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Machine-learning-guided descriptor selection for predicting
corrosion resistance in multi-principal element alloys
Ankit Roy1,2,6, M. F. N. Taufique 2,6✉, Hrishabh Khakurel 3, Ram Devanathan 2, Duane D. Johnson 4,5 and
Ganesh Balasubramanian 1

More than $270 billion is spent on combatting corrosion annually in the USA alone. As such, we present a machine-learning (ML)
approach to down select corrosion-resistant alloys. Our focus is on a non-traditional class of alloys called multi-principal element
alloys (MPEAs). Given the vast search space due to the variety of compositions and descriptors to be considered, and based upon
existing corrosion data for MPEAs, we demonstrate descriptor optimization to predict corrosion resistance of any given MPEA. Our
ML model with descriptor optimization predicts the corrosion resistance of a given MPEA in the presence of an aqueous
environment by down selecting two environmental descriptors (pH of the medium and halide concentration), one chemical
composition descriptor (atomic % of element with minimum reduction potential), and two atomic descriptors (difference in lattice
constant (Δa) and average reduction potential). Our findings show that, while it is possible to down select corrosion-resistant MPEAs
by using ML from a large search space, a larger dataset and higher quality data are needed to accurately predict the corrosion rate
of MPEAs. This study shows both the promise and the perils of ML when applied to a complex chemical phenomenon like corrosion
of alloys.
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INTRODUCTION
Corrosion of industrial machinery, bridges, engineering equip-
ment, vehicles, and structures under different corrosive environ-
ments is a major concern for food processing and chemical
industries, power plants, maritime and air transport. It is reported
that in the United States 6.2% of the gross domestic product
(GDP) is spent to replace engineering equipment in industries due
to corrosion1. The development of corrosion-resistant materials
and coatings capable of extending the lifespan of equipment and
structures can yield substantial economic benefits. Birbilis et al.
and Yeh et al. suggested that an emerging class of materials, high
entropy alloys (HEAs) and multi-principal element alloys (MPEAs),
are being considered as preferred candidates for corrosion-
resistant applications compared to conventional alloys, such as
stainless steels, Ni-based alloys, and Ti-based alloys2,3. MPEAs
consist of 4 or more base elements that typically stabilize a single-
phase (random) solid-solution crystallographic phase. Certain
MPEA compositions have exhibited excellent hardness, excep-
tional wear properties, as well as high-temperature strength
relative to traditional alloys2,4–8.
In theory, MPEAs composed of 4 or more elements allow for

extensive compositional freedom with perhaps greater property
control. Due to the high entropy of mixing2, which increases
roughly as natural log N with number (N) of elements, the
tendency to order or segregate is thus greatly reduced in MPEAs.
Such alloys are then less likely to form ordered structures (unless a
large enthalpy reduction occurs from a new elemental pair
interaction, a pair probability that increases as N2). Hence, MPEAs
tend to form disordered solid solutions predominantly of face-
centered cubic (FCC), body centered cubic (BCC), or hexagonal
close-packed (HCP) structures9–11, instead of more complex

intermetallic phases. The locally disordered chemical environment
within these solid solutions has been theorized to lead to the
excellent corrosion properties of MPEAs5. For instance, Qiu et al.12

reported that MPEAs containing Co, Cr, and Ni offer better
corrosion resistance in the presence of NaCl solution compared to
austenitic stainless steel.
Corrosion resistance of MPEAs depends on the elemental

composition of the alloys and the corresponding corrosive
environments9,13. The number of possible elemental compositions
is much higher in MPEAs than that of traditional metallic alloys
and the search can involve about a trillion combinations as we
move away from the vertices of the multi-dimensional composi-
tion space toward the center14. Moreover, different corrosive
environments, such as NaCl, HCl, and H2SO4 have different
influences on MPEAs and it is extremely challenging to select the
appropriate composition to optimize corrosion resistance for
different environments by trial-and-error experiment or intui-
tion15. Additionally, long-term atmospheric exposure testing for
MPEAs is not commonly practiced in industries and hence such
data are not readily available thereby limiting the applications for
MPEAs in harsh aqueous environments3. Simulations and data
informatics related to metallic alloys can be a potential tool to
predict the corrosion resistance of MPEAs under different
environments. Techniques like density functional theory (DFT)16,
molecular dynamics (MD), and thermodynamic modeling have
been devoted to study phase stability, solidification, and crystal-
lization kinetics of MPEAs17–23. These methods are computation-
ally expensive and time-consuming even for a single composition
and hence less readily usable on a large scale to narrow down the
search space.
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Materials informatics offers a faster and less expensive path to
develop new materials by identifying correlations and trends
existing in the dataset, incorporating the underlying physics,
predicting the properties of new materials, and guiding the next
set of experiments24. Some examples of applications include
predictions of crystal structures25,26, physical properties27, and
corrosion rates28. The approach uses ML to construct a surrogate
function (f) that relates the target property (Y) to the material
features or descriptors (X). The depth up to which the descriptors
capture the physical and chemical signatures of the materials
combined with the mathematical accuracy of the models
determine the robustness of the model. Therefore, for any given
target property, the optimized combination of f and X needs to be
selected. For a system with M models and N materials descriptors,
there are M × (2N− 1) potential combinations possible out of
which only one would ideally have the desired accuracy. Material
descriptors can be based on the composition, microstructure,
processing conditions, and other thermodynamic parameters
which necessitates the construction of a large pool of descrip-
tors29. For instance, 10 descriptors and 5 models can produce
5115 different combinations out of which one will be selected
based on minimum prediction error. Hence, the primary goal
becomes choosing the best combination of model and descriptors
to predict the target property of desired alloys.
Domain knowledge plays a crucial role in down selecting the

descriptors30,31. For example, Rickman et al.7 used Young’s modulus
asymmetry (representing stiffness) and mean melting temperature
(proportional to bond strengths) as descriptors in conjunction with
thermodynamic descriptors to generate compositions with high
hardness. Kim et al.27 used a DFT dataset (from the Materials Project
database32) to construct a model using the average values of
physical parameters (e.g., cohesive energy, density) in conjunction
with thermodynamic parameters to predict the bulk and shear
modulus. When the descriptor space becomes too large, principal
component analysis can be used to reduce the descriptor space by
using certain mathematical transformational laws but this operation
may lack interpretability33.
In the present study, we have utilized a gradient boost ML

model coupled with a 2-stage feature down selection process to
build a robust model for corrosion-rate prediction in MPEAs. This
optimization process is based on the best performing combina-
tion of descriptors to predict the corrosion rate of MPEAs under
different corrosive environments. The methodology and results
will be explained further in the subsequent sections. We conclude
by reasoning why certain features are the most impactful in
determining corrosion rates and also carry out detailed data
analysis to show the dependence of corrosion rate on those
descriptors.

RESULTS AND DISCUSSION
According to the “no-free-lunch” theorem34, there does not exist a
perfect model for a given problem. There always exists room for
improvement in accuracy by adopting different combinations of
models and features. In the present work, we have chosen the
best model for our problem as the Gradient Boosting Regressor
(GBR) model. To choose the best features out of the pool of 30

features, we adopt a 2-stage down selection process as shown in
Fig. 1. The first stage down selects top 13 out of the 30 features as
obtained from the feature importance function. The second stage
of down selection takes all possible combinations of 1, 2, 3, …, 13
features out of the 13 features from stage 1 and evaluates the
mean squared error (MSE). The best number and combination of
features are thus selected.

Features down selection stage 1
To reduce the complexity of the model, the number of descriptors
can be limited to a certain value without compromising the
performance of the model or sometimes even improving it. In fact,
some reports claim that the model degrades the results when
there are too many variables because the redundant feature
variables interfere with the ML model35. Thus, it is essential to
down select the most significant and relevant features to
construct a robust model. Feature importance is determined by
assigning a value to input features based on how relevant they are
in predicting a target property. The feature importance was
extracted from the model using the “feature_importances”
function built into the Scikit-learn python module36. Gradient
boosting models work by iteratively fitting several base models
such as decision trees to data. The GBR fits one tree, then fits
another tree to the residual error of the first tree. The GBR then fits
a new tree to the residual error of the most recent tree and so on.
Feature importance is computed as the mean and standard
deviation of accumulation of the decrease in error with each
progressing tree. Such an approach has been used by several
other works in the past to eliminate redundant features from a
larger feature pool37,38. The feature importance of all 30 features
has been shown in Supplementary Fig. 1. With the objective of
downsizing the feature pool to reduce the complexity of the
model, the top 13 most important features out of the total 30 have
been down selected. These top 13 descriptors with the relative
importance ranging from 2 to 37% and corrosion-rate prediction
by GBR model are provided in Fig. 2 and Table 1, respectively.
From feature importance, it is clear that the chemical

environments during the corrosion reaction, such as pH of the
reaction medium and presence of halide ion, have the maximum
impact on the corrosion process. The pH of the environment plays
a decisive role in the corrosion rate. To understand the effect of
pH in greater detail, we take the example of a pure metal in an
acidic environment. When a metal is submerged in a deaerated
acid solution, the electrochemical reaction can be divided into two
or more partial oxidation and reduction reactions as follows:
(i) M→Mn++ne−1, which is the oxidation(anodic) reaction and
(ii) nH++ne−1→ (n/2)H2 (gas) which is the reduction (cathodic)

reaction.
To find the propensity of corrosion in the given solution, the

potentials of the anodic (EMþþ=M) and cathodic reaction (EHþþ=12H2
)

should be known. The cell potential is formulated39 as

ΔE ¼ EHþþ=12H2
� EMþþ=M

� �
¼ E0Hþþ=12H2

� E0Mþþ=M

� �
� 2:303RT

nF 2 ´ pH þ log Mþþ½ �ð Þ;
(1)

where ΔE should be positive to make ΔG negative so that the

Fig. 1 Schematic diagram of the 2-stage feature down-selection process used in this work to select 5 features from a pool of 30. The
2-stage features down selection process adopted in this work to down select the features from a pool of 30 to a final 5.
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reaction is spontaneous according to the equation ΔG ¼ �nFE.
According to the above formulation under acidic conditions, a
lower pH (acidic environment) will increase the ΔE and thereby

enhance the corrosion rate. Therefore, the pH of the aqueous
environment plays a crucial role in determining the corrosion rate.
Notably, this equation does not consider the formation of the

passive film due to the presence of certain metals that form the
protective oxide layer. Hence, this situation is considered by
including the composition of metals like Cr, Al, Cu, Ti, Ni, Sn, and
Mo13 as separate features that will indirectly incorporate the
effects of passive layer formation into the model. The addition of
nickel to MPEAs has been investigated before. Ni was added to
Al2CrFeCoCuTiNix (x= 0, 0.5, 1, 1.5, and 2) alloy system in 3.5 wt. %
NaCl solution and 1M NaOH solution. The composition with x= 1
was found to have the least corrosion current density in both salt
and alkaline solution, implying that there is an optimum Ni
content below and above which Ni has a detrimental impact on
corrosion40. Ni has also been shown to be effective in resisting
corrosion in nickel-aluminum bronze alloys, where increasing the
concentration of Ni improves the corrosion resistance of the
alloy41.
Another important descriptor is the difference in electronega-

tivity between the highest and lowest reduction potential of a
specific alloy. A larger difference in reduction potential enhances
the driving force for galvanic corrosion. Corrosion rate further
increases with the presence of halide ion, such as chloride ion
(Cl−1) in the reaction medium. Cl−1 ions can penetrate the passive
film on the alloy surface and hence increase the pitting corrosion
rate. Chou et al. reported that pitting potential was proportional to
the logarithm of the chloride concentrations at a constant
temperature42 and the potential will increase with increasing
temperature and hence increase the pitting corrosion rate. It is

Fig. 2 The relative importance of the top 13 features to predict
the corrosion rate. This down selected pool will be subsequently
used for stage 2 feature down selection. The second stage may
result in a reshuffling of the rankings of the top features.

Table 1. Validation dataset with details of the corrosive environment, corresponding observed experimental corrosion rate8,9 and predicted
corrosion rate by considering the top 13 descriptors and the optimized descriptors.

Alloy Corrosion environment Corrosion rate (mm/year)

pH Temp (K) Halide
molarity (M)

Experiment Predicted by top 13
descriptors

Predicted by descriptor
optimization

1 Al2CoCrFeNi 1.301 298 0.05 0.02965 0.05784 0.06498

2 Al2CrFeNiCoCuTi1.5 0.301 298 0 0.03558 0.04256 0.04256

3 Fe68.59Ni10.47Co0.21Mo2Cr16.61 7 298 0.6 0.00115 0.06145 0.00299

4 Al2CrFeCoCuTiNi 7 298 0.6 0.10533 0.09907 0.09908

5 Fe24.85Ni25.89Co26Mn0.51Cr22.66Al0.07 4 313 0 0.00803 0.00959 0.01394

6 Fe46.86Ni12.88Co12.54Mn11.72 Cr15.8Nb0.16 4 313 0 0.00959 0.07884 0.00339

7 FeCoNiCu 14 298 0 0.01561 0.60843 0.12714

8 FeCoNiCuSn0.02 14 298 0 0.01177 0.33203 0.01977

9 FeCoNiCuSn0.03 14 298 0 0.01043 0.336 0.01977

10 FeCoNiCuSn0.04 14 298 0 0.01532 0.02754 0.01977

11 Co1.5CrFeNi1.5Ti0.5Mo0.1 7 298 1 0.00121 0.00307 0.00307

12 Co1.5CrFeNi1.5Ti0.5Mo0.5 7 298 1 0.00178 0.00414 0.00414

13 Co1.5CrFeNi1.5Ti0.5Mo0.8 7 298 1 0.00355 0.04789 0.00707

14 Co1.5CrFeNi1.5Ti0.5Mo0.1 14 298 0 0.00103 0.00233 0.00229

15 Co1.5CrFeNi1.5Ti0.5Mo0.5 14 298 0 0.00143 0.00233 0.00229

16 Co1.5CrFeNi1.5Ti0.5Mo0.8 14 298 0 0.00216 0.38237 0.38237

17 Al2CrFeCoCuTiNi0.5 7 298 0.6 0.25814 0.35711 0.35711

18 Al2CrFeCoCuTiNi1 7 298 0.6 0.10533 0.09907 0.09908

19 Al2CrFeCoCuTiNi1.5 7 298 0.6 0.52126 0.63757 0.33121

20 Al2CrFeCoCuTiNi2 7 298 0.6 0.54881 0.65705 0.33803

21 FeCoNiCuSn0.02 7 298 0.6 0.0238 0.16663 0.02088

22 FeCoNiCuSn0.03 7 298 0.6 0.03611 0.17072 0.02088

23 FeCoNiCuSn0.04 7 298 0.6 1.08367 0.02688 0.02088

24 FeCoNiCuSn0.05 7 298 0.6 0.0151 0.03016 0.03004

25 FeCoNiCuSn0.07 7 298 0.6 0.02082 0.03007 0.03004
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important to mention that corrosion rate in presence of Cl−1 is
smaller for MPEAs compared to that for stainless steel. For
instance, Chen et al. compared CuNiAlCoCrFeSi MPEA and
compositionally similar 304SS with near-equal Cr content in
deaerated 1 M NaCl solution at room temperature43. The MPEA
was shown to be more noble and have a lower corrosion current
density than 304SS in NaCl solution. Due to the presence of nearly
amorphous structure, which had negligible or no grain boundaries
and hence acted as passive film, the MPEA showed significant
resistance to uniform corrosion. The passive region of the MPEA is
smaller than that of 304SS and when the MPEA passive film is
ruptured the alloy is more susceptible to nucleation and growth
than 304SS.
We emphasize that the feature importance obtained from the

ML model represents the ranking of the contribution of each
feature to the mathematical expression of the target property
when all the features are used. Hence, feature importance is
basically the weight of each feature when that feature is used as a
variable in the mathematical expression of corrosion rate
formulated by the ML model. The top 13 features represent the
features that have the highest weight. Since the formulation of
this expression is based on statistics, it is only helpful in
eliminating the redundant features. The order of the topmost
important features may vary if the training dataset is changed.
Hence, at the current stage with the limited dataset, we may not
be able to conclusively determine the reasoning of the order of
the top important features. But the approach may be employed to
downsize the feature pool by eliminating the redundant
features35,37.
The choice of alloying elements is also an important descriptor.

For instance, aluminum (Al) is used to synthesize lower density
MPEAs because of light weight. In addition to that, Al helps to
improve the mechanical strength of the MPEAs44–50. However, Al
present in the Al based MPEAs is less noble (lower in the galvanic
series) compared to the other alloying elements, such as Fe, Ni, Cr,
Co, and Ti that are used to synthesize MPEAs51. Therefore, it is
reasonable that in the presence of aqueous corrosive environ-
ments, Al atoms may be preferentially released from MPEA solid
solution compared to other alloying elements and hence
introduce dealloying. It is reported that depassivated Al-
containing MPEAs have a higher corrosion rate and the rate
increases with increasing Al content in the presence of a corrosion
environment, which promotes dissolution. Interestingly, Al is
beneficial when used as thin film for surface passivation as
reported in the case of Ni-based corrosion-resistant alloys52. It is
also reported that MPEAs containing Cr, Fe, and Ni showed good
corrosion resistance in both NaCl and H2SO4 solution as compared
to steel. Hsu et al. reported that due to the presence of Cr and Ni,
CoCrFeNi MPEA showed better corrosion resistance as compared
to 304LSS53.
From Fig. 2, it is observed that thermodynamic parameters, such

as mixing entropy ðΔSmixÞ, can be important for corrosion-rate
prediction. The equation for ΔSmix is given below:

ΔSmix ¼ �R
Xn
i¼1

ðCilnCiÞ (2)

Where, Ci is the composition of element i in a specific MPEA, n is
the total number of individual elements present on the MPEA and
R= 8.314 J·mol−1·K−1 is the molar gas constant, However, mixing
entropy does not take into consideration the selection of
elements; it only considers the number and fraction of elements.
For example, CoCrFeNi and CoCuFeNi have the same mixing
entropy, but the former exhibits better corrosion resistance due to
the formation of the stable Cr2O3 film54. Hence, mixing entropy
should not be used in isolation to make predictions about the
corrosion rate.

Similarly, the difference in atomic radii (or δ) also appears as one
of the top 13 most important features. δ is the representative of
the strain in the lattice. Higher strain in the alloy lattice can
introduce larger lattice distortion and promote the formation of
secondary phases55 which may be detrimental to the mechanical
properties. But in a given set of single-phase alloys, the ones with
a larger δ and hence larger strain are posited to have retarded
diffusion thus making it difficult for Cl− or O atoms to migrate
inside the alloy matrix. Hence the alloy is protected from
corrosion. Similar to δ, the Δa has an impact on lattice distortion
and results in uniform lattice distortion56. Hence a higher
difference in lattice constant might retard the diffusion and
protect the alloy from corrosion.
As we are not able to draw concrete conclusions from our

current list of top features, we adopt another ingenious technique
to further downsize our feature list. This technique is explained in
the following section and is used to build the final model for
corrosion-rate prediction.

Features down selection stage 2
There is a tradeoff between trying to improve the accuracy of a ML
model with a large number of descriptors and having a model that
is easier to interpret with a smaller set of descriptors. Thus, it is
necessary to track the model performance as a function of the
number and combination of descriptors. To reduce the complexity
of the model, we have performed descriptor set optimization by
finding the optimum number and combination of descriptors that
produce the minimum MSE.
In Fig. 3 (d), all combinations (13C1, 13C2, 13C3, …, 13C13) of

descriptors from the top 13 descriptors obtained in stage 1 down
selection have been fitted to the GBR model to check dependency
of performance on the number of descriptors. Such an approach
has been successfully used in ref. 57 to increase the accuracy of the
ML model from the case where a larger number of features is
used. We plot the MSE of the GBR model as a function of the
number and combination of descriptors shown in Fig. 4.
For a given number of descriptors (n), the best combination

(lowest MSE out of 13Cn) is shown in Fig. 4 (solid-black frontier).
The MSE does not show any trend with the number of descriptors
and is minimum for a set of 5 descriptors, namely, pH and halide
molarity of the medium, composition of element with minimum
reduction potential, Δa, and average reduction potential.
At minimum marked in Fig. 4, the model makes the best

predictions closest to the experimental values. The MSE at that
point is a minimum (i.e., 0.055 mm/year) out of all possible cases.
The predictions at this point (by optimization and by top 13
descriptors) and experimental corrosion rate are listed in Table 1.
We can see in Table 1 that our ML model predicts the corrosion
rate of different MPEAs in a variety of corrosive environments.
However, the accuracy of the predictions increased when we
applied optimized descriptors corresponding to the point of
minimum error in Fig. 4. From this result, we can say that if the
severity of the corrosion environment (pH of medium and halide
molarity) is fixed then only two atomic descriptors (the Δa and
average reduction potential), and one compositional descriptor
(the composition of the element with minimum reduction
potential) will be needed to predict the corrosion rate, saving
considerable computational and experimental time for alloy down
selection.
Furthermore, we have analyzed the effect of individual

descriptors on corrosion rate to assign some physical significance
to the descriptor. We have plotted in Fig. 5 (panel 1 and 2,
respectively) the corrosion rate of 12 MPEA datasets from our
training set versus Δa and average reduction potential. (Note: for
each dataset, the corrosion environment is identical.) Details of
the 12 datasets are presented in Supplementary Table 1. From
Fig. 5 (panel 1), we see that only 6 datasets (marked with a star)
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out of 12 alloy datasets show a trend where the corrosion rate
tends to increase with increasing Δa. A larger Δa may introduce
higher strain energy in the system and enhance the formation of
secondary phases leading to a higher corrosion rate. However, this
trend is not definitive for all the data, so a clear conclusion cannot
be drawn, especially given the limited dataset.

Yet, from a material science point of view, only certain elements
are reactive on surfaces of MPEAs, i.e., that segregate to a surface
and form protective layers (oxide). Hence, within the datasets we
find a trend of increasing corrosion rate with increasing Δa driven
by the presence of a few specific elements. In Fig. 5 (a-l) (panel 1),
the dataset 1, dataset 5 and dataset 7 show a trend in line with our
hypothesis. As suspected, these datasets and their compositions
(refer to Supplementary Table 2) reveal increasing Al in dataset 1
increases Δa and also increases the corrosion rate; this follows as
Al may form a passive layer but the oxide film formed is porous9

and fails to resist corrosion13. Similarly, in datasets 5 and 7,
increasing Ti decreases the Δa and also the corrosion rate, which
follows because Ti is known to form a protective TiO2 film
anticipated to improve the corrosion resistance of the alloy58.
Therefore, we reiterate that it is difficult to draw a definitive
conclusion regarding the role of Δa based on the limited dataset.
Rather, it is the presence of certain protective reactive metals that
decides corrosion resistance but directly affect a change in Δa of
the MPEA.
From Fig. 5 (m-x) (panel 2), no clear trend is observed where

lowering the average reduction potential has a negative impact
on the corrosion rate of the MPEAs. Only 5 datasets (marked with
a star) out of 12 show such a trend. Datasets 4, 5 and 7 show the
opposite trend. Datasets 8 and 9 show a lot of scattering. The
prediction of the ML model appears to be based on the synergistic
effect of multiple descriptors, but the corrosion rate does not
show a clear trend when considered individually with this selected
descriptor.
To assess the improvement in model performance, we compare

the predictions based on the top 13 descriptors and from the
descriptor optimization (5 descriptors), as given in Fig. 6. We have
observed 13 fairly accurate predictions (same order of magnitude
as that of experiments) out of a validation set of 25 when we
considered the top 13 descriptors. However, when we consider 5
optimized descriptors, namely, pH and halide molarity of the
medium, composition of the element with minimum reduction

Fig. 4 MSE of the GBR model versus number of descriptors. Data
are from numerous descriptor combinations from 1 to 13 for the
absolute difference of predictions and experimental values, at least
19 out of 25 test data are within 2.5 times that of the experimental
values. The lowest points represent the best regressor for a given
number of descriptors. y-axis is limited for clarity to only those data
that are <0.09. In actuality, there are 13Cn values for any given
number of descriptors (n), as shown for n= 3 a total of 286. MSE
does not show a trend with the number of descriptors and is
minimum for a set of 5 descriptors (listed in figure).

Fig. 3 Flowchart of the strategy used to obtain the best combination of ML model and descriptors for predicting the corrosion rates in
MPEAs. a Composition and corrosion-rate dataset of 142 alloys was collected from the literature. b The descriptor space contained a total of
30 descriptors but down selected to 13 descriptors in stage 1 based on feature importance. c A ML model was chosen and hyperparameter
optimization done to identify the best parameters with the lowest MSE. d Stage 2: an optimization technique down selected the best number
and combination of descriptors from a total of 13 listed after stage 1. e The most accurate combination of the ML model and the descriptor set
is then identified.
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potential, Δa, and average reduction potential, we achieve better
predictions (19 out of 25 for the validation set were fairly
accurate).
This study shows both the promise and perils of ML when

applied to a complex phenomenon like corrosion of alloys. ML can
help select descriptors and build a model that can reasonably
predict trends in the corrosion rate of MPEAs in different
environments to help narrow down the alloy search space.
However, there remain large quantitative differences between the
experimental corrosion rate and the rate predicted by this state-
of-the-art ML model, which is not surprising given the orders of
magnitude difference in corrosion rates in our training dataset.
The data utilized in this study were collected from various sources
in the literature. They have some inherent irreducible uncertainty

and noise that makes it difficult to utilize this dataset to build
models for a chemical space that is not part of the original training
dataset. Sparse data and poor data quality are well-known
limitations in materials science59. There is a need to collect high-
quality corrosion data with metadata to understand the effect of
descriptors, such as pH, halide ions, mixing entropy, and strain
energy, on the corrosion behavior of MPEAs.
Our goal was to demonstrate the use and limitations of ML as a

rapid-screening tool for corrosion resistance in the vast space of
MPEAs. We developed a model that predicts corrosion rate (mm/
year) within a relaxed threshold and significantly accelerates the
identification of MPEAs with improved corrosion resistance. From
our modeling exercise, we found that for most of the materials our
predicted corrosion rates (mm/year) were within 2.5 times of

Fig. 5 Trends of corrosion rate with respect to 2 of the 5 down selected features. The corrosion rate of 12 MPEA datasets as a function of
the difference in lattice constant and average reduction potential (eV) are presented in panel 1, (a–l) and panel 2, (m–x), respectively. The star
mark in each panel indicates the datasets which are in agreement with our reasoning. Since the prediction of the ML model is based on the
combined effect of the 5 down select features, the corrosion rate does not show a clear trend in some plots when plotted individually with the
selected features. Details of the datasets are provided in Supplementary Table 1.

Fig. 6 Comparison between experimental and ML predicted corrosion rate. a Using top 13 features from stage 1 down selection, and b
using 5 optimized features from stage 2 down selection. The bad prediction for each case is indicated by blue arrows.
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experimental values. A larger dataset with higher quality data is
needed to find more significant physical relationships between
individual descriptors and the corrosion rate.
In summary, we have developed a domain-science-informed ML-

based approach to predict the corrosion rate of MPEAs. We used the
GBR model to predict the corrosion rate under different corrosive
environments. We modified the predictive model by developing a
count-based selection model to get better accuracy compared to
conventional mean-squared error measurement. Our descriptor-
optimization strategy predicts corrosion rates reasonably well by
down selecting best descriptors—here five, namely, two environ-
mental descriptors (pH of the medium and halide molarity), two
atomic descriptors (Δa and average reduction potential), and one
elemental descriptor (composition of the element with minimum
reduction potential). Our main thrust was to examine the utility of ML
models based on limited and noisy published data to predict
corrosion rates for MPEAs. The model developed can search alloy
space without requiring synthesis and testing of many alloys by trial-
and-error in the laboratory. As such, it can dramatically reduce the
time and cost involved in narrowing down the vast composition
space. Our model offers a good prediction of the corrosion rate (19
out of 25 MPEAs in the validation dataset). However, it is challenging
to rationalize the effect of individual descriptors in terms of materials
science due to the limited training dataset of variable quality. The
accuracy of the predictions could be further improved by increasing
the training dataset size and data quality. Data sharing among
researchers with standardized metadata is needed to realize this
goal. The methods described in this work could also be applied to
select degradation-resistant alloys based on the prediction of
properties, such as Young’s modulus, yield strength, and hardness,
for a variety of engineering applications.

METHODS
Data collection
We have collected corrosion data of 142 MPEAs available in the literature
from9,13. The results are from potentio-dynamic-polarization tests in acid, base,
and salt solutions at room or higher temperatures. As the data includes
corrosion current densities obtained from samples at the experimental scale,
we assume that our model will predict localized corrosion at the point of active
reactivity60. Here, we only screen single-phase disordered MPEAs, with the
assumption that at the length scale of the corrosion process, the alloy surface
will be corroded homogeneously at statistically distributed points on the
surface with no segregation of a particular element in the microstructure. To
quantify the extent of the corrosion, we converted the experimental current
density to corrosion rate in mm/year. In a real application, the prediction of
corrosion is made extremely challenging by the formation of a passivating film,
the presence of impurities in the environment that can enhance or inhibit
corrosion, and preferential dissolution of an element in the alloy61. Our aim is
to offer a tool for the quick screening of MPEAs based on susceptibility to
corrosion, just as a Pourbaix diagram62 is used to assess the corrosion
susceptibility of a metal. We show that despite the complexity of the corrosion
process, variable quality of data drawn from different sources, and the
sparseness of the dataset, actionable insights can be extracted about corrosion.
The caveat is that this approach is based on uniform corrosion and may not
adequately cover situations where the alloy corrodes incongruently. From an
engineering perspective, it is anticipated that this machine learning aided
corrosion-rate prediction can give a fair idea about the suitability of a set of
alloys for a given application. The corrosion rate was obtained by converting
the corrosion current density into corrosion rate (rcorr) by using the relation:

Corrosion rate mm=yearð Þ ¼ 3:27 ´ 10�3 ´
icorr
ρ

´ EW; (3)

where ρ is the density in g/cc, icorr is the corrosion current density (in µA/cm2)
and EW is the equivalent weight of the alloy given as:

EW ¼
Xnifi

Wi

� ��1

(4)

where ni is the valency of the i-th element of the alloy, fi is the mass fraction of
the i-th element, and Wi is the atomic weight of the i-th element in the alloy.
To minimize the skew of 4–5 orders of magnitude in the target property i.e.,

corrosion rate (mm/year), the natural log of corrosion rates have been taken
and set as target property. Out of the 142 MPEAs, we have included 117 in the
training set, and the remaining 25 in the validation set. Once the model makes
a prediction, the result is calculated as the antilog of the Ln (rcorr), which is in
mm/year and can be directly compared with the test data rcorr values.

Materials descriptors space construction
One of the significant pillars of a ML algorithm is the set of descriptors used in
constructing the algorithm. Since the degree of relevance of any given
descriptor is unknown in the beginning, all potentially relevant descriptors
even mildly affecting the target property should be listed while constructing
the dataset. All descriptors based on thermodynamic, atomic, physical and
chemical parameters should be considered. The thermodynamic parameters
like mixing entropy (Ω)63, a geometric parameter (λ) based on mixing entropy
and atomic size mismatch64, and mixing enthalpy control the process of MPEA
phase formation. These parameters have been widely used for phase
classification in MPEAs. Atomic parameters like electronegativity mismatch
(χ) and atomic size mismatch (δr) have previously been used for classifying
phases and predicting mechanical properties7. Physical parameters including
melting point, compression modulus, and density have been used to predict
stable phases57 and hardness7. A rationale behind using melting point as a
descriptor is that it represents the bond strength65. Additionally, previous work
has also used chemical compositions to characterize the effect of addition of
certain elements on specific target properties like oxidation behavior and
corrosion rates66. The present work aims to predict the corrosion rate of
general MPEAs (mm/year). For that purpose, we have included previously used
parameters for corrosion-rate prediction and additional relevant parameters
that have not been used to predict corrosion rate previously in the literature. A
complete list of the 30 descriptors is given in Supplementary Table 2. The
additional parameters include the maximum and minimum of the reduction
potentials of all elements in the MPEA, and atomic percent of Cr, Al, Cu, Ti, Ni,
Sn, and Mo. The elements Cr, Al, and Cu can form a protective oxide layer
during corrosion and Mo triggers the Cr to form a protective layer67, which
makes them significant for consideration as descriptors in the ML algorithm.
The presence of halide ion breaks the passive layer and reduces corrosion
resistance due to halide attack68. Hence, concentration of halide in the
corrosion test solution has been included as a descriptor. The severity of the
environment characterized by the pH has been previously shown to have a
significant influence on the pitting morphology68. The corrosion rate is higher
in acidic or basic solutions relative to the rate in solutions with neutral pH69.
We calculated the 30 descriptor values for all 142 alloys in our dataset and

we set the rcorr as the target property. Since our descriptors vary in magnitude,
we scaled down those descriptors that have a larger magnitude relative to
other descriptors. More specifically, we scaled down ΔTm by 100 and both Ω
and Tm by 1000, and we scaled up Δχ and δ by 100. All descriptor values then
ranged from 0 ~|10|. This approach is slightly different from regular
normalization in the sense that only biasing is performed on the descriptors
by multiplying with an appropriate bias value so scaled data are the same
order of values for each descriptor. This minimizes the bias from one descriptor
to another as seen by the ML model. In our dataset, some descriptors like Ω
have values that range from 960 to 45800, with most values lying towards the
103 order of magnitude. In such a case a Min-Max normalization or a Z-score
normalization would reduce majority of the values to the order of 10−2 for the
descriptor Ω, while keep other descriptors in the order of 10−1. Hence to avoid
a wide variation in the values of the descriptors, such a scaling technique has
been adopted. This ensures reducing the training time by starting the training
process for each descriptor within the same timescale70.

Machine-learning model
In our initial trials, we employed the least absolute shrinkage and selection
operator (LASSO), random forest (RF), support vector machine (SVM) and
the GBR to predict the corrosion rate. At this stage, we selected the
algorithm with the maximum R2 value and hence we present the R2 values
obtained from all models in Table 2. Ten-fold cross-validation was
employed during the training. The GBR shows the highest training R2

value of 0.93 and a testing R2 value of 0.61 and is therefore selected as the
final model for the prediction of corrosion rate.
GBR is an ensemble type algorithm. Ensemble methods are meta-

algorithms that combine several base models to produce a better
predictive model. To decrease variance, a bagging ensemble method
can be used. To decrease bias, a boosting ensemble method can be used.
Boosting was first introduced by Robert Schapire71. Gradient Boosting, Ada
Boost and XGBoost all fall under boosting ensemble methods. A boosting
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method converts weak learners to strong ones. Usually, decision stumps
are used as the base weak learners, but this is not always the case. Most
boosting methods build models in stage-wise fashion and they generalize
the model by optimizing an arbitrary differentiable loss function.
GBR is a machine-learning technique based on boosting method which

can be used for both regression and classification31,38. The initial idea of

gradient boosting was observed by Leo Breiman72. Friedman developed
the explicit regression gradient boosting algorithm73. The algorithm for
GBR is given below.

GBR Algorithm
Input: Training Data f xi ; yið gni¼1,
Differential Loss Function L y; f xð Þð Þ;
Number of Iteration M

1. Initialize f0 xð Þ ¼ argminγ
PN

i¼1 L yi ; γð Þ:
2. For m = 1 to M:

(a) For i = 1, 2, ……., N computerim ¼ � δL yi ;f xið Þð Þ
δf xið Þ

h i
f¼fm�1

(b) Fit a regression tree to the targets rim giving terminal regions Rjm , j =

1, 2, …, Jm
(c) For j = 1, 2 …, Jm compute γjm ¼ argminγ

P
xi2Rjm L yi ; fm�1 xið Þ þ γð Þ.

(d) Update fm xð Þ ¼ fm�1 xð Þ þPJm
j¼1 γjmI x 2 Rjm

� �
:

3. Output f̂ ðxÞ ¼ fMðxÞ

Fig. 7 A simplified illustration of the count (of predictions in the designated AE range) based selection of model: predictions of model A
have smaller MSE than that of model B. However, the predictions of model B have a low AE ≤ 0.4 for all data as compared to model A that has
AE > 0.4 for 2 data points. Hence, model B is more advantageous in making a greater number of good predictions than fewer more accurate
predictions as done by model A. We, therefore, adopt this criterion for selecting the best model here. Data shown here for illustrative
purpose only.

Table 2. The training and testing R2 values obtained from the various
models.

Model Training R2 value Testing R2 value

LASSO 0.21 0.11

RF 0.85 0.55

SVM 0.91 0.37

GBR 0.93 0.61

The GBR shows the highest score and hence is selected as the final model.
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In this algorithm, we have used a training set x1; y1ð Þ; ¼ ; xn; ynð Þf g of
known values of x and y. Our objective is to find an approximation f̂ ðxÞ to a
function f(x) which minimizes the expected value of a loss function
represented by L y; f xð Þð Þ. It does so by starting the model (step 1) with a
constant function f0ðxÞ, given in the initialization step 1 above. In step 2 (a),
the pseudo-residuals given by rim are computed. In 2(b), a weak base
learner was fitted to rm, i.e., the model was trained using x; rimð Þf gni¼1. Next,
in step 2(c) the minimizer, γjm was found for

P
xi2Rjm L yi ; fm�1 xið Þ þ γð Þ. In 2

(d), γjm obtained in 2(c), was used to update the model using expression
fm xð Þ ¼ fm�1 xð Þ þPJm

j¼1 γjmI x 2 Rjm
� �

, where I x 2 Rjm
� �

is 1 if x 2 Rjm and 0
if x∉Rjm . Step 2 is repeated M times to obtain the final model. For our
study, we have used the GBR model through the sci-kit learn package36.

Construction of regressor
Our problem demands the construction of a regressor to predict the Ln
(rcorr) with the 30 descriptors. For this purpose, we have created a model
using the GBR as it has previously been shown to be a robust algorithm for
materials properties prediction38. To assess the accuracy of a model, we
have devised a two-stage approach. To understand this, we present a
sample dataset to explain the approach. Consider the dataset A and
dataset B shown in Fig. 7. Predictions of model A has a smaller MSE than
that of model B. But the predictions of model B have a low absolute error
(AE) ≤ 0.4 for all data as compared to model A that has AE > 0.4 for 2 data
points. The above difference is mathematically of lower magnitude but has
an important consequence when the magnitudes of test data are of an
extremely small order of magnitude such as those of corrosion rates
reported in the literature (10−3 to 10−1mm/year). Hence, we adopt this
criterion of count (of predictions in the designated AE range) based
selection of the model. This technique of model selection is advantageous
in our case as it is more important to have a model that may have a higher
MSE but can make fairly accurate predictions for all data points that are of
nearly the same order of magnitude as that of the experimental dataset,
rather than a model that has lower MSE but makes few very accurate
predictions and a larger number of highly inaccurate predictions.
The model has been optimized for the best performance via

hyperparameter optimization. The hyperparameters of the GBR model
namely the learning rate and n-estimators, were varied from 0.005 to 0.20
and from 50 to 500, respectively, to find the point at which the minimum
MSE is produced using the count-based model selection technique
described above. It was found that a minimum MSE of 0.016mm/year was
obtained at a learning rate of 0.01 and 150 n-estimators.
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