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Data analytics approach to predict high-temperature cyclic
oxidation kinetics of NiCr-based Alloys
Jian Peng1, Rishi Pillai1, Marie Romedenne1, Bruce A. Pint1, Govindarajan Muralidharan1, J. Allen Haynes1 and Dongwon Shin 1✉

Although of practical importance, there is no established modeling framework to accurately predict high-temperature cyclic
oxidation kinetics of multi-component alloys due to the inherent complexity. We present a data analytics approach to predict the
oxidation rate constant of NiCr-based alloys as a function of composition and temperature with a highly consistent and well-
curated experimental dataset. Two characteristic oxidation models, i.e., a simple parabolic law and a statistical cyclic oxidation
model, have been chosen to numerically represent the high-temperature oxidation kinetics of commercial and model NiCr-based
alloys. We have successfully trained machine learning (ML) models using highly ranked key input features identified by correlation
analysis to accurately predict experimental parabolic rate constants (kp). This study demonstrates the potential of ML approaches to
predict oxidation kinetics of alloys over wide composition and temperature ranges. This approach can also serve as a basis for
introducing more physically meaningful ML input features to predict the comprehensive cyclic oxidation behavior of multi-
component high-temperature alloys with proper constraints based on the known underlying mechanisms.
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INTRODUCTION
Ni-based alloys used at high temperatures are required to have
both good mechanical properties and oxidation resistance.
These alloys obtain their oxidation resistance by forming
adherent protective chromia and/or alumina scales1,2. Currently,
the evaluation of alloys’ high-temperature oxidation still heavily
relies on experimental investigations, which is costly and time-
consuming. Hence, developing the capability to predict the
high-temperature oxidation kinetics of multi-component alloys
is highly desirable and of great interest in many applications
involving extreme environments. Although computational
approaches using conventional analytical and physics-based
simulations have made significant advancements in investigat-
ing high-temperature oxidation, they are usually only applicable
for a given length/time scale3–6 or specific oxidation-related
phenomena7–11.
On the other hand, improvements in the machine learning (ML)

approach have propelled the use of data analytics to assist the
discovery of materials and the prediction of properties12–19. It
possesses many advantages in handling complex multi-
component alloys and offers the potential to extract insights
from complex experiments or synthetic datasets generated from
physics-based simulations. Thus, modern data analytics
approaches can be considered an alternate and/or complemen-
tary tool to accelerate the design and development of materials
with reduced cost and risk12–14,20–22.
Recently, data analytics approaches have been successfully

applied to predict the mechanical properties of multi-component
high-temperature alloys18,22–27. While high-temperature oxidation
also has scientific and practical importance, to the best of the
authors’ knowledge, very limited effort has been made to predict
the oxidation kinetics of complex multi-component alloys by ML.
A preliminary attempt has been made by Bhattacharya et al.28 to
build ML models to predict the high-temperature oxidation
kinetics, described by the parabolic rate constant (kp), of Ti alloys
between 550 and 750 °C. From a statistical perspective, a good

agreement between the predicted and experimental kp was
achieved. However, their dataset was collected from multiple
literature sources; thus, the data may exhibit mixed oxidation
mechanisms due to the difference in experimental protocols (i.e.,
atmospheres and isothermal or cyclic exposures)26. Moreover,
their work focused only on building predictive models without
analyzing the relationship between input features and kp.
Herein, we present a data analytics framework consisting of

correlation analysis of a consistently measured and well-curated
oxidation dataset followed by ML to predict the cyclic oxidation
kinetics of NiCr-based alloys, as illustrated by the workflow shown
in Fig. 1. The oxidation kinetics of studied alloys was numerically
represented by kp from two representative oxidation models.
Correlation analysis was performed using two algorithms (Pear-
son’s correlation coefficient (PCC)29 and maximal information
coefficient (MIC)30 to quantitatively evaluate the strength of
correlation between input features (i.e., alloying compositions/
oxidation temperature) and kp, and hence rank the input features.
The performance of five widely used ML models, i.e., linear
regression (LR)31, Bayesian ridge regression (BR)32,33, k-nearest
neighbor regression (NN)34, random forest regression (RF)35, and
support vector machines (SVM) regression36, in accurately
predicting the kp as a function of the number of top-ranking
input features is evaluated and discussed in this paper.

RESULTS AND DISCUSSION
Numerical representation of cyclic oxidation data
Extensive experimental investigations of the cyclic oxidation
kinetics of 25 model NiCr alloys and four commercial Ni-based
alloys (i.e., Nimonic 80 A, Nimonic 90, René 41, and Haynes 282)
have been performed in both dry air and wet air (air+ 10% water
vapor) atmospheres at Oak Ridge National Laboratory (ORNL).
Figure 2 shows examples of the cyclic oxidation behavior of select
NiCr alloys37,38 in the dataset. The alloy composition ranges,
experimental conditions, and details of the dataset are
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summarized in Table 1. This consistently measured oxidation and
well-curated dataset, collected over years of experiments at ORNL,
enabled exploring the potential of ML to predict the oxidation
kinetics of multi-component high-temperature alloys. However,
raw cyclic oxidation data, which is given as a 2 × Nmatrix (cycle vs.
mass change) per alloy, cannot be directly used in ML because
singular numeric values are needed as the target for the
regression-type ML training. Hence, it is necessary to find a
proper numerical representation for the oxidation kinetics of each
alloy so that the correlation between the input features and the
target, as well as the capability of ML in modeling the high-
temperature oxidation kinetics, can be evaluated.

High-temperature oxidation of multi-component alloys is a
complex dynamic process, which requires concurrent considera-
tion of both thermodynamics and diffusion kinetics2. As shown in
Fig. 2, the addition of certain minor alloying elements can
significantly alter the mass change behavior of some alloys during
oxidation. Thus, identifying a proper numerical representation for
such complex phenomena is the key to building reliable ML
models to predict the high-temperature oxidation kinetics of NiCr-
based alloys. Mathematically, any mass change curve can be fitted
with an arbitrary polynomial. However, parameters obtained from
such regression without any physical meaning will not allow
gaining insights into the oxidation mechanisms and compare alloy
oxidation performance. Thus, we have focused on identifying
widely accepted oxidation models with a robust formalism to
determine physically meaningful parameters to represent the
oxidation kinetics of the studied alloys.
As illustrated in Fig. 3, two oxidation models, i.e., a simple

parabolic law (Δm=
ffiffiffiffiffiffi
kpt

p
, where Δm is the mass gain and t is the

oxidation time; s-kp hereafter)39,40, and a statistical cyclic oxidation
model (p-kp hereafter)41, were adopted in this work. Both models
have been widely used to interpret the oxidation kinetics of
numerous alloys42–48. In this study, the s-kp model evaluated the
mass change data up to 100 h to exclusively represent growth
rates with the minimized influence of mass loss. The p-kp model41,
consisting of two parameters, i.e., p (discrete oxide spallation
probability) and kp, evaluated the complete curve, thus, enabling
us to assess the capability of the ML approach to predict oxidation
kinetics involving both oxide growth and loss processes. It is
anticipated that the derived kp will be a good numerical
representation of our raw experimental cyclic oxidation data and
can serve as proper target property for analyzing the oxidation

Fig. 1 Workflow of the present study. Raw experimental data from cyclic oxidation experiments were fitted with select oxidation models to
represent their oxidation kinetics, resulting in a dataset. Next, correlation analysis was performed to evaluate the strength of correlation
between input features and kp. Then, the performance of various ML models was evaluated.
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kinetics by the data analytics approach. Since the oxidation
mechanisms of NiCr-based alloys in dry and wet air are
different49,50, the complete experimental data after being fitted
by each oxidation model were divided into two datasets based on
the oxidation atmosphere. Finally, four datasets, s-kp, and p-kp in
dry and wet air were generated from the existing experimental
data for further analysis in this study (see Table 1).

Correlation analyses
We have used MIC and PCC methods to quantitatively analyze the
correlation between all input features (alloy compositions and
oxidation temperature from Table 1) and kp, respectively. While
PCC can evaluate the strength of the positive and negative, but
only linear relationships between two variables. The MIC method
can identify the strength of both linear and nonlinear relationships,
but only the magnitude without a sign. Both approaches are
expected to provide insights into the correlation between input
features and kp from differing statistical aspects, which may inspire
alloy design experts to generate alloy hypotheses23,26. Moreover,
correlation analysis can facilitate the training of high-fidelity ML
models using highly ranked features. For the PCC analysis, a
positive correlation between a feature and kp here implies that the
increase of the feature will increase kp, i.e., a higher oxidation rate,
and vice versa. Figure 4 shows the PCC analysis results for the p-kp
of dry and wet air datasets as examples. The remaining correlation
analysis results are presented in Supplementary Figs. 1 and 2. It is
worth mentioning that although as the base element, Ni content is
the balance of remaining alloying elements, we still use Ni content
as an input feature since ML algorithms are only solving a
mathematical problem and do not know such a correlation. The
oxidation temperature (T) was identified as the feature having the
most substantial impact on kp in all cases. It is encouraging that
correlation analysis replicated the community’s existing

knowledge: oxidation temperature is typically the factor that most
strongly affects oxidation rate. PCC also correctly identified that
temperature has the most positive correlation with kp, consistent
with the fact that the oxidation rate increases with increasing
temperature.
It can also be observed in Fig. 4 and Supplementary Fig. 1 that

chromium (Cr) as the major alloying element in the studied alloys
was identified to have the most negative correlation with kp,
which is consistent with the fact that the Cr addition is beneficial
to the formation of an external chromia solid-state diffusion
barrier that slows the oxidation reaction as it increases in
thickness51,52. Most of the alloys in this dataset were designed
to form protective chromia scales. Aluminum (Al) is expected to
further decelerate the growth rate of the chromia scale for NiCr-
based alloys53; thus, the negative coefficient of Al in wet air
(Fig. 4b) is reasonable. Fe is known to form fast-growing
oxides54,55. Its second strongest positive correlations with kp in
both dry and wet air (Fig. 4) are in accordance with this
understanding. Similar correlations were also observed for Cr

Table 1. List of alloying elements with composition range in wt% and experimental conditions, and details of the datasets.

Compositions of model alloys Ni (41.7-86), Cr (14-25), Al (0-3.9), Co (0-16.2), Fe (0-40.1), Mn (0-1.5), Mo (0-9.8), Si (0-0.5), Ti (0-3.3), Y (0-0.1)

Commercial alloys Haynes 282 (H282), Nimonic 80 A (N80), Nimonic 90 (N90), Rene 41 (R41)

Temperature, °C 800, 850, 900, 950

Atmospheres Dry air and wet air (air+ 10% water vapor)

Cycles of oxidation Up to 2000 cycles (1 h/cycle)

Number of data points in each dataset dry air (s-kp): 57, dry air (p-kp): 57 wet air (s-kp): 151, wet air (p-kp): 151

Input features [elements]: Elemental composition in wt% T: Oxidation temperature

Target Parabolic rate constant (kp)
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Fig. 3 Schematic diagram of the fitted mass change curve. The
mass gain curve of Haynes 282 in wet air at 900 °C in a 1 h cycle was
fitted with the s-kp and p-kp models, respectively.
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and Fe in the dry and wet air (s-kp) datasets, as shown in
Supplementary Fig. 1. Other than identifying linear correlation as
PCC does, MIC can also identify non-linear correlations. As
presented in Supplementary Fig. 2, features like T, Cr, Fe, Mo,
Mn, and Ni in dry air and T, Al, Fe, and Cr in wet air that have a
significant impact on the oxidation kinetics of NiCr-based alloys
were generally identified as high-ranking features by the MIC
analysis.
Correlations that seem to contradict known oxidation mechan-

isms were also observed. For example, Ni exhibits a negative
correlation with kp, meaning that Ni addition will decelerate the
oxidation rate. However, correlation analysis results also heavily
depend on the nature of the dataset, which means that the
rankings from correlation analysis here do not necessarily all make
intuitive sense and mean causation23. In addition, high-
temperature oxidation kinetics of multi-component alloys is
controlled by chemical compositions and temperature and by
factors including, but not limited to, microstructure and its
evolution during oxidation, as well as oxide scale spallation/
evaporation2. Although our dataset was collected over a number
of years from differing studies at ORNL and could be considered a
big dataset from a material science/alloy oxidation perspective, it
is still small from a data science perspective. Thus, the dataset
does not consistently cover the ideal composition ranges and test
conditions to fully facilitate data analytics for the classes of alloys
included. Certainly, this limitation could most likely be said of any

existing materials dataset, which includes complex alloy composi-
tions, structures, and behavior. However, the correctly identified
correlation in Fig. 4, Supplementary Figs. 1 and 2 still clearly
demonstrated the value of correlation analysis in applying data
analytics to materials science. The intention of performing
correlation analysis here is not only to gain insights into the
impact of input features on kp but also to have a numerical basis
for the selection of input features to train ML models for
understanding their influence on the performance of ML models.

Machine learning
Based on the ranking of features from correlation analyses, five
widely used ML models, i.e., LR, BR, NN, RF, and SVM, have been
trained using different numbers of top-ranking features to
evaluate their performances. For models trained with the dry
and wet air p-kp datasets, Fig. 5 presents their average
performance, represented by the Nash and Sutcliffe coefficient
of efficiency (NSE)56, and corresponding standard deviation as a
function of the numbers of top-ranking features based on the
rankings of |PCC| (the absolute values of PCC in Fig. 4). The
remaining results are presented in Supplementary Figs. 3 and 4.
Since NSE alone could not fully qualify the performance of these
models, another metric, i.e., coefficient of determination (R2 COD),
and a band showing the goodness-of-fit were adopted to facilitate
the assessment of ML models, as presented in Fig. 6.
NSE here was mainly used to compare the performance of these

models. As shown in Fig. 5 and Supplementary Fig. 3, the
performance of ML models trained with dry air datasets shows a
similar trend to those with wet air datasets. In most cases,
increasing the top-ranking features from 2 to ~4 or ~6 increased
the NSE of these models markedly. Intriguingly, considering more
features did not considerably improve the performance of the
obtained models. The NSE of the models trained with the wet air
datasets is relatively lower than their dry air datasets counterparts.
This trend can be attributed to the increased variation of
measured oxidation kinetics of alloys studied in wet air exposure.
For the dry air dataset, the maximum NSE of all models is between
0.6 and 0.75. Among the considered models, SVM has the highest
NSE (>0.7) in all cases (Fig. 5 and Supplementary Figs. 3 and 4). It
reaches the maximum NSE when using the top 3 to 5 features.
Afterward, it gradually decreases with an increasing number of
features, revealing that in this study including features with a
ranking lower than the 5th is not beneficial to the performance of
ML models. For the wet air dataset, the maximum NSE of all
models is only between 0.45 and 0.60. In general, the top four to
six features in this study were required to achieve an NSE of 0.5 or
higher. SVM still exhibits the highest accuracy among considered
models. As discussed in the previous section, most of these
features are experimentally identified features that significantly
impact the oxidation of NiCr-based alloys.
In all cases, the performance of these ML models evaluated with

NSE is generally in the order of SVM>BR>RF≈NN>LR (in dry air)
and SVM>BR≈LR>NN>RF (in wet air). Results show that these
models are sensitive to the number of features considered in
training but to different extents. SVM performs similarly to the
linear-based models BR and LR, particularly for those trained with
the wet air datasets. A linear kernel function (assuming the input
features and kp is in a linear relationship) was adopted for the
present SVM models after hyperparameter tuning. Considering
more than the top six to eight features significantly degraded the
performance of LR for the dry air dataset, whereas this was not the
case for the wet air dataset. This could be caused by the smaller
data volume of the dry air dataset than the wet air dataset. BR
uses probability distributors to formulate LR, rather than point
estimates used by LR and identifies the posterior distribution for
the model parameters. Thus, it is believed that BR is more tolerant
of overfitting32,33. This is why, in this case, the NSE of the BR model
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does not notably decrease with an increasing number of features.
RF in this study generally requires the inclusion of the top four
features to obtain the NSE of >0.65 (for dry air datasets) and >0.5
(for wet air datasets); after that, its performance was almost
independent of the number of considered features.
The observed trend can be understood as follows: as an

ensemble learning method, RF assigns different importance to
each feature during model training; thus, less critical features
would have less or even no contribution to its performance57.
Therefore, the performance of RF is not sensitive to the number of
features considered in training after it reaches the maximum
accuracy. NN hinges on the assumption that similar things are
close to each other and simply outputs the average value of data
points in k-nearest neighbors58. The performance of NN usually
degrades as the dimensionality of data increases significantly59,
because its distance measure, i.e., the Euclidean distance,
becomes less representative in a higher-dimensional space.
However, as shown in Fig. 5, Supplementary Figs. 3 and 4, when
the number of features increases, accompanying the increase of
the dimensionality of data, the accuracy of NN does not decrease
significantly. This finding indicates that the dimensionality of data

in this study does not induce a significant adverse effect on the
performance of NN. Since SVM possesses the best performance
among all considered ML models, its performance does not
significantly degrade with increasing numbers of features.
SVM models trained with all 11 features in our datasets are

believed to be the most promising ML models for predicting the
kp of NiCr-based alloys since they exhibit relatively good
performance and concurrently consider essential features from a
high-temperature oxidation perspective. Comparisons between
the experimental and predicted kp by the SVM models trained
with all 11 features are presented in Fig. 6 (for p-kp) and
Supplementary Fig. 5 (for s-kp). While the accuracy of trained ML
models evaluated with NSE is around 0.7, it is encouraging that
most of the predicted values are within the acceptable deviation
range. In addition, the other metric R2 COD for both dry and wet
air (p-kp) is close to 0.9 or higher, which strongly indicates that our
ML models can efficiently capture the trend of cyclic oxidation
response of NiCr-based alloys as a function of alloy compositions
and oxidation temperature.
In practice, the same alloy tested under the same condition may

exhibit significant test-to-test variations, particularly in wet air
testing. For example, the kp from the p-kp model of Nimonic 80 A
at 950 °C in wet air from six tests varied significantly (Fig. 7). Thus,
dashed lines, as the acceptable deviation, representing one order
of magnitude difference between the predicted and experimental
kp are superimposed in Fig. 6 and Supplementary Fig. 5. The
predicted kp correctly captures the experimental data trend, and
most of the data points lie between the dashed lines. This
indicates good agreement between experimental and predicted
kp was achieved from a high-temperature oxidation perspective
for the multi-component commercial alloys (group I). This
conclusion is further supported by the high R2 COD of ≥0.9 in
both cases. Data in Fig. 6b are slightly more scatted than those in
Fig. 6a, attributing to the increased spallation probability and thus
more considerable test-to-test variation in wet air exposure.
Although a satisfactory agreement between the experimental

and predicted kp was achieved, more work is required in the
future. Firstly, the performance of ML models depends not only on
what features have been considered but also on the nature and
repartition of the dataset used for training; thus, further detailed
analysis of this aspect is required. Secondly, kp alone could not
fully capture the complete oxidation kinetics of alloys. Other
properties, such as spallation probability and oxidation lifetime,
should also be concurrently considered as target properties to be
modeled/predicted. Thirdly, besides the alloy composition and
temperature considered in this study as input features, the high-
temperature oxidation kinetics are also affected by factors like
microstructure, oxide scale spallation, alloy surface depletion of
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elements that are selectively oxidizing, and oxide evaporation in
wet air atmosphere. Features that can well represent these
additional factors and ML frameworks that can incorporate these
factors as much as possible will be highly conducive to establish-
ing high-fidelity surrogate models.
Additionally, material datasets commonly suffer from the

uneven data distribution. While the present dataset can be
regarded as one of the largest and the most comprehensive cyclic
oxidation dataset for high-temperature NiCr-based alloys, many
gaps are identified. A highly desirable alloy dataset to apply data
analytics would have an even distribution of data points of all
elements without major gaps in a high-dimensional space. The
movement toward such an ideal alloy dataset can be obtained by
exercising a design of experiments (DOE)60 campaign to fill key
gaps in the existing dataset(s). However, the dataset used in the
current study is biased to some extent and has a number of gaps,
as shown in Fig. 8. This is attributed to the fact that the objective
of past empirical alloy research has been mainly focused on
identifying alloys with superior properties over existing ones.
Consequently, the alloy composition variation strategy has been
heavily geared toward improving properties, more often ending
up in biased and narrow boundary conditions from a data
analytics perspective. It is evident that alloy data with poor
properties can serve as equally useful learning input for ML
models; however, an effort to strategically collect such data to fill
the gaps has been overlooked, not only by us but likely
throughout the materials community. Hence, a strategy that can
identify the most important gaps in an existing dataset for alloy
data analytics and efficiently augment a small amount of
experimental data needs to be developed to leverage legacy
data, particularly for complex materials.
In summary, we demonstrated a workflow of applying a data

analytics approach to predict the cyclic oxidation kinetics of NiCr-
based alloys using a highly consistent and well-curated

experimental dataset collected over many years and numerous
different studies at ORNL. The oxidation data in dry and wet air as
a function of alloy compositions and oxidation temperatures
(800–950 °C) were used to train ML models. Identifying a proper
numerical representation was the critical procedure for success-
fully predicting the high-temperature oxidation kinetics of NiCr-
based alloys. Oxidation kinetics of alloys was represented by the
kp from properly selected oxidation models, i.e., a simple parabolic
growth law for data up to 100 h (s-kp) and a statistical cyclic
oxidation model for the complete curve (p-kp, up to 2000 h),
respectively.
Correlation analysis and training of ML models (i.e., BR, LR, NN,

RF, and SVM regression) were performed to quantitatively
evaluate the inter-relationship between input features and kp.
The influence of top-ranking features on the performance of
considered ML models was also identified. The trained ML models
were able to predict kp from both s-kp and p-kp models
satisfactorily. The typical test-to-test variation in experimental
high-temperature oxidation data was believed to be the primary
source for the discrepancy between the ML-predicted and
experimental kp. The current results demonstrated the potential
of the ML approach to predict the oxidation kinetics of multi-
component NiCr alloys with wide composition and temperature
ranges. We anticipate that this data analytics method can be
applied to predict the oxidation kinetics of other classes of high-
temperature alloys.

METHODS
Experimental procedure
All specimens with the dimensions of ~10 × 20 × 1.5 mm3 were ground to a
600-grit finish and cleaned ultrasonically in acetone and methanol prior to
cyclic oxidation experiments. A 1-h-cycle consisting of a 60min exposure
at temperature and 10min cooling in automated cyclic rigs61 was adopted
in this work. The specimens were exposed at temperatures between 800
and 950 °C in flowing dry and wet air (air+ 10% water vapor), respectively,
with a gas flow rate of 500 cm3min−1 for up to 2000 h.

Correlation analysis and machine learning
The correlation between the input features and kp was evaluated by PCC62

and MIC30, respectively. PCC considers the strength of the linear
relationship between two variables, while MIC can identify the strength
of both linear and nonlinear relationships. The correlation coefficient of
PCC is between −1 and 1, where 1 indicates a total positive linear
correlation, −1 represents a complete negative/reciprocal linear correla-
tion, and 0 indicates no correlation. The correlation coefficient of MIC
ranges between 0 and 1. Coefficient values close to 1 or −1 indicate the
strongest correlation between the variables and target property.
Five representative ML models were used: LR31, BR32,33, NN34, RF35, and

SVM regression36. A brief introduction to these models is provided below.
For details, please refer to the corresponding literature. LR models the
relationship between input and output variables by fitting a linear
equation. Parameters of the LR model are fitted to minimize the residual
sum of squares between input and output data. BR is another LR model. It
formulates an LR using probability distributors rather than point estimates
that LR does. The output is assumed to be drawn from a probability
distribution instead of being estimated as a single value. k-NN outputs the
average of the values of given data points in the k-nearest neighbors. Since
the function is approximated only locally, it only uses a subset of the
relevant dataset. RF is an ensemble learning method that constructs
multiple decision trees during training and outputs the mean prediction of
the individual trees. SVM can be used for both classification and regression
problems. For a classification problem, SVM constructs a set of hyperplanes
in high-dimensional space to distinctly classifies the data points. For a
regression problem, SVM is generalized by introducing an ε-insensitive
region (ε-tube) around the function. This tube reformulates the regression
problem to find a function exhibiting the least deviation from the obtained
targets across all training data while balancing model complexity and
prediction error.
These ML models were trained with different numbers of top-ranking

features based on the ranking from MIC or |PCC| (the absolute value of

Fig. 8 Data distribution of the current dataset. The concentration
range of each element, i.e., the difference between the maximum
and minimum content, is evenly divided into ten segments. The
number in each segment represents how many data points are
located in each cell. For example, a cell with 0 means that there is no
data in this range. The degree of data aggregation in each segment
is represented by color.
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PCC) to explore the influence of these features on the performance of ML
models. The hyperparameters for each model were tuned up to 10,000
iterations using the randomized optimization approach to search for the
optimal parameters. Each model was trained ten times for a given set of
features to determine the averaged accuracy and its standard deviation. All
features have the same weight in ML training regardless of their rankings
determined by correlation analysis. Both correlation analysis and training
of ML models were performed with the Python-based open-source
frontend, Advanced data SCiEnce toolkit for Non-Data Scientists
(ASCENDS)58,63, which is available via GitHub (https://github.com/
ornlpmcp/ASCENDS). The performance/accuracy of the ML models was
quantified by NSE56 and R2(COD), calculated without an intercept as a
supplementary metric. The NSE is calculated as follows:

NSE ¼ 1�
PN

i¼1 Oi � Pið Þ2
PN

i¼1 Oi � O
� �2 (1)

where Oi and O are the observed values and their mean, respectively. Pi is
the model predicted value. N is the number of data in the dataset. The k-
fold cross-validation approach64 with k= 5 was used in ML training. This
approach randomly divided the input data into k groups. One group (i.e.,
unseen data) was withheld during training, and the remainder k-1 groups
were used to train the ML model. Then the unseen dataset was used to
evaluate the accuracy of models.
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