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Electrochemical tomography as a nondestructive technique to
study localized corrosion of metals
M. C. van Ede 1, C. J. Earls 2, A. Fichtner 3 and U. Angst 1✉

We present an approach, termed electrochemical tomography (ECT), for the in-situ study of corrosion phenomena in general, and
for the quantification of the instantaneous rate of localized corrosion in particular. Traditional electrochemical techniques have
limited accuracy in determining the corrosion rate when applied to localized corrosion, especially for metals embedded in opaque,
porous media. One major limitation is the generally unknown anodic surface area. ECT overcomes these limitations by combining a
numerical forward model, describing the electrical potential field in the porous medium, with electrochemical measurements taken
at the surface, and using a stochastic inverse method to determine the corrosion rate, and the location and size of the anodic site.
Additionally, ECT yields insight into parameters such as the exchange current densities, and it enables the quantification of the
uncertainty of the obtained solution. We illustrate the application of ECT for the example of localized corrosion of steel in concrete.
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INTRODUCTION
Localized corrosion is a common phenomenon in a wide range of
materials and environments, including corrosion of underground
metallic structures (e.g., pipes, storage tanks, borehole casings,
geotechnical, etc.)1–4, reinforced and prestressed steel in con-
crete5–9, and medical implants such as vascular stents in the
human body10. Since corrosion potentially impairs the function-
ality and serviceability of these different metal objects, and as
their potential failure presents serious risks to human safety,
health, and the environment, there is a need for methods, that
quantify in-situ the local corrosion rate. For the non-destructive
measurement of instantaneous corrosion rates on metal objects in
their actual service environments (as opposed to laboratory
samples and conditions), generally, only electrochemical techni-
ques are feasible11–16.
A particular problem relevant to all examples of corrosion in

engineering mentioned above, is that the metal is surrounded by
a solid, opaque, porous medium. This complicates the non-
invasive measurement of the corrosion rate for various reasons.
First, any measurement probes (such as reference and counter
electrodes in electrochemical techniques) have to be positioned at
a certain minimum distance from the metal. This generally dilutes
the acquired signals, and thus limits the accuracy and reliability of
the measurement. Second, since the corroding metal cannot be
visually inspected, the anodically behaving area of the galvanic
corrosion cell remains unknown. Therefore, it is difficult to relate
the measured corrosion current to an area, and subsequently
convert it to a corrosion current density, or corrosion rate in terms
of the thickness or mass loss per unit time. These aspects have
received considerable attention in the field of chloride-induced
corrosion of steel in concrete since the 1980s13,17–21. A number of
approaches have been proposed to overcome the problem of the
unknown anodic surface area, which is recognized to potentially
induce an error in the obtained corrosion rate by up to several
orders of magnitude. Such approaches include attempts to
confine the polarization current applied during electrochemical
corrosion rate measurements16,17,22,23. However, the feasibility and

success of these approaches have been repeatedly questioned,
both on the grounds of experimental validation studies16,22 and
theoretical reasoning24–27.
The unknown anodic surface area in localized corrosion of

metals embedded in porous media remains the major limitation
for non-destructively quantifying local corrosion rates. This
fundamental problem is relevant for virtually all different
electrochemical techniques. It universally limits the interpretation
of results from techniques based on linear polarization resistance
measurements, galvanostatic pulse measurements, electrochemi-
cal impedance spectroscopy, etc.
Here, we present an approach, for the in situ study of the

instantaneous state of corroding systems (see Fig. 1a), termed
electrochemical tomography (ECT). The approach is based on
combining electrochemical measurements with a numerical
model, which then serves in the solution of a Bayesian inverse
problem. The electrochemical measurements are performed non-
invasively, at the surface of a porous electrolytic domain, in which
the locally corroding metal is embedded. We consider it a
particular advantage that, while quantifying the instantaneous
rate of localized corrosion, the approach not only yields the
corrosion current, but also the location and size of the anodic area.
Hence, ECT enables the determination of the actual corrosion rate,
in terms of thickness or mass loss per unit time, without the need
for assumptions related to the anode area. A further advantage of
this approach is that it is capable of yielding insight into the
fundamental electrochemistry of the system under study, namely
through determining parameters such as the anodic and cathodic
exchange current densities and Tafel slopes. Additionally, the use
of a stochastic inverse method allows us to take into account the
inherent uncertainty within the various model parameters.
Inverse methods are widely applied in engineering and form

the basis of many non-destructive testing methods28,29. In the
field of localized corrosion, however, the inverse approaches are
still in their infancy. Several authors performed pioneering work
and showed the potential of these methods for localized corrosion
in reinforced concrete30–33. The most recent study by Marinier and
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Fig. 1 The methodology of electrochemical tomography (ECT) and the importance of external polarization. a Overview of ECT. b The
geometry of the 2D axisymmetric forward model, including model parameters Wan and zan describing the size and location of the anode and
the position of the reference electrodes (RE) and counter electrodes (CE) at the surface of the concrete. The marginal probability density
function (pdf ) estimates of the MCMC results for simulations with and without external polarization of −0.2 and +0.08 mA and a spacing of
Δz= 5 cm between the RE, for model parameters c Wan, d zan, e log10(i0,Fe), f log10ði0;O2 Þ. The vertical dashed lines represent the means of the
corresponding MCMC results, the black lines the known (input) model parameters.
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Isgor33 was the first to use a numerical model based on the Butler
−Volmer kinetics, describing the polarization behaviour of steel.
They applied a deterministic inverse method on potentials
measured under open-circuit conditions. They demonstrated that
this approach is able to localize the anode. However, they
encountered problems in the stability of their method, when a
smaller, but more practical number of measurements were used.
This is a problem that our proposed approach overcomes; firstly
by including the response of the electrical field to external
polarization and secondly, by applying a stochastic inverse
method, instead of using regularization methods, that are
commonly used in deterministic approaches to overcome
instability problems.
In the current work, we illustrate the application of ECT for

corrosion rate measurements by applying the method to the
example of localized corrosion of steel in concrete. A first reason
for selecting the example of steel corrosion in concrete, is that this
particular case of localized corrosion has so far received
considerable attention in the literature on corrosion rate
measurements. An additional reason is the urgent need for
techniques to quantify corrosion processes in situ in civil
engineering structures. Various studies have revealed the stagger-
ing socio-economic relevance and huge economic impact of
corroding concrete structures34,35, and the potential risks for
human safety are well known. The need for reliable inspection
methods will only grow, because of the ageing of concrete
structures. In the next 20 years, for example, the fraction of
bridges with an age greater than 50 years will rise from currently
40−50% to 70−80% in all industrialized countries36. The
consequence will be a wave in the need for the replacement of
this vital infrastructure. As a result, reliably diagnosing the
condition of structures, in order to prioritize their repair or
maintenance, will become increasingly important.

RESULTS
ECT applied for the example of localized corrosion in
reinforced concrete
A typical case of chloride-induced reinforcing steel corrosion in
concrete was considered. A locally corroding steel bar segment,
embedded in a concrete cylinder, was assumed (see Fig. 1b). For
the electrochemical measurements, an array of reference electro-
des (RE), as well as two counter electrodes (CE), were positioned
on the concrete surface. The counter electrodes enable a

temporary polarization of the corroding system, and the reference
electrodes are used to measure the resulting system response.
ECT—described in detail in the ‘Methods’ section below—

seeks to find the location and the size of the anodic part of the
galvanic cell by means of a deterministic forward model and a
stochastic inverse solver. The forward model gives the electrical
potential field in a certain conducting environment (the
electrolyte) as a function of the location, size, and electro-
chemical properties of an actively corroding metal surface, and
under the effect of external polarization. The inverse solver seeks
to invert for certain parameters encoding the state of the
corroding steel, using the electrical potential field measured at

the surface of the concrete (ϕ
!obs

), including the potential fields
that were obtained after polarizing the corroding system by help
of the counter electrodes. In this example, the parameters used
in the forward model to simulate these system responses at the
electrolyte surface, hereafter referred to as ’model parameters’,
include, besides the size (Wan) and location (zan) of the actively
corroding metal surface, also the exchange current densities for
iron oxidation (i0,Fe) and oxygen reduction (i0;O2 ) (see ‘Methods’
section for more details).
The Bayesian inverse approach applied here, as opposed to

deterministic methods, does not only supply us with the ’best
values’ for the sought after model parameters, but also gives us
the posterior probability: the probability distribution of the model

parameters given the observed electrical potentials (ϕ
!obs

) and a
priori knowledge about the model parameters (the prior prob-
ability densities). The marginal posterior distributions of the model
parameters are subsequently sampled using a Markov chain
Monte Carlo (MCMC) algorithm.
To demonstrate and optimize the approach for the example of

reinforced concrete, synthetic electrochemical measurements

(ϕ
!obs

) were generated using a set of known model parameters.
These synthetic data were then used as input for the inverse
model (see ‘Methods’ for more details).

Increasing the size of the measured data vector
Figure 1c−f shows how ECT succeeds in finding the location and
size of the anode as well as the exchange current densities. These
specific results also show that the temporary external polarization
of the system is important in enhancing the inverse reconstruction
of the corroding system. Simulations show that without external
polarization, one has to go to an impractically small stepsize
(<5 cm) between the measurements at the concrete surface, in
order to see improvement in the MCMC results (see Supplemen-
tary Figs. 2 and 3). This finding is in general agreement with the
earlier study of Marinier and Isgor33, where the authors had to use
a large amount of closely spaced data points to reach stable
results in their inversion. The results of the current work show that
external polarization is much more effective in reducing the ill-
posedness of the problem. Decreasing the stepsize from 5 to 1.25
cm, to increase the size of the measured data vector, has
considerably less effect on the resulting MCMC results, than
tripling the size of the data vector by externally polarizing the
steel with just one negative and one positive current. Using
external polarization, a spacing of 5 cm seems to already result in
relatively accurate estimations of the model parameters.

Information gain
To assess how successful the inversion was in finding the model
parameters, we compute the information gain. The information
gain, in our case, is determined to be the difference between the
sampled posterior (the MCMC inversion results) and the prior
probability densities, which describe the a priori belief about the
model parameters. The information gain tells us how much our

Fig. 2 Information gain upon increasing the number of different
cases of external polarization. The information gain (Kullback
−Leibler divergence) DKL, for the four model parameters, for an
increasing number of different cases of external polarization (M). For
M= 3, the applied current ICE= [−0.2, 0, 0.08] mA. For M= 7, ICE=
[−0.2,−0.08,−0.02, 0, 0.02, 0.04, 0.08] mA. For M= 9, ICE= [−0.2,
−0.08,−0.04,−0.02, 0, 0.02, 0.03, 0.04, 0.08] mA. And finally for M=
11, ICE= [−0.2,−0.08,−0.04,−0.02,−0.008, 0, 0.008, 0.02, 0.03, 0.04,
0.08] mA.
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knowledge about these parameters has improved, relative to the
assumed prior information. The information gain is computed
using the Kullback−Leibler divergence 37. The Kullback−Leibler
divergence is a special case of Shannon’s measure of information
content, and is given for discrete probability distributions by

DKLðPjjPrefÞ ¼
X
x2M

PðxÞlog10 PðxÞ
PrefðxÞ

 !
(1)

where P is the sampled posterior, Pref the prior probability density,
M the model space, and DKL the Kullback−Leibler divergence in
units of dits.
Figure 2 shows the information gain for varying quantities M,

that is the number of considered cases of different external
currents ICE applied at the counter electrodes, varying from M= 3
to M= 11. As the improved results shown in Fig. 1c−f were
obtained after the application of just one positive and one
negative polarization current (M= 3), one could expect the MCMC
results to improve further if a larger set of discrete currents were
to be applied. However, Fig. 2 shows only a gradual increase in the
information gain. This improvement is relatively small, considering
that an increasing number of ICE, leads to a substantial increase of
required computational power to perform the inversion. The
computation time of simulations with M= 11 is three times
greater, than that with M= 3. It seems that the extreme values of
the applied range of ICE weigh the heaviest, and applying
additional currents within this range has only a limited effect.
These extreme values of −0.2 mA and +0.08 mA are the
maximum external currents, for which our forward model is still
valid. Taking into account the computation time, we use M= 9,
instead of performing the inversion for larger lengths of ICE.

Figure 3 shows the probability density function (pdf) estimate of
the MCMC results for M = 9, together with the assumed prior
probability densities. These plots allow us to visualize the
information gain for each model parameter as given in Fig. 2.
The inverse solver is able to recover all model parameters and for
most parameters the information gain is substantial. Especially
concerning the width of the anode, Wan, our a priori knowledge
was very limited, as it was assumed that the anode width is
equally likely anywhere between 0 and 22 cm (a flat pdf). The
results show a large information gain and allow us to confidently
estimate this width between 4 and 10 cm. Concerning the location
of the centre of the anode, zan, the MCMC results show a narrow
posterior. The location can be estimated within an error range of
just a couple of cm.
We are also able to accurately estimate the exchange current

densities log10(i0,Fe) and log10ði0;O2Þ. The information gain for
log10(i0,Fe) is smaller compared to the other parameters (see also
Fig. 2). An additional simulation, where a shifted prior probability
density function was applied, shows, however, that the posterior
seems to be mostly independent of the assumed prior (Fig. 4). This
gives us confidence that the MCMC did not simply sample the
prior distribution for log10(i0,Fe), but reflects the posterior
probability density. Moreover, the results in both Figs. 3 and 4
show us that even if the underlying assumptions (prior knowl-
edge) are very imprecise, the inverse solver is still able to obtain
good results.

Convergence diagnostics
Finally, we want to stress the necessity to assess convergence
when applying MCMC sampling to estimate the posterior

Fig. 3 Markov chain Monte Carlo (MCMC) sampling results for simulations with M= 9. The blue histograms show the probability density
(pdf ) function estimates of the MCMC results. The red curves are the corresponding prior probability densities for a Wan, b zan, c log10(i0,Fe),
d log 10(i0,O2). The vertical lines represent the known ground truth value, the dashed lines the mean of the MCMC results.
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probability density. One has to evaluate if sufficient samples were
collected to create a histogram that well approximates the
posterior probability density. Especially in this example where we
are inverting for four different parameters, it is important to
evaluate if we have achieved sufficient mixing using the number
of samples that were collected. As an a priori analytical
convergence rate is impossible to compute, we perform a
statistical analysis on the output sample data, to test if
convergence has been reached.
We apply a method originally described by Gelman et al.38

and later generalized by Brooks and Gelman39. It compares
Markov-chains with different starting positions. Convergence is
assumed to be reached when the variability of the individual
chains is comparable with the variability of the pooled samples.
Figure 5a presents part of the convergence diagnostics set by
Brooks and Gelman39. It shows the evolution of the estimation of
the ’scale reduction factor’, R̂, during the sampling. The ’scale
reduction factor’ is the ratio between the variance estimate of
the target distribution and the average of the variances of the
different Markov chains. The chains are likely to have converged,
when R̂ has approached 1. The complete convergence diag-
nostics and details of the computation of R̂ can be found in the
supplementary note.
Figure 5a shows that in fewer than 20,000 iterations, R̂ðkÞ is very

close to 1 for all model parameters. This means that we are then
likely sampling from the target stationary distribution: the
posterior. To evaluate when we have sufficiently sampled this
posterior, we compute the information gain as a function of the
amount of samples taken (see Fig. 5b). At 30,000 samples the
information gain is stable for all model parameters, meaning that

further sampling does not change the information content.
Therefore we conclude that we have reached convergence and
sufficiently sampled the posterior in around 30,000 samples.

DISCUSSION
The described approach, electrochemical tomography (ECT), is a
promising method for the instantaneous determination of local
corrosion rates of metals embedded in porous media. As opposed
to traditional electrochemical methods, such as linear polarization
resistance (LPR), its accuracy is not limited by the lack of
information about the surface area of the anodic part of the
corroding steel.
To illustrate the accuracy and precision with which ECT is able

to estimate corrosion rates, Fig. 6b shows the normalized
distribution of the corrosion current densities, obtained for every
set of model parameters, which were sampled during the
inversion. These corrosion current densities were computed by
averaging over the anodic steel area.
For comparison, in the same figure, corrosion rates, which can

be detected with the traditional LPR method, are indicated. These
corrosion rates were obtained with a numerical model similar to
the forward model used for ECT, described in the ‘Methods’
section below. In the model, an LPR measurement was simulated
by applying a polarization current of +/− 5 μA at two counter
electrode rings with a width of 3.5 cm, positioned directly left and
right of one reference electrode (RE), and recording the related
change in potential at this RE (see Fig. 6a). This change in
potential is used to compute the polarization resistance, Rp which
is defined as the ratio between the measured voltage and the

Fig. 4 Successful solving even with imprecise prior knowledge. MCMC results for simulations with M= 9 and a shifted prior probability
distribution for log10(i0,Fe). The blue histograms show the probability density function (pdf ) estimate of the MCMC results for parameters
a Wan, b zan, c log10(i0,Fe), d log10ði0;O2 Þ with the corresponding prior probability densities (in red). The vertical lines represent the known
ground truth values, the dashed lines the mean of the MCMC results.
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applied current, Δϕ
ΔI . Subsequently, the corrosion current can be

computed:

Icorr ¼ 1
Rp

� B ¼ 1
Rp

� βanβcath
2:303 � ðβan þ βcathÞ

(2)

where βan and βcath are the anodic and cathodic Tafel slopes, here
considered to be the set values for the anodic Tafel slope of iron
and the cathodic Tafel slope of oxygen as defined for the ECT
application (see the section on ‘The example of localized
corrosion in reinforced concrete’ under ‘Methods’).
The LPR measurements were simulated for different positions of

the RE-CE assembly at the concrete surface (see Fig. 6a). To
account for ohmic resistance of the concrete, the LPR measure-
ments were corrected for the IR drop. To this aim, the IR drop was
obtained by modelling the primary current distribution in the
actual three electrode setup, namely for the different RE-CE
positions with respect to the steel bar (working electrode). Finally,
for the conversion of corrosion current to corrosion current
density, different assumptions for the anode area were made in
agreement with literature. For the application of LPR on reinforced
concrete, an anode area of 10% of the total steel area is commonly
suggested as a conservative limit40. Note that the ’true’ anode
surface area, corresponding to the ground truth of Wan, is 7.5%.
Figure 6b shows that it is possible to estimate an accurate

corrosion rate using both the traditional LPR method and ECT. For
LPR, however, this requires that the RE-CE assembly is positioned
directly over the anode (zero-offset), that the IR drop is
compensated, and that the correct assumption for the anode
surface area is made (between 5 and 10%). Figure 6b shows that
the LPR method is heavily sensitive to both the distance to the
anodic surface, as well as the assumed anodic surface area.
Using a recommended surface area of 10%, here results in an

underestimation of the actual corrosion rate, even if the RE-CE
assembly is positioned directly above the anode. The corrosion
rates sampled by ECT on the other side, are neither dependent on
the setup of the measurements, nor on estimations of the anodic
steel area. Finally, not only is ECT able to more accurately estimate
the corrosion rate compared to the LPR technique, it also gives
insight in the precision of this estimation, which we consider a
major advantage.
Besides the accurate estimation of the corrosion current density

for localized corrosion, a major advantage of ECT is that it also
supplies us with additional information. First of all, it is able to
determine the location and the size of the anodic surface. Not only
is this information crucial for the correct interpretation of other
electrochemical techniques, it could also be applied to monitor
the spread of the anodic surface over time, giving us more insight
in the corrosion behaviour of steel in concrete.
Secondly, we are able to also determine more fundamental

parameters, describing the polarization behaviour of the steel. The
demonstration of ECT for the example of reinforced concrete has
shown us that we are able to accurately invert for the exchange
current densities of iron oxidation and oxygen reduction. These
parameters have theoretically constant values for a certain metal
in a set environment. However, especially for the case of steel in
porous media, these values are not accessible from in-situ
experiments, partly because these parameters also depend
strongly on the state of the steel surface, consistency of the
electrolyte, and other factors that are generally unknown for a
system under study41, and partly because the experimental
methodology induces errors in the measurement of these
parameters42,43. Thus, exchange current densities are in the
literature generally defined as ranges, instead of constants41,44,45.
On a more technical note, as the exchange current densities

have a substantial influence in the modelling of localized

Fig. 5 Convergence assessment of the Markov-chains. a The evolution of R̂ðkÞ over the samples for the four different model parameters.
b The evolution of the information gain (Kullback−Leibler divergence) DKL over the samples, normalized versus the divergence at
N= 60,000 samples. In around 30,000 samples R̂ðkÞ has approached 1 and the information gain is stable, suggesting the Markov chains have
converged and the posterior is sufficiently sampled.
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corrosion46, it is a major advantage that we are able to define
these parameters as prior probability distributions, instead of as
constants. An erroneously assumed exchange current density
could result in a false sense of security, for a wrong corrosion rate.
In the example presented here, this was evident for the exchange
current density of iron (i0,Fe). During the MCMC sampling a clear
trade-off between the width of the anode Wan, and this exchange
current density, was observed (see Fig. 7a).
The example described here only considers the exchange

current densities in the inversion. However, one could also think
about taking into account the Tafel slopes for example. Although
an increase in the number of parameters would increase the
computation time, as well as increase the ill-posedness of the

inverse problem, this approach is beneficial to identify which
parameters may induce significant errors if defined inadequately.
The need for non-destructive testing methods to detect and

quantify localized corrosion for structures where visual inspection
is difficult, will keep increasing over the coming years, as
engineering structures are ageing. ECT could prove to be an
important addition to existing methods. At this moment, the only
widely recognized and standardized non-destructive method is
potential mapping, or half-cell mapping. Here, the electrical
potential field at the surface of the porous medium is measured,
to identify possible corrosion sites47. Using the same kind of
measurements, ECT would need little adjustment of existing
techniques and apparatuses to be applied in the field.

Fig. 6 Comparison of ECT to the traditional LPR method. a Overview of the setup of the modelled LPR method, with depicted distances in
[cm]. Counter electrodes (CE) are placed adjacent to the reference electrode (RE). Corrosion rates are obtained for different positions of the RE-
CE assembly over the concrete surface. b The blue histogram shows the probability density function estimate of the sampled corrosion
current densities, corresponding to every set of model parameters sampled during the MCMC. The black line represents the corrosion rate
corresponding to the known ground truth model parameters, the dashed black line the mean of the sampled corrosion rates, as obtained
from ECT. The red curves represent the corrosion rates obtained by the modelled LPR technique, as a function of position of the RE-CE
assembly and for different assumed corroding steel areas [% of the total steel area], with and without IR compensation.

Fig. 7 2D histograms of the sampled model parameters. a The width of the anode versus log10(i0,Fe) versus the amount of samples. b The
width of the anode versus log10ði0;O2 Þ versus the amount of samples. One sees a clear dependency between the size of the anode and the
exchange current density for iron, while this dependency is not visible for the exchange current density of oxygen for example.
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While the Bayesian approach has various advantages, as
discussed previously in this paper, the main disadvantage is its
higher computational cost, compared to deterministic
approaches, such as used in earlier studies30–33. The Bayesian
inverse method applied, requires sampling using Monte Carlo
methods, resulting in larger computation times. Thus, the
instantaneous determination of corrosion locations and rates in
the field may currently be a too ambitious goal for the method.
However, we are confident that steadily increasing computational
power, as well as improvements of the algorithm and program-
ming model, will enable on-site measurements and model analysis
in the future. Our convergence diagnostics indicate that the
number of samples could be reduced by 50%. Furthermore, a
change of the programming model from COMSOL and Matlab to a
compiled language that is more suitable for high-performance
computing and parallelization (e.g., C++ and Cuda), is expected
to substantially reduce the computing time from several days on a
single core.
In summary, as a proof of concept, the application of ECT for the

example of localized corrosion in reinforced concrete, has shown
that even with limited prior knowledge, ECT is able to reliably
identify the corrosion state of the reinforced steel. ECT allows us to
not only accurately estimate the corrosion current in the case of
localized corrosion, but also to identify the location and size of the
anodic surface. Therefore, the direct quantification of the
corrosion current density (the corrosion rate) is possible. We
consider this an important advantage over traditional electro-
chemical methods, such as the linear polarization resistance
method, where a major limitation is the need for assumptions to
be made related to the anodic surface area. Furthermore, the
technique also yields insight into fundamental corrosion science
parameters describing the polarization behaviour of the rein-
forced steel, such as the anodic and cathodic exchange current
densities. Lastly, thanks to the stochastic approach, ECT allows us
to quantify the uncertainty inherent to the obtained solution. This
is considered another advantage over traditional electrochemical
methods, where no information on the reliability of the actual
measurement is available.
Future research should address the optimization of the method

concerning the measurement setup, including the position of the
reference and counter electrodes, and the sensitivity related to
different values for the parameters describing the polarization
behaviour of the metal. Finally, validation against experiments and
in the field will be essential.

METHODS
In the following section, we describe the general approach, valid for
any corroding metal in a conducting porous medium. The forward and
inverse problems are described, as well as the applied MCMC method,
used to sample the solution of the inverse problem. Finally, we show

the application for the example of localized corrosion in reinforced
concrete.

Forward problem
Macro-cell, or localized, corrosion occurs due to the galvanic coupling
between a small active surface (anode) and relatively large passive surfaces
(cathodes) on scales up to several metres. Numerical modelling of macro-
cell corrosion is well established in different fields, such as corrosion of
reinforced concrete and buried pipelines, and is able to accurately
reproduce experimentally obtained data48. These models have proven to
be a useful means to investigate and predict the influence of, for example,
the geometry, electrolyte resistivity, and Tafel slopes on the corrosion
behaviour of the metal in certain environments7,46,49,50.
Macro-cell modelling of corrosion involves the solution of Laplace’s

equation for the electrical potential, applying Butler−Volmer kinetics51 to
derive boundary conditions at the steel surface. Consider, for instance, a
buried metal pipe, with a distinct anodic surface, surrounded by cathodic
surfaces (Fig. 8). Assuming an isotropic and homogeneous conductivity,
the distribution of the electrical potential, ϕ [V vs SHE], in the conductive
medium (the electrolyte) is given by:

∇2ϕ ¼ 0 (3)

At all medium boundaries, except the metal boundaries, free surface
boundary conditions apply (dϕd~n ¼ 0). At the metal surface, the boundary
condition is described by Ohm’s law:

i ¼ � 1
ρ

dϕ
d~n

(4)

where ~n is the normal to the metal surface and ρ [Ωm] is the electrical
resistivity of the electrolyte (the inverse of the electrical conductivity).
At the metal bar, the current density, i [A/m2], is proportional to
the rate of the chemical reactions taking place at the metal surface,
and is the sum of the current densities of all reduction and oxidation
reactions.
Though many reactions are simultaneously taking place, we assume that

at the anodic surface, the dominant oxidation reaction of the metal is:

MeðsÞ ! MenþðaqÞ þ ne� (5)

This gives an outward current as indicated by the red arrow in Fig. 8. At
the cathode, we assume the dominant reaction to be the reduction of
oxygen, resulting in an inward current:

O2ðgÞ þ 2H2Oþ 4e� ! 4OH�ðaqÞ (6)

The current densities, or reaction rates, belonging to these redox
reactions are described by the Butler−Volmer reaction. The oxidation of
the metal is assumed to be activation-controlled. The relation between
electrical potential and current density is therefore directly derived from
the Butler−Volmer equation:

ϕ ¼ ϕrev
Me þ βan;Me � log

i
i0;Me

� �
(7)

where i0,Me [A/m2] is the exchange current density of the metal, ϕrev
Me [V vs

SHE] the reversible potential, and βan,Me [V/dec] the Tafel slope for the
metal oxidation (see Eq. (21)).

Fig. 8 Macro-cell corrosion and the current lines for the example of a buried pipeline. In red, the actively corroding (anodic) surface.
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The reduction of oxygen is assumed to be both activation- and
concentration-controlled. At higher current densities, the diffusion of
oxygen to the cathodic surface may limit the reaction. Using the Butler
−Volmer equation and ’Ficks first law’51, the relation between electrical
potential and current density can be described by

ϕ ¼ ϕrev
O2

� βcath;O2
� log i

i0;O2

� �
� 2:303RT

nF
log

iL � i
iL

� �
(8)

where i0;O2 [A/m2] is the exchange current density of oxygen, ϕrev
O2

[V vs
SHE] the reversible potential, and βcath;O2

[V/dec] the Tafel slope for oxygen
reduction (see Eq. (6)). Further constants R, T, n, and F are the gas constant,
temperature, number of electrons transferred, and Faradays constant,
respectively. Finally, iL [A/m2] is the limiting current density, which is
dependent on the oxygen concentration in the medium.
In our approach, we also include counter electrodes (CE), within our

forward model formulation. These electrodes are used to apply external
currents, ICE, on the system, thus polarizing the metal. This polarization of
the metal, using varying quantities of ICE increases the quantity of
observable data, thereby reducing the ill-posedness of our inverse problem
(see section 2).
The complete strong-form formulations of the forward model are now

obtained by substituting Eqs. (7) and (8) in Ohms law (Eq. (4)) for the
anodic and cathodic surfaces, and using Ohms law for the CE surfaces:

∇2ϕ ¼ 0 in the electrolyte (9)

with boundary conditions:

dϕ
d~n

¼ �ρ � i0;Me � exp 2:303ðϕ� ϕrev
MeÞ

βan;Me
at the anode (10)

dϕ
d~n

¼ ρ �
i0;O2 exp

2:303ðϕrev
O2

�ϕÞ
βcath;O2

� �γ

1þ i0;O2
iL

exp
2:303ðϕrev

O2
�ϕÞ

βcath;O2

� �γ
2
64

3
75

1
γ

at the cathode (11)

dϕ
d~n

¼ �ρ � iCE at the CE (12)

dϕ
d~n

¼ 0 at all other boundaries (13)

where iCE is the current density at the counter electrodes (ICE/Surface
area CE). Note that Eq. (11) is an approximation of the inverse relation of
Eq. (8), as described by Kim et al.52. Here, γ is a curvature-defining constant,
controlling the sharpness of the curve in the transition from the activation-
controlled to the concentration-controlled current. Kim et al.52 suggested
γ= 3.
Theoretically, all parameters in Eqs. (9)−(13) are constants, depending

on the environment and type of metal. As long as the size and location of
the anodic surface(s) are known, the corrosion rate at the metal surface can
be computed.

Inverse problem
Our inverse solver seeks to find the ’model parameters’, describing the size
and location of the anode, and therefore the rate of the corrosion of the
metal, using ’observations’ of the electrical potential at certain locations in
the electrolyte. We take a Bayesian approach to the inverse problem,
described in more detail by Earls53,54.
We assume that the measurement of these observations is imperfect,

which means there is an additive Gaussian random noise, ηi, in these
measurements. Therefore, the observed electrical potentials may be
written as

ϕobs
i ¼ ϕest

i ð θ!Þ þ ηi (14)

where ϕest
i ð θ!Þ are the modelled, deterministic potentials using model

parameters θ
!
. Where θ

!¼ ðθ1; θ2; ::Þ, includes, in a simplified case, model
parameters describing the position and the size of a geometrical shape
approximating the surface of the anode.
As opposed to a deterministic approach, a stochastic approach

expresses the data, and therefore the model parameters, as random
variables whose probabilities explicitly encode their uncertainties. Instead
of finding the ’best values’, one seeks to obtain the posterior probability,

pð θ!jϕ!obsÞ: the probability distribution of the model parameters, θ
!
, given

the observed electrical potentials, ϕ
!obs

. Following Bayes’ theorem, the

posterior can be computed with the likelihood distribution and prior
information concerning the model parameters:

pð θ!jϕ!obsÞ ¼ pðϕ!obsj θ!Þpð θ!Þ
pðϕ!obsÞ

(15)

The likelihood, pðϕ!obsj θ!Þ, describes the probability of having observed

certain electrical potentials, ϕ
!obs

, in light of the model parameters, θ
!
. The

prior probability, pð θ!Þ, encodes our a priori belief regarding the model

parameters. pðϕ!obsÞ is the ’model evidence’: basically a normalizing
constant within Bayes’ theorem, to ensure the posterior is a proper
probability density function. It is given by the integralR
pðϕ!obsj θ!Þpð θ!Þd θ

!
, and therefore very time-consuming and difficult

to compute in high dimensional parameter spaces. However, its
computation is of lesser importance here, as its value does not affect
the relative likelihoods of the different models.

Equation (14) implies that pðϕ!obsj θ!Þ ¼ pðϕobs
i � ϕest

i ð θ!ÞÞ ¼ pðηiÞ.
Approximating the noise distribution by a Gaussian with variance σ2, we
express the likelihood as:

pðϕ!obsj θ!Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e
�ð1=2σ2Þ ϕ

!obs

�ϕ
!est

ð θ
!

Þ
� �2

(16)

The prior probability densities allow us to include a priori knowledge or
beliefs about the model parameters. In the least ideal case, we have very
limited information, and can only define the prior with a uniform
distribution with bounded support. For example, we can constrain the
size of the anode, but we can hardly provide any additional information
about the relative probabilities within these constraints. One could
increase the a priori knowledge between the bounds by using, for
instance, experimental data.

MCMC sampling
In this problem, we cannot analytically solve for the posterior probability.
It needs to be evaluated point-wise, solving the forward model for each
θ
!
. For efficient evaluation of the marginal posterior distributions of each

model parameter, we sample the posterior probability density by
applying a MCMC algorithm. These methods construct a Markov chain
containing sequences of the model parameters which are dependent
samples of the required posterior distribution. Here we apply the
Metropolis−Hastings algorithm55,56. From the prior distributions, mean
values are computed as starting values θ

!ðkÞ, with k the iteration number
being initially 0. The algorithm computes a candidate θ

!ðk þ 1Þ for each
model parameter (j) using a uniform distribution, with a certain
maximum stepsize (αj):

θjðk þ 1Þ ¼ θjðkÞ þ αj � randomð0; 1Þ (17)

We then evaluate the ratio of the posteriors of θ(k+ 1) and θ
!ðkÞ.

Evaluation of this ratio eliminates the ’model evidence’, pðϕ!obsÞ, and
therefore the computation becomes relatively straightforward:

r ¼ pð θ!ðk þ 1Þjϕ!obsÞ
pð θ!ðkÞjϕ!obsÞ

¼ pðϕ!obsj θ!ðk þ 1ÞÞ
pðϕ!obsj θ!ðkÞÞ

pð θ!ðk þ 1ÞÞ
pð θ!ðkÞÞ

(18)

Generating a random number u∈ [0, 1], the candidate is ’accepted’,
when r ≥ u. When r < u the candidate is ’rejected’, and θ

!ðk þ 1Þ ¼ θ
!ðkÞ.

Per iteration of the Markov chain, this computation is repeated in turn, for
every single model parameter: sometimes referred to as Metropolis within
Gibbs sampling. A “burn-in" phase is applied before the actual sampling
phase. This is generally used to account for any initially bad “guesses" of
the model parameters (i.e., highly improbable). However, in our case, we
use it primarily to also ’tune’ the generation of the candidate values, by
optimizing α(j) (Eq. (17)) to achieve a desired target acceptance probability.
The approach adopted herein was described by Link and Barker57. When
the candidate is accepted, α is updated using:

αj ¼ αj � ðA� ðA� 1Þ k
B
Þ (19)

and after the candidate is rejected:

αj ¼ αj=
1� paccept

1� pacceptðA� ðA� 1Þ kBÞ
(20)
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where A= 1.01 and paccept= 0.42, to obtain an acceptance rate of 42%, as
recommended in Link and Barker57. The term ðA� 1Þ kB accounts for
’phasing out’ of the tuning process. Here k is the sample number and B the
total amount of samples in the burn-in phase.

The example of localized corrosion in reinforced concrete
To show the application of the described approach we take the example
of localized corrosion in reinforced concrete. This corrosion commonly
occurs due to local breakdown of the passive layer, commonly due to
chloride ingress58. Galvanic coupling occurs between the relatively small
active surface (anode) and the larger passive surfaces (cathodes), on
scales up to several metres. It is especially dangerous due to the relatively
small anode to cathode ratio, which causes a fast local decrease of the
steel diameter at the anode. The quantification of local losses of steel,
that is, the rate of localized corrosion, is thus important in the inspection
of structures.
We consider a steel rebar in a concrete cylinder (Fig. 9). We assume that

the main oxidation at the anode is that of iron:

FeðsÞ ! Fe2þðaqÞ þ 2e� (21)

Our 2D axisymmetric finite-element model, symmetric around the z-axis,
is set up using the COMSOL Multiphysics® software. The mesh consists of
tetrahedral elements with varying sizes from small elements at the metal
surface (<0.1 cm) to larger elements at the surface of the concrete (<0.5
cm). These sizes were obtained from a mesh convergence study, to ensure
proper spatial discretization. On the boundary representing the steel, we
assume there is one actively corroding surface (the anode) surrounded by
passive steel (the cathode). Included are 2 counter electrodes (CE) at the
surface of the concrete. The corresponding strong formulations of the
forward problem are given by Eqs. (9)−(13).
It is difficult to find specific parameters for the boundary conditions at

the anode and cathode in the literature. Especially for steel in concrete,
these are difficult to determine experimentally, due to, for instance, pH
dependence of the Tafel slopes59. Values used within models of different
researchers exhibit large scatter46. Therefore, assuming all the para-
meters as constants is difficult to justify on the basis of literature data
available. The exchange current densities are known to be able to vary
over several orders of magnitude between different experimental
measurements; thus embodying the largest source of error. Therefore,
we include two extra model parameters. Besides the two parameters
describing the location of the anode (i.e., the width Wan and the
coordinate of the middle of the anode zan (Fig. 9)), we also take into
account the exchange current density of iron oxidation, i0,Fe, and oxygen
reduction, i0;O2 . All other parameters are set to constant values in this
example, which can be found in Table 1.
Under the assumption that we only have one anodic surface, and

including the exchange current densities in the inversion, we have four

model parameters θ
!¼ ðθ1; θ2; θ3; θ4Þ. These are, respectively, the width

of the anode (Wan), the z-coordinate describing the position of the middle
of the anode (zan), and the exchange current densities of iron oxidation
(i0,Fe) and oxygen reduction (i0;O2 ).

The observed data vector ϕ
!obsðxÞ consists of potential measurements at

discrete positions at the concrete surface, xi+kN= (i− 1)Δx; i= 1, . . . . , N, for
different external polarization currents ikCE; k ¼ 0; ::::;M� 1, where N is the
cardinality of the data points at the concrete surface (L/Δx), and M the total
number of different currents applied at the counter electrodes.
The prior information regarding the width and the location of the anodic

surface was gleaned using experimentally measured potentials. Figure 10
shows a typical potential distribution measured at the concrete surface. We
assume to have no information about the width of the anode,Wan, beyond
that, for this setup, it will not be larger than the width of the curve at the
median of the potential values (see Fig. 10). Therefore we determine a flat

(i.e., uniform) prior probability with an upper boundary. The location of
the anode is most likely around the minimum potential value measured.
There is a very small probability that this location is outside of the range
determined by max(Wan). Therefore, regarding the location of the anode,
zan, we assume a normally distributed prior, with the minimum potential as
mean and the maximum width of the anode as four times the standard
deviation.
Prior information about the exchange current densities is preferably

experimentally determined for the specific situation. Because the
exchange current densities are known to vary over several orders of
magnitude, we consider the logarithm of the exchange current density.
For this example we use the following log10 normal prior distributions:
for log10(i0,Fe) a mean of−3.25 and standard deviation of 0.88; for
log10ði0;O2 Þ a mean of −6.98 and standard deviation of 0.96. These are
based on experimental data measured in our laboratory in a Borate Buffer
solution of pH 7.5.
To investigate and optimize ECT for the example of localized corrosion in

reinforced concrete, we performed a series of synthetic tests: Synthetic
observations are generated using the deterministic forward model
instantiated using a set of known model parameters. These deterministic
predictions were then contaminated with Gaussian white noise consistent
with representative sensors. These synthetic data, ϕ

!obs
, were then used as

input data for the inverse model, which then seeks to uncover the input
model parameters. Although experimentally obtained data will be
preferred ultimately, these synthetic tests are useful to illustrate the
approach. It affords us a good control in the initial assessment of the
proposed method, without the need to deal with the difficulties associated
with physical experiments.
All MCMC sampling chains contained 60,000 samples, obtained after

5,000 burn-in samples. The synthetic data (potentials) were obtained
for input model parameters: Wan = 0.06 m, zan = 0.40 m, log10(i0,Fe)=
−3.11 A/m2 and log10ði0;O2 Þ ¼ �7:5 A/m2. A normally distributed error
with a standard deviation of 10 mV was added to the synthetic data, to

Fig. 9 Schematic overview of the 2D axisymmetric representation. The system is symmetric around the z-axis. In red the anodic metal
surface, surrounded by cathodic surfaces (black).

Table 1. Parameters describing the polarization behaviour of the steel
(for the anodic and cathodic surface) and model and medium
properties of the forward model (see Fig. 9).

Parameter Value [unit]

ϕrev
Fe −0.6143 [V vs SHE]

i0,Fe Included in inversion

βan,Fe 0.12 [V/dec]

ϕrev
O2

0.46 [V vs SHE]

i0;O2 Included in inversion

βcath;O2
−0.16 [V/dec]

iL 2 [A/m2]

γ 3

L 0.8 [m]

Rsteel 1.0 [cm]

Rω 4.7 [cm]

∂ΩCE 2 [cm]

zCE 0.2; 0.6 [m]

Wan Included in inversion

zan Included in inversion

ρ 150 [Ωm]
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account for an unavoidable measurement error during potential
measurements.
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