
ARTICLE OPEN

Data-driven pitting evolution prediction for corrosion-resistant
alloys by time-series analysis
Xue Jiang 1, Yu Yan 2✉ and Yanjing Su2

Corrosion initiation and propagation are a time-series problem, evolving continuously with corrosion time, and future pitting
behavior depends closely on the past. Predicting localized corrosion for corrosion-resistant alloys remains a great challenge, as
macroscopic experiments and microscopic theoretical simulations cannot couple internal and external factors to describe the
pitting evolution from a time dimension. In this work, a data-driven method based on time-series analysis was explored. Taking
cobalt-based alloys and duplex stainless steels as the case scenario, a corrosion propagation model was built to predict the free
corrosion potential (Ecorr) using a long short-term memory neural network (LSTM) based on 150 days of immersion testing in saline
solution. Compared to traditional machine learning methods, the time-series analysis method was more consistent with the
evolution of ground truth in the Ecorr prediction of the subsequent 70 days’ immersion, illustrating that time-series dependency of
pitting propagation could be captured and utilized.
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INTRODUCTION
Corrosion initiation and propagation have the characteristics of
randomness, dynamics, and the coupling of internal alloy factors
and external environmental factors1–4. This involves the rupture or
dissolution of the passive film in corrosive environments, the
dissolution rate of the metal on the pitting surface and the
dissolved metal at different moments, as well as the diffusion rate
of cations in the corrosive solution5,6. These factors jointly
influence the local chemical environment and the dynamic
evolution of pit morphology with the corrosion time, which in
turn determine the design of the material composition and
structure. Researchers have carried out numerous experimental
and theoretical studies on pitting mechanisms, describing pitting
evolution as either discrete and macroscopic or continuous and
microscopic7–9. From the perspective of alloy service time, pitting
initiation and propagation are closely related to the interactions
between local corrosion conditions and material structure, which
can evolve and accumulate continuously with corrosion time. To
date, making accurate predictions of pitting propagation for
corrosion-resistant alloys requires capturing past corrosion phe-
nomena to estimate future possibilities, which has remained a
great challenge1.
Artificial intelligence (AI) and machine learning (ML) can capture

complex relationships between multi-dimension factors and
targets; thus, promoting new materials and insight discovery10–15.
Since the 1980s, researchers have applied artificial neural
networks, random forests, and other machine learning algorithms
to predict the uniform corrosion of materials and design new
corrosion-resistant materials, making notable progress in solving
the multi-factor coupling corrosion problem16–21. This has helped
to predict the corrosion rate of low alloy steel and carbon steel,
analyze the important factors that affect the corrosion rate, and
forecast the local corrosion behavior of Co-based alloys under
different compositions, preparation processes, temperatures, static
corrosion environments, and corrosion times22–26. Coelho et al.

provides a data-oriented overview of the rapidly growing research
field covering ML applied to predicting electrochemical corrosion,
which highlights assessing the predictive power of different
approaches and elaborate on the current status of regression
modeling for various corrosion topics27. Sharma et al. have
employed Random Forest method to model measurements of
corrosion rates of carbon steel as a function of time when
corrosion inhibitors are added in different dosage and dose-
schedules28. However, traditional statistical analysis methods, such
as support vector machine, random forest and gradient boosting
regression default to the assumption of independent and identical
distribution among the data samples. For the dynamic process of
material service, traditional analysis methods cannot use the
inherent time-series relationship between the data samples. Time-
series data analysis methods, such as the well-known long short-
term memory (LSTM) neural network, can perform dependency
mining on sequence data, and learn functions that map a
sequence of past observations as an input to output observa-
tion29. By introducing input gates, forgetting gates, output gates,
and memory units, the information in the memory units can be
maintained, updated, or forgotten at different moments to solve
the problems of gradient disappearance and sequence depen-
dencies under long-term time series30. Thus, the time-series data
analysis method can provide a prospect for the evolution
prediction of pitting propagation.
In this work, using cobalt-based alloys and duplex stainless

steels as the case scenario, we explored a machine learning
method based on the time-series analysis of an LSTM neural
network. We constructed a pitting propagation model of free
corrosion potential (Ecorr) based on a 150-day immersion test in
saline. Traditional machine learning algorithms were compared
with the LSTM, which were further applied to estimate the Ecorr of
the following 70 days in future immersion. The LSTM model was
more consistent with the evolution trend of the ground truth
outlined by experimentation, illustrating that the time-series
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analysis method could capture the sequence dependencies of
pitting propagation under a long-term time series attributed to
the network structure. This may pave a promising approach for
other material services and lifetime behavior predictions.

RESULTS AND DISCUSSION
Machine learning strategy
The machine learning strategy starts with data collection, goes
through sequence transformation, time-series analysis, and finally

predicts future pitting behavior (Fig. 1). The whole dataset was
prepared by long-time immersion for four different alloys of
Stellite 6, Stellite 12, Stellite 706, and Zeron 100. Long-term
immersion tests were conducted in 3.5 wt. % NaCl solution at
18 °C for 150 days. Ecorr was measured every day during the
immersion period for half a year.
Figure 2 shows the Ecorr values of the samples versus the

immersion time for 150 days. During immersion, visible pitting
was first observed around 30 days for all alloy samples. Thus, we
manually removed the first 30-day data, because pitting was in the
initiation stage during this time, and Ecorr fluctuated greatly.

Fig. 1 The workflow diagram of machine learning. The collected dataset are transformed into sequences with appropriate lookback to
maintain the information of former moment. Then LSTM neural network is trained to capture the dependences, and it is finally used to
conduct future prediction for the following days’ pitting.

Fig. 2 The visualization of original dataset for different alloys. The free corrosion potential (Ecorr) values measured during the immersion
period of 150 days: a Cast Stellite 6, b Cast Stellite 12, c Cast Stellite 706, and d Zeron 100.
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Therefore, the dataset consisted of 480 entries in total, including
the composition of each alloy, Vickers hardness (HV), and standard
deviation of HV, as well as the immersion time of 120 days (days
from 30 to 150), along with the target property of Ecorr. We shared
the dataset to the Materials Genome Engineering Database to
facilitate the data for further reuse, and the dataset can be found
by this link (https://www.mgedata.cn/search/#/153870/1064).

Traditional machine learning models
Firstly, traditional machine learning algorithms have been used,
including support vector regression (SVR), k-nearest neighbor
regression (KNR), gradient boosting regression (GBR), random
forest regression (RFR), and AdaBoost regression (AdaBR)31.
Machine learning algorithms regarded immersion time as one of
the conditionally independent feature variables, capturing the
relationship between the different chemical compositions, immer-
sion times, and Ecorr. The chemical composition, HV, standard
deviation of HV, and immersion time were utilized as the inputs,
with the target property Ecorr as the outputs. Before model
training, parameter tuning was performed to obtain the optimal
model parameters. The whole dataset was randomly split with
80% as the training set (384 data entries) and 20% left as the
testing set (96 data entries). Parameter tuning was employed on
the training set using grid search by five-fold cross-validation with
randomly selected hyperparameters for each machine learning
algorithm.
We used mean squared error (MSE) as a metric for the error

between the ground truth and predicted value under each
hyperparameter. For five-fold cross-validation, the mean and
variance of the five-fold MSEs were calculated to evaluate the

comprehensive performance of all hyperparameters for each
algorithm. Figure 3a shows the mean and variance values of the
optimal hyperparameter for each algorithm. RFR performed the
lowest mean MSE, while KNR and GBR also had a relatively low
MSE; however, GBR exhibited a smaller variance, indicating that
the GBR model would be more stable. Moreover, to evaluate the
generalization capability intuitively, the models were also tested
on the hold-out testing set with the optimal hyperparameter for
each algorithm by the mean relative error (MRE) on both the
training and testing sets (Fig. 3b).
Although RFR exhibited better MRE on the training set than the

other models, the difference in MRE between the training and
unseen testing set was larger than GBR. Thus, GBR with a test MRE
of 3.3% proved to have a better generalization ability and could
be used for constructing the Ecorr prediction model of pitting
propagation. Figure 3c gives the diagonal scatter plot of the
ground truth versus the predicted Ecorr by GBR during training and
testing respectively, illustrating good fitting.

LSTM neural network
To maintain the information of former moment, LSTM neural
network was further trained to capture the time dependences. The
LSTM neural network consists of a gated recurrent neural network
(RNN) that can account for long-time dependencies, can perform
dependency mining on sequence data, and learn a function that
maps the sequence of past observations as an input to output
observation30. LSTM can use memory cell ct to remove or add
information. ct is composed of the input gate it, forget gate ft, and
output gate ot (Fig. 4).

Fig. 3 Evaluation for traditional machine learning models. Parameter tuning and model selection of the traditional machine learning
models: a The mean squared errors with variances (error bars) of the parameter tuning process for RFR, SVR, KNR, GBR, and AdaBR; b The
mean relative errors of machine learning models on the training set and testing set separately; c Diagonal scatter plot of the ground truth
versus the predicted Ecorr by GBR during training and testing, respectively. Ecorr free corrosion potential, SVR support vector regression, KNR
k-nearest neighbor regression, GBR gradient boosting regression, RFR random forest regression, AdaBR AdaBoost regression.

Fig. 4 The internal structure of LSTM, including the forget gate, input gate, and output gate. The pink circle represents the input of
different moment, the blur circle represents the hidden state of different moment.
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The LSTM model was implemented by TensorFlow and Keras
after transforming the original dataset to a set of training
sequences with a sliding window, namely the lookback
window32,33. For Ecorr prediction of long-time immersion,
lookback determined how many days of immersion data would
be used to predict the Ecorr of the next day. As shown in Fig. 5a,
lookback= 5 meant using the previous 5 days’ Ecorr to predict
the Ecorr on day 6, and the window kept moving to the right.
The larger the lookback window, the longer the model would
capture the sequence dependencies; however, the fewer
training sequences that would be generated based on 120 days
(days 30–150) of data, and the model would be prone to
overfitting. Thus, the smaller the window, the more training
sequences that could be constructed; however, long-term
sequence dependencies could not be captured, which required
a tradeoff. We carried out parameter tuning of the lookback
window for the LSTM neural network, as shown in Fig. 5b. For
each lookback length, the LSTM neural network was trained on
the first 80% sequences as the training set and tested on the
remaining 20% sequences as the testing set to evaluate the
generalization ability. Figure 5b shows the MSEs of the different
lookbacks for cast Stellite 6 on the training and testing set. We
concluded that lookback= 5 was optimal, as the others resulted
in overfitting.

Feature importance
To explore the contribution and importance of the alloy elements
and immersion time in predicting Ecorr, feature importance
analysis was carried out by two different methods, namely the
permutation feature importance and Shapley Additive exPlana-
tions (SHAP) values34,35. The permutation feature importance was
used to reveal the effect of the feature to the target by shuffling a
single feature. Therefore, a decrease in the model score indicates
that the model is highly dependent on the feature, especially for
nonlinear estimators. Figure 6a shows the box plot of the
permutation importance distribution based on the GBR Ecorr
model by repeating 50 times, where the features are shown in
descending order according to their contribution to decreasing
the accuracy score (MSE). The components of C, Fe, Si, and the
immersion time acted as more important when they were
shuffled, and they showed a great drop in the MSE of the Ecorr
model. Furthermore, as a game theoretic approach, SHAP can
interpret the output of machine learning models by the classic
Shapley value. A feature’s positive SHAP value enhanced the
properties, while conversely, a negative SHAP value for a feature
weakened the properties.
Figure 6b shows how each feature affected the GBR model

output of Ecorr, where the features are shown in descending order
according to their importance by the average absolute value of all

Fig. 5 Schematic workflow and evaluation for LSTM neural network. The schematic workflow and parameter tuning for the LSTM neural
network: a Schematic workflow used by the LSTM model with the time-series immersion dataset; b Taking Cast Stellite 6 as an example, the
mean squared errors of the different lookbacks for the LSTM model on the training and testing set are shown. LSTM long short-term memory.

Fig. 6 Feature importance analysis for GBR model. Feature importance as given by the permutation importance and SHAP value based on
the GBR Ecorr model: a Box plot of the feature contributions by permutation importance with the minimum and maximum score, lower and
upper quartile, and mean value of various features versus its decrease in accuracy score of models; b Distribution plot of the feature
contributions by the SHAP value. High feature value is colored with red and low feature value is colored with blue. GBR gradient boosting
regression, SHAP Shapley Additive exPlanations.
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features’ SHAP values. The components of Si, Fe, C, and immersion
time also acted as the most important factors for Ecorr prediction.
For element Fe in Fig. 6b, the SHAP value was positive when
increasing the component of Fe, which indicated that the addition
of Fe would enhance Ecorr (the output of the model was kept
stable). For the immersion time, it was obvious that a longer
immersion time would weaken Ecorr (the output of the model
tended to descend).
Overall, the two feature importance analysis methods based on

different mechanisms both considered Fe, C, Si, and the
immersion time to be most important for Ecorr, although they
differed slightly in the importance order of Si. For the duplex
stainless steel Zeron 100, Fe was the main element and C was
0.03%, while for the three cobalt-based alloys, Co was the main
element, the content of Fe element accounted for 2–3%, while the
content of C was greater than 1%. The pitting corrosion resistance
of Zeron 100 was significantly better than the cobalt-based alloys.
Therefore, the composition of the alloys was significantly different,
resulting in the higher importance of these three elements. It is
worth noting that the immersion time had an obvious influence
on the Ecorr prediction by GBR (from Fig. 6b), indicating that the
local corrosion states of the previous sequence were inherited into
the prediction of the subsequent sequence and the cumulative
effect over time dimension needs to be utilized.

The prediction following 70 days of immersion
To validate the analysis results and estimate the Ecorr of unseen
immersion, additional 70-day immersion tests were carried out
based on the previous experiment and the Ecorr was measured
each day. We utilized the pre-built Ecorr models of GBR and LSTM
to predict the following 70 days of pitting evolution. Figure 7
describes the training (120 days) and testing (70 days) stages by
the GBR model for cast Stellite 6, cast Stellite 12, cast Stellite 706,

and Zeron 100. Although the predicted values and the ground
truths fit well in the training stage, in the subsequent 70-day
testing stage, the GBR model gave fixed predicted values of the
four alloys, which did not match the evolution trend of Ecorr. This
indicated that traditional statistical analysis methods such as GBR
defaulted to the assumption of independent and identical
distribution among the data samples. For dynamic pitting
evolution, it could not make use of the inherent time-series
relationship between the data samples.
Figure 8 shows the prediction of the following 70 days of

immersion by the LSTM model. Compared to the GBR model, the
time-series model fit the trend of Ecorr well, especially in the
testing stage (green plot in Fig. 8). The absolute deviation
between the predicted value and the ground truth was somewhat
large for cast Stellite 6, which was mainly due to the significant
increase in Ecorr around day 150 (the dividing line between the
training and testing stages). For the cast Stellite 12, 706, and Zeron
100 alloys, the absolute deviations between the predicted and
ground truths at the testing stage were smaller. This indicated that
the LSTM model could capture the inherent time-series relation-
ship between the data samples and could be utilized in long-term
pitting evolution prediction.
In summary, by taking cobalt-based alloys and duplex stainless

steel as the case scenario, we explored a time-series-based
machine learning method for predicting the pitting evolution
behavior by LSTM. We constructed a pitting evolution model to
predict Ecorr under immersion testing in saline during 150 days in
the propagation stage. The traditional machine learning model
GBR was compared with LSTM, which did not fit well in the
evolution trend of Ecorr during the subsequent 70-day unseen
testing stage. The LSTM model was more consistent with the
evolution trend of the ground truth from experimentation, which
illustrated that this method could capture the inherent time-series

Fig. 7 The prediction of following 70 days’ immersion by GBR model. Prediction of the following 70 days of immersion by the GBR model:
a Cast Stellite 6, b Cast Stellite 12, c Cast Stellite 706, and d Zeron 100. GBR gradient boosting regression, Ecorr free corrosion potential.

X. Jiang et al.

5

Published in partnership with CSCP and USTB npj Materials Degradation (2022)    92 



relationship between the data samples and could be utilized in
long-term pitting evolution prediction. This work may provide a
promising avenue for time-series sequence prediction, which
could be further generalized for other material service and lifetime
behavior predictions.

METHODS
Data collection
All of the data used in this work were obtained by experiments in
laboratory, including four different alloys: Stellite 6, Stellite 12,
Stellite 706, and Zeron 100. The nominal chemical compositions of
each material are shown in Table 1.
The samples were prepared by casting and were embedded in

epoxy resin with a wire soldered to the rear. The surfaces were
polished using 80, 240, 600, and 1200 grit SiC paper and then
polished using 6-micron diamond paste. The hardness of these
materials was also measured up to 50 times for each sample.
Long-term immersion tests were conducted in 3.5 wt.% NaCl

solution at 18 °C for 150 days. The images of the samples under
different immersion stages were given in Supplementary Fig. 1.

Machine learning metrics
Mean squared error (MSE) was used as a metric for the error
between the ground truth and predicted value under each
hyperparameter, and MSE could be calculated by

MSE ¼
PN

i¼1 ðbyi � yiÞ2
N

; (1)

where N is the total number of the dataset, and yi and byi represent
the ground truth and predicted value of the ith data entry,
respectively.
Moreover, to evaluate the generalization capability intuitively,

mean relative error (MRE) was also calculated on both the training
and testing sets. MRE is defined by Eq. (2):

MRE ¼
Pn

i¼1
byi�yi
yi

�
�
�

�
�
�

N
;

(2)

Table 1. Chemical compositions (wt.%) of the experimental material.

Alloys Co Cr W Mo Fe C Ni Si Mn Cu HV HV standard deviation

Cast Stellite 6 58.4 28.9 4.5 0 2.4 1.2 2.5 1.1 1 0 496.6 25.145

Cast Stellite 12 52.6 29 8.5 0 3 1.4 3 1.5 1 0 504.2 40.25

Cast Stellite 706 50.3 27 0 5 2 1.2 3 10.5 1 0 465 21.722

Zeron 100 0 26 1 4 57.47 0.03 8.5 1 1 1 362.5 13.199

Fig. 8 The prediction of following 70 days’ immersion by LSTM model. Prediction of the following 70 days of immersion by the LSTM
model: a Cast Stellite 6, b Cast Stellite 12, c Cast Stellite 706, and d Zeron 100. LSTM long short-term memory, Ecorr free corrosion potential.
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where N is the total number of the dataset, and yi and byi represent
the ground truth and predicted value of the ith data entry,
respectively.

Traditional machine learning models
Support vector regression (SVR), k-nearest neighbor regression
(KNR), gradient boosting regression (GBR), random forest regres-
sion (RFR), and AdaBoost regression (AdaBR) were used based on
the Scikit-learn machine learning library. Parameter tuning was
performed to obtain the optimal model parameters. The whole
dataset from all types of concerned alloys was randomly split with
80% as the training set (384 data entries) and 20% left as the
testing set (96 data entries). Parameter tuning was employed on
the training set using grid search by five-fold cross-validation with
randomly selected hyperparameters for each machine learning
algorithm. The mean and variance of the five-fold MSEs were
calculated to evaluate the comprehensive performance of all
hyperparameters for each algorithm.

LSTM neural network
The internal structure of LSTM comprises the forget gate, input
gate, and output gate. LSTM can use memory cell ct to remove or
add information. ct is composed of the input gate it, forget gate ft,
and output gate ot. First, LSTM decided what information would
be discarded from the cell state by the forget gate. The previous
sequence’s hidden state ht–1 and current data Xt are simulta-
neously input into the forget gate ft. The forget gate’s output
represented the probability of forgetting the information provided
by ht–1, as given in Eq. (3):

ft ¼ σ Wf � ht�1; Xt½ � þ bfð Þ; (3)

where Wf, bf and σ are the linear correlation coefficient, bias, and
sigmoid activation function respectively. The value of ft is between
0 and 1, where 0 indicates that no information can pass, and 1
indicates that any information can pass.
The input gate determines how much new information is stored

in the cell state, which consists of two parts, namely, it and ĉt ,
where it utilizes the sigmoid activation function (Eq. (4)) and ĉt
utilizes the tanh activation function (Eq. (5)):

it ¼ σ Wi � ht�1; Xt½ � þ bið Þ; (4)

ĉt ¼ tanh Wc � ht�1; Xt½ � þ bcð Þ; (5)

where Wi and Wc represent linear correlation coefficients, and bi,
and bc represent biases.
The results of it and ĉt had to be multiplied to update the old

cell state ct–1 to new ct. The old state ct–1 was multiplied by ft to
discard the information that would certainly be discarded, and
then added by the product of the input gate it and ĉt , as Eq. (6).
For the output gate ot (Eq. (7)), the sigmoid activation function
was used and Wo and bo indicated the correlation coefficient and
bias. The hidden state ht was finally updated by the product of
ot and ct after the activation function tanh (Eq. (8)), according to:

ct ¼ ft � ct�1 þ it � ĉt (6)

ot ¼ σ Wo � ht�1; Xt½ � þ boð Þ; (7)

ht ¼ ot � tanhðctÞ: (8)

The LSTM neural network was implemented by TensorFlow and
Keras after transforming the original dataset to a set of training
sequences with a sliding window, namely the lookback window.
We carried out parameter tuning of the lookback window for the
LSTM neural network, where we transformed the 120 days of data
entries of the 4 alloys into time-series sequences with lookbacks of
3, 5, 8, and 15. For each lookback length, the LSTM neural network

was trained on the first 80% sequences as the training set and
tested on the remaining 20% sequences as the testing set to
evaluate the generalization ability for individual dataset related to
each type of alloy. Taking Cast Stellite 6 alloy as an example, the
architecture of the LSTM neural network for the cast Stellite 6 alloy
consisted of an input layer with 5 units (e.g., lookback= 5), 3
hidden layers with 128 units, and a fully connected layer with 1
unit and a ‘relu’ activation function as the output layer. Except for
the output layer, dropout was used to prevent the neural
networks from overfitting. The MSE metric was applied as a loss
function and the network was optimized by the ‘Adam’ stochastic
optimization algorithm. The hyperparameters were also tuned,
including the number of hidden layers and units, batch size, and
dropout.
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