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Random forest incorporating ab-initio calculations for
corrosion rate prediction with small sample Al alloys data
Yucheng Ji1,2,3, Ni Li1,3, Zhanming Cheng1,3, Xiaoqian Fu1,3, Min Ao1,3, Menglin Li1,3, Xiaoguang Sun 4, Thee Chowwanonthapunya5,
Dawei Zhang 1,3, Kui Xiao 1, Jingli Ren 6, Poulumi Dey2, Xiaogang Li1,3 and Chaofang Dong1,3✉

Corrosion jeopardizes the materials longevity and engineering safety, hence the corrosion rate needs to be forecasted so as to
better guide materials selection. Although field exposure experiments are dependable, the prohibitive cost and their time-
consuming nature make it difficult to obtain large dataset for machine learning. Here, we propose a strategy Integrating Ab-initio
Calculations with Random Forest (IACRF) to optimize the model, thereby estimating the corrosion rate of Al alloys in diverse
environments. Based on the thermodynamic assessment of the secondary phases, the ab-initio calculation quantities, especially the
work function, significantly improved the prediction accuracy with respect to small-sample Al alloys corrosion dataset. To build a
better generic prediction model, the most accessible and effective features are identified to train IACRF. Finally, the independent
field exposure experiments in Southeast Asia have proven the generalization ability of IACRF in which the average prediction
accuracy is improved up to 91%.
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INTRODUCTION
Corrosion is the most severe ordeal that materials are confronted
with and negatively affects engineering life and safety1. Due to the
environmental diversity and service complexity, various corrosion,
such as pitting2, galvanic corrosion3, and stress corrosion cracking4

(SCC), have occurred in engineering structural materials. Alumi-
num (Al) alloys, the most widely used lightweight metal in aviation
and transportation, suffer from corrosion problems5. Although
their application reduces fossil energy consumption, their
degradation is not to be neglected6. Currently, there are two
solutions for monitoring metal corrosion. One is deploying
corrosion sensors online to transmit the corrosion current in the
real environment7. However, its obvious problem is that the
transmission is unreliable. Once the protective film or corrosion
products are formed on the surface, the corrosion current may be
extremely noisy and even lose its functionality, especially for Al
alloys. In addition, another trustworthy solution is field exposure
experiments offline in the actual environment for a period of time
(years) and then collect the samples to calculate the corrosion
rate8. This solution, although highly dependable, is also costly; any
prolonged field exposure time increases the risk of losing the
sample.
Several research projects have been conducted to study the

intrinsic essence of material corrosion under long-term field
exposure in different areas. For instance, Sun reported that the
corrosion rates of AA2024 and AA7075 in industrial environments
were larger than those in coastal and urban environments9.
However, corrosion is a complex process that is influenced by
many factors, such as composition and environmental para-
meters10. In view of the limited capabilities of traditional
modeling, only minority factors are considered11. With the
development of big data, machine learning (ML) has shown

significant advantages in data mining and forecasting12. Numer-
ous studies have used miscellaneous ML algorithms to fit
corrosion data and compare their pros and cons13–17. For the
noisy data generated by the corrosion sensor in the first solution,
Pei confirmed that the random forest (RF) is more suitable for
corrosion data than the artificial neural network and supporting
vector regression18. Despite the considerable noisy data, corrosion
sensors which are mainly used for steel generate massive data for
ML training. Evidently, reliable field exposure experiments lack
data due to prohibitive acquisition costs. Predicting the corrosion
rate of Al alloys using a small-sample dataset combined with
environmental parameters is still a major obstacle. Establishing ML
models with outstanding generalization ability will be of great
significance to prolong the service life of materials and ensure
engineering safety19.
We therefore propose a strategy that utilizes the ab-initio

calculations to describe Al alloys intermetallic compounds (IMCs)
and the precipitated phases, so as to improve the prediction
accuracy of the Al alloys corrosion rate on the Earth with latitude
ranging from South 6° to North 52° (See Fig. 1). Compared with
the traditional dataset containing composition and heat treat-
ment, the effect of secondary phases in Al alloys on corrosion rate
is more comprehensive depicted by the calculated work functions
(WFs), surface energies, and Cl adsorption energies (Cl AEs). By
introducing the calculated phases descriptor, the generalization
ability of the corrosion RF model was greatly improved. Besides,
the model had been verified by the independent field exposure
experiments in Southeast Asia (Singapore, Jakarta, and Bangkok),
where the annual rainfall and particle composition were beyond
the range of the training set. Based on this computation and
experiment combined model, we deduced what statistical
strategy should be employed when the ab-initio calculation is
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utilized to express the corrosion resistance of various phases that
coexist in Al alloys.

RESULTS
Parsing small-sample Al alloys field exposure corrosion data
To evaluate the characteristics of the Al alloys corrosion data, the
effect of the basic RF parameters was first investigated. It can be
seen from Fig. 2a that the average goodness-of-fit (R2) increased
with the estimator rise. The growth of the model average accuracy
was limited to 0.81% when the estimator exceeded 40. Never-
theless, the model R2 was anomalous when the estimator was
lower than 40. Traditional optimal RF model accuracy was greatly
improved with the decrease of the estimator, where the maximum
R2 reached 0.86. Unlike the average accuracy increment, the
maximum R2 of the optimal model slightly dropped by 1.22%. A
low estimator was generally considered to be overfitting the data.

Combined with the mean squared error (MSE), it can be confirmed
that the error of the model whose estimator was less than 30 was
significantly higher than the average error. After the estimator
amount exceeded 40, the MSE of the model dropped to 0.086. In
addition, the minimum MSE occurred at the model with100
estimators which was only 0.0443. Taken as a whole, the estimator
of RF models for small-sample corrosion dataset must be greater
than 40, the optimal value should be 100.
Realistically, our model accuracy still lags far behind the material

mechanical prediction models20,21. To improve the model
accuracy, we therefore deeply analyzed the features and data
distribution of corrosion dataset. When the maximum feature
number exceeded 10, the models average R2 remained around
0.51 (Fig. 2b). Interestingly, superfluous features did not positively
affect the establishment of the optimal corrosion model (red
symbol in Fig. 2b). Only when the maximum feature number was
11, the traditional RF model achieved the optimum (R2 ≈ 0.62).

Fig. 1 Calculations modified RF model flow and the field exposure sites. a ML flow diagram and dataset features. b Placement map.
Corrosion data obtained in Singapore, Jakarta, and Bangkok are only used for generalization verification. c–e The climate characteristics of
regions. The field exposure time of Al alloys is range from 0.5 to 4 years.

Fig. 2 Analysis of long-term Al alloys field exposure corrosion data by RF model. a The effect of the estimator number on R2 and MSE. The
R2 improvement with b features and c training set ratio variation. The red symbol size clearly represents the precision of the model.
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This proved that there were features that are unfavorable for
corrosion rate prediction in Al alloys. Whereas the slow increase of
average precision (after max features= 10) did not account for the
unfavorable features number being 5. Another solution to
improve the accuracy is to enlarge the proportion of the training
set or multiply the data size. Figure 2c shows that with the
increase in training set proportion, the model accuracy had been
greatly improved (0.75 maximum, 24% higher than the original
model).
Both the Pearson and Spearman’s correlation coefficients were

carried out to analyze the linear and monotonic relationships
between the corrosion data, so as to eliminate the useless features
(Fig. 3a). There are two isolated regions in composition that show
a strong correlation, one is the correlation between Al and Zn
(exceed 0.8). Specifically, Zn is demonstrated to be a strengthen-
ing element in AA7xxx to form the η/η‘ phase22. However, owing
to the high SCC susceptibility23 of AA7xxx, other elements such as
Cu, Fe, and Si are supplemented to enhance its corrosion
resistance. Therefore, Zn addition resulting the synchronous
increase of other alloying elements so as to decrease the Al
content. Another strong correlation is seen between Si and Fe
which are often co-added to enhance the alloys strength and
manufacturing fluidity24. Moreover, the correlation of annual

rainfall with precipitation pH and Cl deposition were both above
0.9. This indicated that the annual rainfall could replace other
environmental parameters during training. Besides, Fig. 3a also
demonstrated the environmental parameters were more directly
related to corrosion rate than alloy composition, as their
coefficient with corrosion rate is 0.3–0.5. We investigated the
importance of the features in the corrosion dataset through the
traditional RF model (the training set ratio was 0.7 and the R2 was
0.62). A total of 6 features had an importance index exceeding
0.05 in Fig. 3b, which were exposure time, precipitation pH value,
Al content, Zn content, annual average temperature, and Cl
deposition, respectively. The trace elements did not have a
significant impact (<0.03) on the corrosion prediction.
By means of the RF model, the effect of alloying elements on

corrosion rate could be investigated based on the commonly used
AA7B05 for underframe corbels. Each element’s effect on
corrosion rate was reflected by the monotonical variation which
was summarized in Fig. 4. It could be found that the alloy
corrosion rate fluctuated slightly when Zn content was less than
5.7%. Nevertheless, once the addition of Zn exceeded 6%, the
alloys corrosion rate increased by 100.67%. What’s more, both
superfluous Mg and Si are observed to deteriorate the corrosion
resistance. Likewise, Cu displayed a surge in corrosion rate, but its

Fig. 3 Analysis of long-term exposure experiment data. a Pearson and Spearman correlation coefficient. b Importance ranking of corrosion
data features based on the RF model.

Fig. 4 Elaboration of element effect on corrosion rate. a Common elements. b Trace elements.
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content required was small (>1.5%). On the contrary, Fe and Mn
could improve the Al alloys corrosion resistance (Fig. 4b). Usually,
Fe is considered as impurity element for mechanical properties in
Al alloys. However, it can be seen from ML that a small amount of
Fe can significantly improve the corrosion resistance (although
excessive addition would increase the corrosion rate). This was
mainly attributed to the low formation energy of the Fe-phases,
redundant Fe was easy to form coarse phases with high WFs
which lead to galvanic corrosion. Mn also improved the corrosion
resistance, but unlike Fe, the increase of Mn did not substantially

reduce their corrosion resistance. In general, the gigantic effect of
Zn on the corrosion rate of Al alloys can also be confirmed by
materializing to specific alloys. Therefore, combining the correla-
tion of Zn with Si, Fe, Mn, and Ti (Fig. 3a), it is feasible to predict
the corrosion rate by optimizing the features (using Zn). However,
it is unreasonable to only consider Zn, especially for Al alloys
without Zn, so the Al content should also be considered. Although
optimizing the features could improve the RF model accuracy, it is
not optimal (up to 0.75).

Fig. 5 Micron-scale IMCs or precipitated phases in Al alloys. 2xxx (θ-Al2Cu, S-Al2CuMg, N-Al7Cu2Fe, Mg2Si), 5xxx (Mg2Si, Al6(Fe, Mn)), 6xxx
(Mg2Si, S-Al2CuMg, Al6(Fe, Mn)), and 7xxx (Al3Fe, Al23Fe4Cu, Mg2Si) Al alloys. Excluding the micro-scale secondary phases, the 5xxx Al alloys
also contain β-Al3Mg2 and 7xxx Al alloys have η-MgZn2 phase. The length of bars is 2 μm.

Fig. 6 Ab-initio calculations for the Al alloys secondary phases. aWF. Three orientations, (100), (110), and (111), were considered. The lowest
WF is depicted as a line, and the remaining two surfaces are expressed in the form of summation on this line. b The phase surface energies
and their adsorption energies for the Cl atom. The surface with the lowest WF of each phase is surrounded by a black circle. c Adsorption
distance and charge distribution between the Cl atom and the phase surface with the lowest WF.
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Ab-initio calculations for the secondary phases
Complex secondary phases (including IMCs and precipitated
phases) were another important characteristic in Al alloys, which
were experimentally observed as shown in Fig. 5. Whereas how to
obtain the phases information efficiently and quickly is a
conundrum. The experimental means is troubled by the con-
sequences of tiny element changes in the phases. However, the
corrosion information of the secondary phases varied by the
exposed element (type, positions, and content) can be considered
as much as possible by calculations25.
WF, surface energy, and Cl AE of the secondary phases with

different orientation were calculated to enrich the phase
information in the corrosion dataset. The most easily formed Al
surface was (111) and its WF was 4.05 eV26. The theoretical WF
difference (Eq. (13)) between the various phases and (111) surface
can qualitatively determine the role of phases in the corrosion
process: anode or cathode27,28. To sum up, η-MgZn2 and β-Al3Mg2
belonged to the anode phase in Al alloys, the N-Al7Cu2Fe, θ-Al2Cu,
Al3Fe, Al6 (Fe, Mn), and Al23Fe4Cu were the cathode phase (see Fig.
6a). In particular, the corrosion tendency of Mg-containing phases,
such as S-Al2CuMg and Mg2Si, was strongly correlated with the
crystallographic orientation and the atomic type of the outermost
termination. Moreover, the difference between the minimum/
maximum WF of the Mg2Si and that of Al was too large to cause
corrosion. When Mg2Si acts as an anode, the Al alloys tend to have
pitting corrosion29. Conversely, the Al alloys will undergo galvanic
corrosion when Mg2Si enacts as a cathode. Fortunately, the
surface energy of the most easily formed Mg2Si surface (100) was
0.81 J m−2 which indicated that the Mg2Si size was not enormous
(experimentally measured close to 1 μm). Meanwhile, the (100) WF
was 4.55 eV so that the Al alloys containing Mg2Si were relatively
less prone to galvanic corrosion.
Hazardously, all orientation surface energies of Al23Fe4Cu were

negative (the lowest value among them being −2.87 J m−2),
which meant that large Al23Fe4Cu can be formed in Al alloys.
Combined with the influence of its high WF, it was easy to cause
galvanic corrosion. Whereas the positive surface energies did not
mean that the phase cannot be precipitated/formed in the Al
matrix, it just indicated that the surface formation process was a
non-spontaneous reaction. In addition, except for the Al23Fe4Cu,
the surface energies of the other eight phase orientations with the
lowest WF were all positive. Most of the phase orientation
(>81.48%) showed a clear affinity with respect to Cl. The lowest
WFs of β-Al3Mg2, θ-Al2Cu, η-MgZn2, AlFe3 and Al23Fe4Cu2 had
poor affinity for the Cl atom, so there was no obvious Cl additive
effect30. Furthermore, the adsorption distance and charge
distribution shown in Fig. 6c clearly divided the secondary phases
into three categories. The first category was the precipitated
phase that interacts weakly with the Cl atom, for instance the
β-Al3Mg2, θ-Al2Cu, and η-MgZn2. The distance between the

outermost surface of phase and the Cl atom was larger than 7 Å,
and there was no obvious charge transfer at the intermediate
points. The second category was the IMCs that generate strongly
interacting ionic bonds with the Cl atom. Such phases were IMCs
containing Fe and S-Al2CuMg. The distance between the Cl atom
and the outermost atoms was 2 Å, and there was an apparent
charge sharing. Finally, the worst phase was the Mg2Si, where the
Cl atom had visibly eroded into the phase interior (distance <1 Å).
Based on the above calculations, we numerically describe the role
of the secondary phase in the corrosion process of Al alloys.

Facilitation and generalization for syncretic RF model
To establish a more accurate corrosion prediction model, various
statistical methods were applied to handle the Al secondary phase
information (WFs and Cl AEs) to refine the corrosion dataset,
namely the Integrating Ab-initio Calculations with Random Forest
models (IACRF). Top six important features (in Fig. 3) were utilized
to further compare the statistical method differences. Figure 7
specifically shows the effect of the WF and Cl AE descriptor on the
model accuracy. Evidently, using WFs to amend the corrosion
dataset improved the mean prediction accuracy by 43.56 ± 1.03%
(Fig. 7a). Besides, the strategies using the arithmetic mean method
(AMM) had extremely similar improvements in accuracy as their
mathematical expectations difference was less than 0.06%. The
optimal model under the AMM appeared when using the average
WFs with the lowest surface energy; its accuracy reached 0.861.
Then, ignoring the phases type, only the extrema WF was utilized
to supplement the corrosion dataset, the model accuracy
fluctuated significantly. Especially, the mean accuracy of the
model only considering the lowest WF improved to 0.737. On the
contrary, the accuracy of the model that only considers the
highest WF had dropped drastically, its Gaussian distribution had
shifted to the left (see Supplementary Fig. 1). The model using the
lowest WF achieved an optimal accuracy of 0.869.
From Fig. 7b, it could be concluded that the precision of the Cl

AEs supplementation was significantly behind that of the WF, the
average accuracy of the Cl AEs model was 0.630 only. The reason
was that it was completely different from the WF which directly
pointed out the ability of the secondary phases to gain or lose
electrons. Furthermore, another reason is that oxide films are
easily formed on the Al surface, the probability of Cl directly
contacting with the Al matrix is low. Although the oxide film on
the secondary phases may be weak, some of them, such as
β-Al3Mg2, θ-Al2Cu, and η-MgZn2, were resistant to Cl adsorption.
Similar to WF, the optimal model of Cl AE modification appeared
in the extreme value method. Whereas the maximum model
accuracy (0.837) was the Cl AE with the lowest surface energy.
Besides, it is unadvisable to average the Cl AEs of all orientations
for all phases, which significantly masked the pitting sensitive

Fig. 7 Contrast of different statistical strategies for calculation modified corrosion dataset. a Mean accuracy and optimal strategies using
WF. b Statistics of model accuracy after supplementation with the Cl AE. c Average and maximum accuracy comparison of models with a
single factor (WF or Cl AE) or both the factors.
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phases (optimal accuracy of avgall is 0.747, Fig. 7b). From
Supplementary Fig. 2, the prediction accuracy of IACRF modified
with WF or Cl AE varies slightly with the estimators increased.
A comprehensive comparison of the two ab-initio calculated

descriptors and three amendatory methods (WF, Cl AE and both
modified) are summarized in Fig. 7c. When the corrosion dataset
was supplemented with both WF and Cl AE, the model average
accuracy was similar to the Cl adsorption modification. Only the
model amended by the average all phases strategy improved to
0.64. In terms of mean accuracy, the model using only WFs was
significantly higher than the other two strategies. For the optimal
model with the highest accuracy, the model combined with WF
and Cl AE partially (in AMM) achieved the accuracy of model using
only the WF. Specifically, the differences of the avg and avglowest
strategies with that of WF were only 0.71% and 0.35%,
respectively. Further, the accuracy of the other four statistical
method models indicated that the Cl adsorption descriptors
cancelled the beneficial effect of WF to some extent. Therefore,
the single WF descriptor is the most beneficial calculated feature
for the field exposure corrosion dataset of Al alloys.
To enhance the generalization ability of the corrosion prediction

model, we further trained the model with different feature
combinations. Finally, the selected features (exposure time, Al
content, annual rainfall, and calculated WF) were retained to train
the model. Figure 8a shows two corrosion RF models after
repeated tuning: the experimental model and the calculation
modified model (IACRF). Since some experimental features were
removed from the model, the R2 of the experimental optimal
model dropped to 0.821, where the MSE was 0.0142. Despite the
low R2, in terms of corrosion data prediction, the fitting slope
between the experimental data and its prediction value was
0.875 ± 0.049. Encouragingly, the IACRF model had the R2 as high
as 0.963. The MSE of this model dropped to 0.0136, and the slope
of linear fitting reached 0.942 ± 0.044. This illustrated that the
secondary phases were a non-negligible factor in the process of
studying the corrosion rate prediction. Adding the phases
calculated descriptors to the corrosion dataset had greatly
reduced the prediction difficulty and increased prediction
accuracy by 17.30%.
Coincidentally, it can be found from Fig. 8a that the predictions

of both the models at a low corrosion rate (<0.01 μm a−1) had a
larger error than that at a high corrosion rate (>0.1 μm a−1). The
field exposure corrosion rate decreased with time, which was
attributed to the fact that the corrosion rate mentioned here refers
to the average annual corrosion rate. The Al alloys had a higher
corrosion rate in the first exposure year. Compared with the

increase in time, the amplification of corrosion weight loss was
lower, which lead to a decrease in the corrosion rate. When the
corrosion rate was converted to weight loss, the corrosion weight
loss increased with exposure time. Besides, it was worth noting
that the Al content of the AA6N01 was 98.24%, which clearly
showed a 1.41% increase from the maximum training set
(originally 96.85%). Additionally, the annual rainfall in Singapore
(2345mm, 1.146 after normalization) was also out of range31.
Although both the compositional and environmental parameters
were outside the range of the input values, the RF model trained
using the WF retained its accuracy to some extent. After
synthesizing the corrosion rates of three Al alloys in Southeast
Asia, the overall R2 predicted reached 0.822 and the MSE was
0.0031. Moreover, the whole average error between the predicted
rate and the experimental rate was 8.89%. Comparing the region
difference, it was found that the IACRF model had the best
prediction ability for the Al alloys placed in Jakarta; its error was
only 6.33 ± 3.04%. However, the worst prediction region of the
IACRF model was Bangkok as its error was as high as 11.53%. In
Singapore, where the rainfall exceeded the dataset range, the
accuracy reached 91.20 ± 7.43%. From the experimental results,
the corrosion in Singapore was the most serious no matter which
Al alloys series was under consideration. The morphology, size,
and number of pits are summarized in Fig. 8c. The more and
deeper the pits, the greater the risk of an engineering disaster. In
addition, the experiment found that although the pits of the three
Al alloys had decreased in Singapore, the pits were far deeper
than those in the other two regions. Once the materials
perforation occurred, the stress concentration caused the rapid
failure of the Al alloy structure. While the other two regions had
the same magnitude of pitting number, the average pits depth in
Bangkok was deeper.

DISCUSSION
By limiting the maximum features of subtree, the effect of the
features number on the corrosion model was reported. Unfortu-
nately, we only know that increasing the features number to a
certain extent (≈10) was conducive to improving the model
accuracy. It was not known exactly what features each subtree
used. Based on the analysis of features and learning curve, we
determined that the corrosion prediction models could be further
optimized. Significantly different from the ML models with
sufficient data, their learning accuracy curve consistently demon-
strated tiny fluctuation with the increase in the data size32,33. It is
adequately indicated that the field exposure corrosion dataset

Fig. 8 Independent verification of two feasible models for Al alloys field exposure data. a Comparison of RF models trained by the pure
experimental corrosion dataset or ab-initio calculation modified dataset. b Three different Al alloys, AA5083, AA6N01, and AA7N01, were
placed in Southeast Asia (Singapore, Jakarta, and Bangkok) for 2 years to examine the generalization ability of the RF model with phase
calculation. c Corrosion morphology and statistics on the number and depth of pits in Al alloys after field exposure.
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belongs to a small-data sample. Due to the time span of the field
exposure experiments, performed from 0.5 years to 4 years where
at least five samples of the same alloys were required to ensure
the experimental accuracy, such high experimental costs
obviously cannot expand the data size. However, learning from
small-sample data is still a difficult issue34,35. In addition to the
solution of enlarging the dataset from academic journals36,
another feasible method is to utilize the partial sample general-
ization error to fine-tune the learner parameters. For instance, Xue
provided feedback input for data with large prediction errors and
used only 22 samples of data to construct a support vector
machine algorithm that successfully fabricated a Fe-Ni based
shape memory alloys37. Therefore, to further improve the
corrosion model accuracy, the small-sample data needs to be
deconstructed to reduce harmful features and add new features.
Creatively, we introduced the Al alloys phases descriptor by

observing the relationship between corrosion rates and the
secondary phases. According to the element distribution and
atomic ratio of the second phase, we approximated the
corresponding crystallographic models (Supplementary Fig. 3). In
addition, it is worth mentioning that it is experimentally difficult to
incorporate various phases information within corrosion dataset.
Currently, the scanning Kelvin probe force microscopy is a
potential means to determining the corrosion property of the
secondary phases38. However, the cost of this means is exorbitant,
the sequence of phase composition detection (carbon injection
changes the surface state) and phase surface potential monitoring
(priority implementation may result in repeated testing of the
same phase) lowers the experimental efficiency. So, the utilization
of ab-initio calculation is the optimal way to refining the corrosion
dataset. By comparing the model accuracy with different
calculations statistics, these results inspired us to consider more
the secondary phases with lowest WF where the ab-initio
calculations were carried out to determine the Al alloys corrosion
resistance. Although the improvement of model accuracy by Cl AE
descriptor is weaker than that of WF, it maybe attributed to the
natural dense oxide film39,40 on the Al surfaces (thickness ~10 nm)
and the low Cl concentration in atmosphere environment. The
effect of Cl on the oxide/passivation film is controversial, mainly
including Cl permeation and Cl-induced film thinning theory41.
Therefore, the Cl AE feature may be more accurate in the training
of metal/alloys without oxide/passivation films, i.e., carbon steel
and Mg alloys. Furthermore, the prediction accuracy of stainless
steel, whose passivation film42 (~1–2 nm) is extremely sensitive to
Cl, may be significantly improved after Cl AE addition. For the thin
iron passivation films accompanied by element doping (Cr, Ni, Mo)
and structural transformation (Fe3O4, Fe2O3, Fe(OH)2, and
Fe(OH)3), the best Cl calculated descriptor could be the Cl
diffusion in the passivation films43 (especially for Cl permeation
systems). The Cl diffusion in oxide-layer feature may has
significantly impact on the accuracy when incorporating ab-
initio calculations to predict the corrosion rate of stainless steel. In
addition, the same secondary phase has many structures with
different stoichiometry and crystallographic space groups during
heat treatment44. Considering more orientations and different
terminal atoms on the same orientation is beneficial to describe
the physical properties of secondary phases more accurately.
These calculations may improve the accuracy of models but is not
certain. However, it should be noted that for the calculated
descriptor, especially the WF, the range (min, max) of them should
include that of metastable phases as much as possible, e.g., Mg2Si
in Supplementary Table 1.
Actually, some environmental parameters, such as Cl deposition

and rainfall pH, are needed to be collected using specialized
instruments. If some environmental parameters used in the
aforementioned models were missing, the accuracy would have
been affected. Therefore, our further work was to use readily
accessible environmental parameters to train the model. A model

with R2 ≈ 0.96 was successfully trained by the combined feature
optimization and ab-initio calculations modified corrosion dataset.
Although the verification precision of the field exposure experi-
ments in Southeast Asia dropped to 0.822, the overall error was less
than 9%. We reckoned that this accuracy drop was attributed to the
fact that the parameters in Southeast Asia exceeded the training
set thresholds. Among them, some composition of AA5083 and
AA6N01 (never utilized in training process) are below/beyond the
minimum/maximum-value of the training set, while the rainfall in
Singapore exceeds the max-value of the dataset.
In conclusion, we have proposed an optimal strategy for the Al

alloys corrosion rate prediction based on small-sample data from
long-term field exposure experiments. The IACRF model is
conducive to the selection and utilization of Al alloys in various
environments. The use of the ab-initio calculations for the WF and
the Cl AE of the secondary phases in Al alloys further characterizes
the corrosion dataset, improving the corrosion rate prediction
accuracy by 17.30%. In particular, we explicitly interpreted the
effect of the phase information on the Al alloys corrosion
prediction. Moreover, through comparing various statistical
methods of WF and Cl AE, it was evident that the minimum WF
of all phases should be specified as the evaluation criterion when
utilizing the ab-initio calculation to measure the corrosion
resistance of Al alloys. In addition, the WF was more suitable for
corrosion prediction of pitting (galvanic) corrosion-prone alloys,
while Cl AE tends to play a more significant role in Cl-induced
passivation film destruction or general corrosion systems. To
generalize the model broadly, we utilized feasible experimental
features, Al content, rainfall, and exposure time combined with
phases WF, to train the model. Finally, independent field exposure
experiments in Southeast Asia demonstrated and verified the
generalization ability of IACRF in corrosion prediction.

METHODS
Data pre-processing and random forest model
The corrosion dataset involves 15 experimental features and 2 ab-
initio calculated features, with a total of 162 experimental data. The
experimental features include ten element content (Al, Zn, Mg, Si,
Cu, Fe, Cr, Mn, Ti, and the sum of other elements), four
environmental parameters (annual average temperature, annual
rainfall, precipitation pH, and the deposition of Cl), and exposure
time. Each feature was linearly normalized. Experimental data were
open access on Github, and the calculation results of secondary
phases are summarized in Supplementary Table 2. In addition, six
statistical strategies were utilized to find the optimal description for
the secondary phase ab-initio calculation in Al alloys (Supplemen-
tary Tables 3 and 4). The detailed statistical strategies (the
preprocessing of Cl AE is similar to that of WF) were as follows:
The descriptor ψavg

all refers to averaging the WFs of all crystal-
lographic orientation including all phases in Al alloys, given by Eq.
(1).

ψavg
all ¼

Xn

i

X
ψi
surf

� �
=n (1)

where i is the serial number of secondary phases, n is total number
of secondary phases in Al alloys, and ψi

surf indicates the WF of i-th
phase on different orientations (surf).
The descriptor ψavg

lowest refers to specifying the lowest WF among
all orientation in one phase, and then averaging all phases in Al
alloys.

ψavg
lowest ¼

Xn

i
ψi
lowest

� �
=n (2)

where the ψi
lowest expresses the lowest WF corresponding to all

orientations in the i-th phase.
The descriptor ψavg

γlowest
uses the WF of the orientation with the

lowest surface energy to represent the i-th phase, and then
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averages all phases in the Al alloys.

ψavg
γlowest

¼
Xn

i
ψi
γlowest

� �
=n (3)

where ψi
γlowest

denotes the WF with the lowest surface energy (γ) in
the i-th phase.
The descriptors ψlowest (ψhighest) are the minimal (maximal) WF

ignoring the number and type of phases.

ψlowest ¼ min ψn
lowest

� �
(4)

ψhighest ¼ max ψn
highest

� �
(5)

where the ψn
lowest (ψ

n
highest) indicates the minimal (maximal) WF of

all phases (n) in Al alloys.
The descriptor ψγlowest

is the WF with the lowest surface energy
neglecting the phase type.

ψγlowest
¼ min ψn

γlowest

� �
(6)

The RF algorithm utilized was the classification and regression
tree assembled by scikit-learn45. Besides, the regression criterion
was the squared error loss function, and out-of-bag data was also
used to evaluate the generalization ability of the model. Since the
dataset size was small (~160), the maximum estimator was limited
to 100. Therefore, the estimators increased from 1 to 100, and 28
repeats were performed for each estimator. Specifically, all
features were utilized for model training, and the dataset is
shown in Supplementary Table 5. To eliminate the effects of data
variance, the split number of the dataset was fixed (0.8 training
data and 0.2 testing data). In addition, a new leaf can generate
when the sample amount reached 2, and the minimum samples
number on each leaf was 1. The estimator’s number of IACRF
model was 100, and the maximum depth of the tree is not limited.
Moreover, the specific parameters of IACRF models can be
obtained on Github. Furthermore, the evaluation criteria were
calculated by MSE and R2, given by Eqs. (7) and (8).

MSE ¼ 1
N

XN

i
yi � ypredi
� �2 (7)

R2 ¼ 1�
PN

i yi � ypredi
� �2

PN
i yi � ymeanið Þ2

(8)

where N expresses the total number of data in corrosion dataset,
and i-th is the serial number. yi denotes the true value of the i-th
sample. ypredi is the predicted value and ymeani represents the
average true values of all samples.

Long-term field exposure experiments
Al alloys including 2xxx, 5xxx, 6xxx, and 7xxx were subjected to
field exposure experiment. Chemical compositions of the 18 kinds
of Al alloys are listed in Supplementary Table 6, and the size of
exposure sample was 150 mm × 75mm × 4mm. Prior to the field
exposure experiments, the samples were all degreased in acetone,
cleared with distilled water, and dehydrated by ethyl alcohol.
Next, the dry samples were weighted by a balance with an
accuracy of 0.01 mg and kept in desiccators. During field
exposures, the samples were mounted on racks at an angle of
45° to the horizon, and the exposure time ranged from 0.5 to 4
years. Three Southeast Asian regions, namely Singapore, Jakarta,
and Bangkok, were selected for validation. In addition, their
available environmental parameters are shown in Supplementary
Table 7. Subsequently, the samples were recovered for corrosion
assessment according to the Chinese standard (GB/T 16545-2015).
To be specific, corrosion products covered on the specimens were
removed by immersion in the solution (50 mL H3PO4+ 20 g
CrO3+ 1 L H2O) for 5–10min at 80–100 °C. Then, the samples were
rinsed with distilled water and air dried. The microstructures

(scanning electron microscopy and energy dispersive spectro-
scopy mapping) of the secondary phases in Al alloys were
detected by GeminiSEM 500 (ZEISS, UK). The corrosion rate (ω,
µma−1) could be calculated as follow:

ω ¼ 1000 G0 � G1ð Þ
2tρ abþ ac þ bcð Þ (9)

where G0 and G1 are the original and the final weights (g), a, b, and
c express the length, width, and thickness (mm) of the samples
respectively, t denotes the exposure time (year, a), and ρ is the
density (g cm−3) of the Al alloys.

Ab-initio calculations
All ab-initio calculations were carried out using the Vienna Ab-
initio Simulation Package (VASP) with Medea46. A total of nine
secondary phases in Al alloys were considered to calculate WF,
surface energy and Cl AE, which initial structure is presented in
Supplementary Fig. 3. In view of the complexity of numerous
secondary phases in Al alloys, two criteria were utilized to
determine the corresponding calculated secondary phases
structures. (I) The most stable structure with the lowest formation
energy should be taken into account; (II) The structure observed
from actual exposure samples. To guarantee the calculation
accuracy, the surface models consisted of at least 6-layer slabs.
Besides, using the outermost atoms (containing the adsorbed Cl
atom) as base points, a 15-Å-thick vacuum gap was applied to the
model to create the surface state (See Supplementary Fig. 4).
General gradient approximation47 and Perdew–Burke–Ernzerhof48

methods were utilized in the calculations. In addition, the
structure optimization energy convergence accuracy was set to
10−5 eV Å−1, and the spacing of k-points and cutoff energy for
adsorption calculation was set to 0.25 Å−1 and 450 eV, respec-
tively. The surface energy and Cl AE can be calculated based on
the Eqs. (10) and (11), respectively.

γsurf ¼ Esurf �
X

nEatom
� �

=2A (10)

where γsurf and Esurf represent the surface energy and total energy,
respectively. Eatom indicates the energy of a single element in bulk
and n is the atom number. A expresses the area.

EClads ¼ EClsurf � Esurf � ECl (11)

where EClads is the adsorption energy of a single Cl atom on a phase
surface, EClsurf indicates the total energy of the adsorption system
with the Cl adsorbed on the surface, Esurf represents the pure
system without the Cl adsorbed, and ECl is the energy of a single Cl
in bulk.
The WF (ψ) refers to the minimum energy required for the

electrons of the metals to escape from the interior to the vacuum.
In order to express the corrosion tendency of secondary phases in
Al alloys more efficiently and accelerate the training process
simultaneously, the WF is calculated by Eq. (12) and then
preprocessed to obtain the theoretical WF differences (ψphase

matix )
according to Eq. (13)49.

ψ ¼ ϕ� Ef (12)

ψphase
matix ¼

ψphase � ψmatrix

e
(13)

where ϕ indicates the vacuum level determined from the average
potential in the vacuum gap. Ef is the Fermi level of the system.
ψphase and ψmatrix are the WF of the phase and Al matrix. e is the
charge of an electron.
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