 20 ppm. It means that the pipeline
will obtain a larger dmax owing to the promotion of pitting by
chloride above the critical level. However, the excitation effect of
chloride will reach stability when the cc exceeds 150 ppm, and
chloride are no longer a critical factor affecting the dmax. The
reason is that high concentration of chloride ions cause more
intense pitting on the steel surface, and the developing pits are
covered by massive corrosion products, which inhibits the
development of the pits36. In addition, there is not a strict form
of the corrosion boundary in the complex soil environment, the
local corrosion will be more easily extended to the continuous
area under higher chloride content, which results in a corrosion
surface similar to the general corrosion and the corrosion pits are
erased35. pH is a local parameter that modifies the surface activity
mechanism of the environment surrounding the pipe. Low pH
environment lead to active corrosion and may create local
conditions that favor the corrosion mechanism of sulfate-
reducing bacteria31. The corrosion rate increases as the pH of
the soil decreases in the range of 4–8.5, and the dmax is larger, as
shown in Fig. 9b. The ALE values of dmax are monotonically
increasing with both t and pp (pipe/soil potential), as shown in
Fig. 9c and d. It means that the longer the exposure time of
pipelines, the more positive potential of the pipe/soil is, and then
the larger pitting depth is more accessible. From Fig. 9c, it is
further found that the dmax increases rapidly for the values of pp
above −0.8 V, while the pipeline is well protected for values
below −0.8 V.
wc (water content) is also key to inducing external corrosion in

oil and gas pipelines, and this parameter depends on physical
factors such as soil skeleton, pore structure, and density31. As the
wc increases, the corrosion rate of metals in the soil increases until
reaching a critical level. Then, with the further increase of the wc,
the oxygen supply to the metal surface decreases and the
corrosion rate begins to decrease37. The critical wc is related to
the soil type and its characteristics, the type of pipe steel, the
exposure conditions of the metal, and the time of the soil

exposure. The curve in Fig. 9e depicts a positive correlation
between dmax and wc within 35%, but it is not able to determine
the critical wc, which could be explained by the fact that the
sample of the data set is still not extensive enough. The high wc of
the soil also leads to the growth of corrosion-inducing bacteria in
contact with buried pipes, which may increase pitting38. With the
increase of bd (bulk density), bc (bicarbonate content), and re
(resistivity), dmax presents a decreasing trend, and all of them are
strongly sensitive within a certain range. Once bc is over 20 ppm
or re exceeds 150 Ω·m, damx remains stable, as shown in
Fig. 9f, g, h. rp (redox potential) has no significant effect on dmax
in the range of 0–300mV, but the oxidation capacity of the soil is
enhanced and pipe corrosion is accelerated at higher rp39.
In addition to the main effect of single factor, the corrosion of

the pipeline is also subject to the interaction of multiple factors.
The interactio n effect of the two features (factors) is known as the
second-order interaction. The ALE second-order interaction effect
plot indicates the additional interaction effects of the two features
without including their main effects. The red and blue represent
the above and below average predictions, respectively. Figure 10a
shows the ALE second-order interaction effect plot for pH and pp,
which reflects the second-order effect of these features on the
dmax. For low pH and high pp (zone A) environments, an
additional positive effect on the prediction of dmax is seen. High
pH and high pp (zone B) have an additional negative effect on the
prediction of dmax. However, low pH and pp (zone C) also have
an additional negative effect. As shown in Fig. 10b, Pourbaix
diagram of the Fe-H2O system illustrates the main areas of
immunity, corrosion, and passivation condition over a wide range
of pH and potential. pp is the potential of the buried pipeline
relative to the Cu/CuSO4 electrode, which is the free corrosion
potential (Ecorr) of the pipeline40. While the potential in the
Pourbaix diagram is the potential of Fe relative to the standard
hydrogen electrode Ecorr in water. Despite the difference in
potential, the Pourbaix diagram can still provide a valid guide for
the protection of the pipeline. It is generally considered that the
cathodic protection of pipelines is favorable if the pp is below
−0.85 V40,41. In Fig. 10, zone A is not within the protection

Fig. 9 ALE main effect plot for dmax. ALE versus a cc, b pH, c pp, d t, e wc, f bd, g bc, h re, i rp.
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potential and corresponds to the corrosion zone of the Pourbaix
diagram, where the pipeline has a severe tendency to corrode,
resulting in an additional positive effect on dmax. Zones B and C
correspond to the passivation and immunity zones, respectively,
where the pipeline is well protected, resulting in an additional
negative effect. In general, the calculated ALE interaction effects
are consistent with the corrosion experience.
Similarly, more interaction effects between features are

evaluated and shown in Fig. 11. Figure 11a reveals the interaction
effect between pH and cc, showing an additional positive effect
on the dmax for the environment with low pH and high cc.
Although the increase of dmax with increasing cc was demon-
strated in the previous analysis, high pH and cc show an additional
negative effect on the prediction of the dmax, which implies that

high pH reduces the promotion of corrosion caused by chloride.
The interaction of low pH and high wc has an additional positive
effect on dmax, as shown in Fig. 11b. That is, lower pH amplifies
the effect of wc. Basic and acidic soils may have associated
corrosion, depending on the resistivity1,42. According to the
standard BS EN 12501-2:2003, Amaya-Gomez et al.42 reported a
corrosion classification diagram for combined soil resistivity and
pH, which indicates that oil and gas pipelines in low soil resistivity
are more susceptible to external corrosion at low pH. This is
verified by the interaction of pH and re depicted in Fig. 11c, where
low pH and re additionally contribute to the dmax. In addition,
low pH and low rp give an additional promotion to the dmax,
while high pH and rp give an additional negative effect as shown
in Fig. 11d. In the previous discussion, it has been pointed out that

Fig. 10 Interaction of pH and pp. a ALE second-order interaction effect plot for pH and pp, b Pourbaix diagram of the Fe-H2O.

Fig. 11 ALE second-order interaction plots. ALE plots for a pH and cc, b pH and wc, c pH and re, d pH and rp, e pp and wc, f pp and bd.
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the corrosion tendency of the pipelines increases with the
increase of pp and wc. As shown in Fig. 11e, this law is still
reflected in the second-order effects of pp and wc. Within the
protection potential, the increasing of wc leads to an additional
positive effect, i.e., the pipeline corrosion is further promoted. In
the lower wc environment, the high pp causes an additional
negative effect, as the high potential increases the corrosion
tendency of the pipelines. The difference is that high pp and high
wc produce additional negative effects, which may be attributed
to the formation of corrosion product films under severe
corrosion, and thus corrosion is depressed. In addition, Fig. 11f
indicates that the effect of bc on dmax is further amplified at high
pp condition. More second-order interaction effect plots between
features will be provided in Supplementary Figures.
In the above discussion, we analyzed the main and second-

order interactions of some key features, which explain how these
features in the model affect the prediction of dmax. However, the
effect of third- and higher-order effects of the features on dmax
were done discussed, since high order effects are difficult to
interpret and are usually not as dominant as the main and second
order effects43.
In summary, five valid ML models were used to predict the

maximum pitting depth (damx) of the external corrosion of oil
and gas pipelines using realistic and reliable monitoring data sets.
Spearman correlation coefficient, GRA, and AdaBoost methods
were used to evaluate the importance of features, and the key
features were screened and an optimized AdaBoost model was
constructed. In addition, This paper innovatively introduces
interpretability into corrosion prediction. The interpretations and
transparency frameworks help to understand and discover how
environment features affect corrosion, and provide engineers with
a convenient tool for predicting dmax. The main conclusions are
summarized below.

(1) Compared with ANN, RF, GBRT, and lightGBM, AdaBoost can
predict the dmax of the pipeline more accurately, and its
performance index R2 value exceeds 0.95 after optimization.

(2) cc (chloride content), pH, pp (pipe/soil potential), and t
(pipeline age) are the four most important factors affecting
dmax in several evaluation methods. While coating and soil
type show very little effect on the prediction in the studied
dataset.

(3) The ALE values of dmax present the monotonic increase
with increasing cc, t, wc (water content), pp, and rp (redox
potential), which indicates that the increase of cc, wc, pp,
and rp in the environment all contribute to the dmax of the
pipeline. Conversely, increase in pH, bd (bulk density), bc
(bicarbonate content), and re (resistivity) reduce the dmax.

(4) The interaction of features shows a significant effect on
dmax. pH exhibits second-order interaction effects on dmax
with pp, cc, wc, re, and rp, accordingly. At the extreme
values of the features, the interaction of the features tends
to show the additional positive or negative effects.

METHODS
Collection and description of experimental data
Sufficient and valid data is the basis for the construction of
artificial intelligence models. The establishment and sharing
practice of reliable and accurate databases is an important part
of the development of materials science under the new paradigm
of materials science development. The experimental data for this
study were obtained from the database of Velázquez et al.30,
which covers various important parameters in the initiation and
growth of corrosion defects. This database contains 259 samples
of soil and pipe variables for an onshore buried pipeline that has
been in operation for 50 years in southern Mexico. These

environmental variables include soil resistivity, pH, water content,
redox potential, bulk density, and concentration of dissolved
chloride, bicarbonate and sulfate ions, and pipe/soil potential. The
service time of the pipe, the type of coating, and the soil are also
covered. Soil samples were classified into six categories: clay (C),
clay loam (CL), sandy loam (SCL), and silty clay (SC) and silty loam
(SL), silty clay loam (SYCL), based on the relative proportions of
sand, silty sand, and clay. Coating types include noncoated (NC),
asphalt-enamel-coated (AEC), wrap-tape-coated (WTC), coal-tar-
coated (CTC), and fusion-bonded-epoxy-coated (FBE). The max-
imum pitting depth (dmax), defined as the maximum depth of
corrosive metal loss for diameters less than twice the thickness of
the pipe wall, was measured at each exposed pipeline segment.
Nine outliers had been pointed out by simple outlier observations,
and the complete dataset is available in the literature30 and a brief
description of these variables is given in Table 5. Figure 12 shows
the distribution of the data under different soil types.

Data pre-processing
Data pre-processing is a necessary part of ML. In this study, we
mainly consider outlier exclusion and data encoding in this
session. Variance, skewness, kurtosis, and CV are used to profile
the global distribution of the data. Specifically, Skewness describes
the symmetry of the distribution of the variable values, Kurtosis
describes the steepness, Variance describes the dispersion of the
data, and CV combines the mean and standard deviation to reflect
the degree of data variation. These statistical values can help to
determine if there are outliers in the dataset. If the CV is greater
than 15%, there may be outliers in this dataset. Combining the
kurtosis and skewness values we can further analyze this
possibility. To further identify outliers in the dataset, the
interquartile range (IQR) is commonly used to determine the
boundaries of outliers. The first quartile (25% quartile) is Q1 and
the third quartile (75% quartile) is Q3, then IQR=Q3-Q1.
Specifically, for samples smaller than Q1-1.5IQR (lower bound),
and larger than Q3+ 1.5IQR (upper bound) are considered outliers
and should be excluded.

Table 5. Basic descriptive statistics of variables.

Variable Symbol Units Max Min Mean Std Med

Maximum
pitting depth

dmax mm 13.44 0.41 2.024 2.05 1.25

Pipeline age t year 50 5 22.98 9.12 21

pH pH — 9.88 4.14 6.13 0.93 6.05

Pipe/soil
potential

pp V −0.42 −1.97 −0.87 0.24 −0.86

Resistivity re Ω · m 399.5 1.9 50.14 55.92 30.9

Water
content

wc % 66 8.8 23.89 6.66 23.5

Bulk density bd g/mL 1.56 1.1 1.30 0.09 1.31

Chloride
content

cc ppm 672.7 1 47.72 75.16 19.02

Bicarbonate
content

bc ppm 195.2 1 19.67 25.33 11.1

Sulfate
content

sc ppm 1370.2 1 152.97 168.18 108.4

Redox
potential

rp mV 348 2.1 167.04 85.48 155

Coating type ct — — — — — —

Soil
classification

Class — — — — — —
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The one-hot encoding can represent categorical data well and is
extremely easy to implement without complex computations. The
approach is to encode different classes of classification features
using status registers, where each class has its own independent
bits and only one of them is valid at any given time. That is, only
one bit is 1 and the rest are zero.

Ensemble learning
Ensemble learning (EL) is an algorithm that combines many base
machine learners (estimators) into an optimal one to reduce error,
enhance generalization, and improve model prediction44. EL with
decision tree based estimators is widely used. Generally, EL can be
classified into parallel and serial EL based on the way of
combination of base estimators. Parallel EL models, such as the

classical Random Forest (RF), use bagging to train decision trees
independently in parallel, and the final output is an average result.
Sequential EL reduces variance and bias by creating a weak
predictive model and iterating continuously using boosting
techniques. This is true for AdaBoost, gradient boosting regression
tree (GBRT) and light gradient boosting machine (LightGBM)
models. We selected four potential algorithms from a number of
EL algorithms by considering the volume of data, the properties of
the algorithms, and the results of pre-experiments. The following
part briefly describes the mathematical framework of the four EL
models.
RF is a strongly supervised EL method that consists of a large

number of individual decision trees that operate as a whole. Each
individual tree makes a prediction or classification, and the

Fig. 12 Data distribution under different soil types. Samples were classified by soil type, and the overall distribution of these samples on the
two feature dimensions was observed. Plots on the diagonal depicting the distribution of individual features for different soil type samples.

Y. Song et al.

11

Published in partnership with CSCP and USTB npj Materials Degradation (2023)     9 



prediction or classification with the most votes becomes the result
of the RF45. The method consists of two phases to achieve the final
output. In the first stage, RF uses bootstrap aggregating approach
to select input features randomly and training datasets to build
multiple decision trees. This random property reduces the
correlation between individual trees, and thus reduces the risk
of over-fitting. In the second stage, the average result of the
predictions obtained from the individual decision tree is
calculated as follow25:

yðxÞ ¼ 1
n

Xn

i¼1

yiðxÞ (1)

Where, yi represents the i-th decision tree, and the total number of
trees is n. y is the target output, and x denotes the feature vector
of the input.
AdaBoost is a powerful iterative EL technique that creates a

powerful predictive model by merging multiple weak learning
models46. The general form of AdaBoost is as follow:

FT ðXÞ ¼
XT

t¼1

ftðXÞ (2)

Where ft denotes the weak learner and X denotes the feature
vector of the input. Each iteration generates a new learner using
the training dataset to evaluate all samples. During the process,
the weights of the incorrectly predicted samples are increased,
while the correct ones are decreased. Meanwhile, a new
hypothetical weak learner will be added in each iteration to
minimize the total training error, as follow.

Et ¼
X

i
E Ft�1ðXiÞ þ athðXiÞ½ � (3)

Ft-1 denotes the weak learner obtained from the previous
iteration, and ft(X)= αth(X) is the improved weak learner.
Eventually, AdaBoost forms a single strong learner by combining
several weak learners.
Different from the AdaBoost, GBRT fits the negative gradient of

the loss function (L) obtained from the cumulative model of the
previous iteration using the generated weak learners. Then,
the negative gradient direction will be decreased by adding the
obtained loss function to the weak learner. The process can be
expressed as follows45:

FmðxÞ ¼ Fm�1ðxÞ þ argmin
Xn

i¼1

L yi ; Fm�1ðxiÞ þ hðxiÞ½ � (4)

gmðxÞ ¼ � ∂L½y; Fm�1ðxÞ�
∂Fm�1ðxÞ (5)

where h(x) is a basic learning function, and x is a vector of input
features. gm is the negative gradient of the loss function. The loss
will be minimized when the m-th weak learner fits gm of the loss
function of the cumulative model25. The final gradient boosting
regression tree is generated in the form of an ensemble of weak
prediction models.
LightGBM is a framework for efficient implementation of the

gradient boosting decision tee (GBDT) algorithm, which supports
efficient parallel training with fast training speed and superior
accuracy. Instead of segmenting the internal nodes of each tree
using information gain as in traditional GBDT, LightGBM uses a
gradient-based one-sided sampling (GOSS) method. In addition,
LightGBM employs exclusive feature binding (EFB) to accelerate
training without sacrificing accuracy47.

Feature engineering
Feature engineering (FE) is the process of transforming raw data
into features that better express the nature of the problem,
enabling to improve the accuracy of model predictions on the

invisible data. Data pre-processing, feature transformation, and
feature selection are the main aspects of FE. Feature selection is
the most important part of FE, which is to select useful features
from a large number of features. It means that those features that
are not relevant to the problem or are redundant with others need
to be removed, and only the important features are retained in the
end. Feature selection contains various methods such as correla-
tion coefficient, principal component analysis, and mutual
information methods. In this study, this process is done by the
gray relation analysis (GRA) and Spearman correlation coefficient
analysis, and the importance of features is calculated by the tree
model. The implementation of data pre-processing and feature
transformation will be described in detail in Section 3.1 and
Section 3.2.
The basic idea of GRA is to determine the closeness of the

connection according to the similarity of the geometric shapes of
the sequence curves. The closer the shape of the curves, the
higher the correlation of the corresponding sequences23,48. The
method is used to analyze the degree of the influence of each
factor on the results. The core is to establish a reference sequence
according to certain rules, and then take each assessment object
as a factor sequence and finally obtain their correlation with the
reference sequence. In order to establish uniform evaluation
criteria, variables need to be normalized according to Eq. 6 first
due to the different attributes and units.

XiðkÞ ¼ xiðkÞ
xi

(6)

Where, XiðkÞ represents the i-th value of factor k. The gray
correlation between the reference series X0 ¼ x0ðkÞ and the factor
series Xi ¼ xi kð Þ is defined as:

rðX0; XiÞ ¼ 1
n

Xn

k¼1

rðX0ðkÞ; XiðkÞÞ (7)

rðX0ðkÞ; XiðkÞÞ ¼
min

i
min
k

x0ðkÞ � xiðkÞj j þ ρmin
i

min
k

x0ðkÞ � xiðkÞj j
x0ðkÞ � xiðkÞj j þ ρmin

i
min
k

x0ðkÞ � xiðkÞj j
(8)

Where, ρ is the discriminant coefficient and ρ 2 0; 1½ �, which
serves to increase the significance of the difference between the
correlation coefficients. Usually ρ is taken as 0.5.
The Spearman correlation coefficient is a parameter-free

(distribution independent) test for measuring the strength of the
association between variables. The Spearman correlation coeffi-
cient is solved according to the ranking of the original data34.
Regardless of how the data of the two variables change and what
distribution they fit, the order of the values is the only thing that is
of interest. Two variables are significantly correlated if their
corresponding values are ranked in the same or similar order
within the group. In particular, if one variable is a strictly
monotonic function of another variable, the Spearman Correlation
Coefficient is equal to +1 or −1. The Spearman correlation
coefficients of the variables R and S follow the equation:

P ¼
PN

i¼1ðRi � ~RÞðSi � ~SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðRi � ~RÞ2 PN

i¼1ðSi � ~SÞ2
q ¼ 1� 6

P
d2i

NðN2 � 1Þ (9)

Where, Ri and Si are are the values of the variable R and S with rank
i. ~R and ~S are the means of variables R and S, respectively. N is the
total number of observations, and di= Ri-Si, denoting the
difference of variables in the same rank.

Explaining machine learning
The SHAP interpretation method is extended from the concept of
Shapley value in game theory and aims to fairly distribute the
players’ contributions when they achieve a certain outcome
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jointly26. SHAP values can be used in ML to quantify the
contribution of each feature in the model that jointly provide
predictions. The Shapley values of feature i in the model is:

ShapðiÞ ¼
X

k�M if g
k!ðN � k � 1Þ!

k!
½fx k ∪ if g � fxðkÞð � (10)

fxðkÞ ¼ E½f ðxÞjxk � (11)

Where, N denotes a subset of the features (inputs). M{i} is the set
of all possible combinations of features other than i. E[f(x)|xk]
represents the expected value of the function on subset k. The
prediction result y of the model is given in the following equation.

y ¼ Shap0 þ
XN

i¼1

ShapðiÞ (12)

Here, shap0 is the average prediction of all observations and the
sum of all SHAP values is equal to the actual prediction. Further,
the absolute SHAP value reflects the strength of the impact of the
feature on the model prediction, and thus the SHAP value can be
used as the feature importance score49,50.
The ALE plot describes the average effect of the feature

variables on the predicted target. The most important property of
ALE is that it is free from the constraint of variable independence
assumption, which makes it gain wider application in practical
environment. The key to ALE is to reduce a complex prediction
function to a simple one that depends on only a few factors29.
Then, the ALE plot is able to display the predicted changes and
accumulate them on the grid. To quantify the local effects,
features are divided into many intervals and non-central effects,
which are estimated by the following equation.

~̂f j;ALEðxÞ ¼
XkjðxÞ

k¼1

1
njðkÞ

X

i:xij2NjðkÞ
½f ðZk;j; xij Þ � f ðZk�1; x

i
j Þ� (13)

Where, Zi,j denotes the boundary value of feature j in the k-th
interval. nj(k) represents the sample size in the k-th interval. i:xji is
the k-th sample point in the k-th interval, and x denotes the
feature other than feature j. To make the average effect zero, the
effect is centered as:

~̂f j;ALEðxÞ ¼ ~̂f j;ALEðxÞ � 1
n
~̂f j;ALEðxij Þ (14)

It means that the average effect is subtracted for each effect.
Compared to the average predicted value of the data, the
centered value could be interpreted as the main effect of the j-th
feature at a certain point.

Performance metrics
In order to quantify the performance of the model well, five
commonly used metrics are used in this study, including MAE, R2,
MSE, RMSE, and MAPE. Their equations are as follows.

MAE ¼
Pn

i¼1 jPi � Tij
n

(15)

R2 ¼ 1�
Xn

i¼1

ðPi � TiÞ2=
Xn

i¼1

ðPi � TÞ2 (16)

MSE ¼
Pn

i¼1ðPi � TiÞ2
n

(17)

RMSE ¼
ffiffiffiffiffiffiffiffiffi
MSE

p
(18)

MAPE ¼ 100%
n

Xn

i¼1

jPi � Ti
Ti

����

���� (19)

Where, Ti represents the actual maximum pitting depth, the
predicted value is Pi, and n denotes the number of samples. R2

reflects the linear relationship between the predicted and actual
value and is better when close to 1. MSE, RMSE, MAE, and MAPE
measure the relative error between the predicted and actual
value. The values of the above metrics are desired to be low.

Implementation methodology
Step 1: Pre-processing. Pre-processing of the data is an important
step in the construction of ML models. Although some of the
outliers were flagged in the original dataset, more precise
screening of the outliers was required to ensure the accuracy
and robustness of the model. CV and box plots of data distribution
were used to determine and identify outliers in the original
database. In addition, the type of soil and coating in the original
database are categorical variables in textual form, which need to
be transformed into quantitative variables by one-hot encoding in
order to perform regression tasks.

Step 2: Model construction and comparison. After pre-processing,
200 samples of the data were chosen randomly as the training set
and the remaining 40 samples as the test set. The RF, AdaBoost,
GBRT, and LightGBM methods introduced in the previous section
and ANN models were applied to the training set to establish
models for predicting the dmax of oil and gas pipelines with
default hyperparameters. Then a promising model was selected by
comparing the prediction results and performance metrics of
different models on the test set.

Step 3: Optimization of the best model. The best model was
determined based on the evaluation of step 2. However, the
performance of an ML model is influenced by a number of factors.
Apart from the influence of data quality, the hyperparameters of
the model are the most important. In this step, the impact of
variations in the hyperparameters on the model was evaluated
individually, and the multiple combinations of parameters were
systematically traversed using grid search and cross-validated to
determine the optimum parameters. This optimized best model
was also used on the test set, and the predictions obtained will be
analyzed more carefully in the next step.

Step 4: Model visualization and interpretation. In the most of the
previous studies, different from traditional mathematical formal
models, the optimized and trained ML model does not have a
simple expression. The model is saved in the computer in an
extremely complex form and has poor readability. In this study,
this complex tree model was clearly presented using visualization
tools for review and application. After completing the above, the
SHAP and ALE values of the features were calculated to provide a
global and localized interpretation of the model, including the
degree of contribution of each feature to the prediction, the
influence pattern, and the interaction effect between the features.

DATA AVAILABILITY
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package. We are happy to share the complete codes to all researchers through the
corresponding author.

Y. Song et al.

13

Published in partnership with CSCP and USTB npj Materials Degradation (2023)     9 

https://doi.org/10.5006/1.3318290
https://doi.org/10.5006/1.3318290


Received: 19 September 2022; Accepted: 7 January 2023;

REFERENCES
1. Wasim, M. & Djukic, M. B. External corrosion of oil and gas pipelines: A review of

failure mechanisms and predictive preventions. J. Nat. Gas. Sci. Eng. 100, 104467
(2022).

2. El Amine Ben Seghier, M. et al. Prediction of maximum pitting corrosion depth in
oil and gas pipelines. Eng. Fail Anal. 112, 104505 (2020).

3. Askari, M., Aliofkhazraei, M. & Afroukhteh, S. A comprehensive review on internal
corrosion and cracking of oil and gas pipelines. J. Nat. Gas. Sci. Eng. 71, 102971
(2019).

4. Shuai, Y., Wang, X. & Cheng, Y. F. Buckling resistance of an X80 steel pipeline at
corrosion defect under bending moment. J. Nat. Gas. Sci. Eng. 93, 104016 (2021).

5. Shuai, Y., Wang, X. & Cheng, Y. F. Modeling of local buckling of corroded X80 gas
pipeline under axial compression loading. J. Nat. Gas. Sci. Eng. 81, 103472 (2020).

6. Xu, M. et al. Effect of pressure on corrosion behavior of X60, X65, X70, and X80
carbon steels in water-unsaturated supercritical CO2 environments. Int. J. Greenh.
Gas Control 51, 357–368 (2016).

7. Singh, M., Markeset, T. & Kumar, U. Some philosophical issues in modeling cor-
rosion of oil and gas pipelines. Int. J. Syst. Assur. 5, 55–74 (2014).

8. Lam, C. & Zhou, W. Statistical analyses of incidents on onshore gas transmission
pipelines based on PHMSA database. Int. J. Pres. Vessel. Pip. 145, 29–40 (2016).

9. Rippon, I. J. A. Corrosion management for an offshore sour gas pipeline system.
(NACE International, Houston, Texas, 2005).

10. PENG, C. et al. Corrosion and pitting behavior of pure aluminum 1060 exposed to
Nansha Islands tropical marine atmosphere. T. Nonferr. Metal. Soc. 32, 448–460
(2022).

11. Wei, W. et al. In-situ characterization of initial marine corrosion induced by rare-
earth elements modified inclusions in Zr-Ti deoxidized low-alloy steels. J. Mater.
Res. Technol. 9, 1412–1424 (2020).

12. Tran, N., Nguyen, T., Phan, V. & Nguyen, D. A machine learning-based model for
predicting atmospheric corrosion rate of carbon steel. Adv. Mater. Sci. Eng. 2021,
1–25 (2021).

13. Song, X. et al. Multi-factor mining and corrosion rate prediction model con-
struction of carbon steel under dynamic atmospheric corrosion environment.
Eng. Fail Anal. 134, 105987 (2022).

14. Ren, C., Qiao, W. & Tian, X. Natural gas pipeline corrosion rate prediction model
based on BP neural network. Fuzzy Inf. Eng. Oper. Res. 147, 449–455 (2012).

15. Xie, M., Li, Z., Zhao, J. & Pei, X. A prognostics method based on back propagation
neural network for corroded pipelines. Micromachines 12, 1568 (2021).

16. Liao, K., Yao, Q., Wu, X. & Jia, W. A numerical corrosion rate prediction method for
direct assessment of wet gas gathering pipelines internal corrosion. Energies 5,
3892–3907 (2012).

17. Li, X., Jia, R., Zhang, R., Yang, S. & Chen, G. A KPCA-BRANN based data-driven
approach to model corrosion degradation of subsea oil pipelines. Reliab. Eng.
Syst. Saf. 219, 108231 (2022).

18. Ossai, C. I. Corrosion defect modelling of aged pipelines with a feed-forward
multi-layer neural network for leak and burst failure estimation. Eng. Fail Anal.
110, 104397 (2020).

19. Abbas, M. H., Norman, R. & Charles, A. Neural network modelling of high pressure
CO2 corrosion in pipeline steels. Process. Saf. Environ. 119, 36–45 (2018).

20. Hernández, S., Nešić, S. & Weckman, G. R. Use of Artificial Neural Networks for
predicting crude oil effect on CO2 corrosion of carbon steels. Corrosion 62,
467–482 (2005).

21. Ossai, C. I. & Data-Driven, A. Machine learning approach for corrosion risk
assessment—a comparative study. Big Data Cogn. Comput. 3, 28 (2019).

22. De Masi, G. et al. Machine learning approach to corrosion assessment in subsea
pipelines. (OCEANS 2015 - Genova, Genova, Italy, 2015).

23. Luo, Z., Hu, X., & Gao, Y. Corrosion research of wet natural gathering and trans-
portation pipeline based on SVM. (ICPTT 2013).

24. Zhang, W. D., Shen, B., Ai, Y. B. & Yang, B. Gas pipeline corrosion prediction based
on modified support vector machine and unequal interval model. Appl. Mech.
Mater. 373-375, 1987–1994 (2013).

25. Ben Seghier, M. E. A., Höche, D. & Zheludkevich, M. Prediction of the internal
corrosion rate for oil and gas pipeline: Implementation of ensemble learning
techniques. J. Nat. Gas Sci. Eng. 99, 104425 (2022).

26. Ekanayake, I. U. & Meddage, D. P. P. U. Rathnayake. A novel approach to explain
the black-box nature of machine learning in compressive strength predictions of
concrete using Shapley additive explanations (SHAP). Case Stud. Constr. Mater. 16,
e1059 (2022).

27. Xu, F. et al. Natural Language Processing and Chinese Computing 563-574. Lecture
Notes in Computer Science, Vol. 11839 (Springer, 2019).

28. Wang, Z., Zhou, T. & Sundmacher, K. Interpretable machine learning for accel-
erating the discovery of metal-organic frameworks for ethane/ethylene separa-
tion. Chem. Eng. J. 444, 136651 (2022).

29. Liu, K. et al. Interpretable machine learning for battery capacities prediction and
coating parameters analysis. Control. Eng. Pract. 124, 105202 (2022).

30. Velázquez, J., Caleyo, F., Valor, A, & Hallen, J. M. Technical note: field study—
pitting corrosion of underground pipelines related to local soil and pipe char-
acteristics. Corrosion. 66, 016001-1–016001-5 (2010).

31. Kim, C., Chen, L., Wang, H. & Castaneda, H. Global and local parameters for
characterizing and modeling external corrosion in underground coated steel
pipelines: a review of critical factors. J. Pipeline Syst. Eng. 1, 17–35 (2021).

32. Dai, M., Liu, J., Huang, F., Zhang, Y. & Cheng, Y. F. Effect of cathodic protection
potential fluctuations on pitting corrosion of X100 pipeline steel in acidic soil
environment. Corros. Sci. 143, 428–437 (2018).

33. Zhang, B. et al. Unmasking chloride attack on the passive film of metals. Nat.
Commun. 9, 2559 (2018).

34. Zhi, Y. et al. Improving atmospheric corrosion prediction through key environmental
factor identification by random forest-based model. Corros. Sci. 178, 109084 (2021).

35. Song, Y. et al. Effects of chloride ions on corrosion of ductile iron and carbon steel
in soil environments. Sci. Rep. 7, 6865 (2017).

36. Wang, Y. et al. Effect of pH and chloride on the micro-mechanism of pitting
corrosion for high strength pipeline steel in aerated NaCl solutions. Appl. Surf. Sci.
349, 746–756 (2015).

37. Wasim, M., Shoaib, S., Mujawar, M., Inamuddin & Asiri, A. M. Factors influencing
corrosion of metal pipes in soils. Environ. Chem. Lett. 16, 1–19 (2018).

38. Sani, F. M. The effect of bacteria and soil moisture content on external corrosion
of buried pipelines. (NACE International, Virtual, 2021).

39. Chen, J. et al. Impact of soil composition and electrochemistry on corrosion of
rock-cut slope nets along railway lines in China. Sci. Rep. 5, 14939 (2015).

40. Bash, L. A. R. Pipe-to-soil potential measurements, the basic science. (NACE
International, New Orleans, Louisiana, 2008).

41. Li, X. & Castaneda, H. Damage evolution of coated steel pipe under cathodic-
protection in soil. Anti-Corros. Methods Mater. 64, 118–126 (2017).

42. Amaya-Gómez, R., Bastidas-Arteaga, E., Muñoz, F. & Sánchez-Silva, M. Statistical
soil characterization of an underground corroded pipeline using in-line inspec-
tions. Metals 11, 292 (2021).

43. Apley, D., Zhu, J. Visualizing the effects of predictor variables in black box
supervised learning models. J. R. Stat. Soc. 82, 1059–1086 (2020).

44. Salami, B. A., Rahman, S. M., Oyehan, T. A., Maslehuddin, M. & Al Dulaijan, S. U.
Ensemble machine learning model for corrosion initiation time estimation of
embedded steel reinforced self-compacting concrete. Measurement 165, 108141
(2020).

45. Feng, D., Wang, W., Mangalathu, S., Hu, G. & Wu, T. Implementing ensemble
learning methods to predict the shear strength of RC deep beams with/without
web reinforcements. Eng. Struct. 235, 111979 (2021).

46. Cao, Y., Miao, Q., Liu, J. & Gao, L. Advance and prospects of AdaBoost algorithm.
Acta Autom. Sin. 39, 745–758 (2013).

47. Wen, X., Xie, Y., Wu, L. & Jiang, L. Quantifying and comparing the effects of key
risk factors on various types of roadway segment crashes with LightGBM and
SHAP. Accid. Anal. Prev. 159, 106261 (2021).

48. Liu, S., Cai, H., Cao, Y. & Yang, Y. Advance in grey incidence analysis modelling.
(IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK,
USA, 2011).

49. Li, Z. Extracting spatial effects from machine learning model using local inter-
pretation method: An example of SHAP and XGBoost. Environ. Urban. Syst. 96,
101845 (2022).

50. Mamun, O., Wenzlick, M., Sathanur, A., Hawk, J. & Devanathan, R. Machine
learning augmented predictive and generative model for rupture life in ferritic
and austenitic steels. Npj Mater. Degrad. 5, 1–10 (2021).

ACKNOWLEDGEMENTS
This research was financially supported by the National Natural Science Foundation
of China (No. 52174007, No. 51801167, No. 52001264), the Opening Project of
Material Corrosion and Protection Key Laboratory of Sichuan province (No.
2022CL04), and Project of Sichuan Department of Science and Technology (No.
23SYSX0127). The authors thank Prof. F. Caleyo and his team for making the
complete database publicly available.

AUTHOR CONTRIBUTIONS
Y.S.: methodology, investigation, data duration, software, validation, visualization, and
writing – original draft. Q.W.: conceptualization, methodology, investigation,
resources, data curation, writing – review & editing, supervision, and funding

Y. Song et al.

14

npj Materials Degradation (2023)     9 Published in partnership with CSCP and USTB



acquisition. X.Z.: methodology and data curation. L.D.: methodology, data curation,
and funding acquisition. S.B.: methodology and resources. D.Z.: methodology,
funding acquisition, and supervision. Z.Z.: conceptualization, methodology, and
funding acquisition. H.Z.: conceptualization, review, and resources. Y.X.: methodology,
funding acquisition, and supervision.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41529-023-00324-x.

Correspondence and requests for materials should be addressed to Qinying Wang,
Lijin Dong or Yuchen Xi.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Y. Song et al.

15

Published in partnership with CSCP and USTB npj Materials Degradation (2023)     9 

https://doi.org/10.1038/s41529-023-00324-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Interpretable machine learning for maximum corrosion depth and influence factor analysis
	Introduction
	Results and discussion
	Data analysis and pre-processing
	Performance evaluation of the models
	Adaboost model optimization
	Model visualization and interpretation

	Methods
	Collection and description of experimental data
	Data pre-processing
	Ensemble learning
	Feature engineering
	Explaining machine learning
	Performance metrics
	Implementation methodology
	Step 1: Pre-processing
	Step 2: Model construction and comparison
	Step 3: Optimization of the best model
	Step 4: Model visualization and interpretation


	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




