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High temperature oxidation of corrosion resistant alloys from
machine learning
Christopher D. Taylor 1✉ and Brett M. Tossey 1✉

Parabolic rate constants, kp, were collected from published reports and calculated from corrosion product data (sample mass gain
or corrosion product thickness) and tabulated for 75 alloys exposed to temperatures between ~800 and 2000 K (~500–1700 oC;
900–3000 oF). Data were collected for environments including lab air, ambient and supercritical carbon dioxide, supercritical water,
and steam. Materials studied include low- and high-Cr ferritic and austenitic steels, nickel superalloys, and aluminide materials. A
combination of Arrhenius analysis, simple linear regression, supervised and unsupervised machine learning methods were used to
investigate the relations between composition and oxidation kinetics. The supervised machine learning techniques produced the
lowest mean standard errors. The most significant elements controlling oxidation kinetics were Ni, Cr, Al, and Fe, with Mo and Co
composition also found to be significant features. The activation energies produced from the machine learning analysis were in the
correct distributions for the diffusion constants for the oxide scales expected to dominate in each class.
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INTRODUCTION
High-temperature oxidation is a significant contributor to the
failure of energy generation system components, affecting
combustion systems (turbines and engines), heat exchangers,
and furnaces1. The rate of high-temperature oxidation is most
commonly mitigated through appropriate materials selection and
environmental controls. The materials selection process is advised
through a combination of field experience, long-term exposure as
well as shorter-term accelerated tests performed in the laboratory.
Imposing environmental controls ultimately involves limiting
performance and/or requiring additional quality control steps
over gas streams, temperature and pressure monitoring, as well as
regular or risk-based maintenance and inspection.
Alloy design strategies typically consist of incorporating

elements that readily form oxides having good rate-limiting
barrier properties. These include the elements titanium, alumi-
num, and chromium. Small amounts of other reactive elements,
such as hafnium, can assist in improving the integrity of the barrier
films by promoting scale adhesion to the matrix and/or binding
impurities, such as sulfur2. Whereas it is desirable to form
kinetically limiting barrier oxides, the change in ratios of alloying
elements near the surface as a result of oxidation can cause
undesirable changes in the near-surface microstructure, poten-
tially compromising other properties such as creep resistance,
through the dissolution of strengthening precipitate phases or
changes in, for example, the content of grain boundary chromium
carbides that inhibit secondary creep3,4.
To improve the efficiency of fossil energy generation systems,

next-generation designs are targeting higher temperatures,
placing additional demands on materials. In particular, systems
using supercritical CO2 as the heat exchange fluid are targeting
pressures (200 bar) and temperatures (~1100 oC) that are pro-
jected to require extremely corrosion-resistant materials with a
target parabolic rate constant for oxidation of 5 × 10−13 g2/cm4/s
units5. Candidate materials being explored to meet these targets
are most frequently in the class of nickel-based superalloys6.
Science-based approaches using computational modeling as a

complement to synthesis and characterization of new materials
provide an opportunity to further improve on the properties of
these materials.
Computationally assisted materials design (CAMD) is entering a

second wave of innovation. The first wave corresponded to the
development of multiphysics modeling methods: thermodynamic
approaches such as CALPHAD7,8, phase-field models9, and
atomistic simulations10 that predict the properties of materials
systems from first principles. In such approaches, various schemes
were put in place to combine computational models in serial or
parallel to allow synchronistic modeling of atomistic, mesoscale,
and continuum processes with methods like density functional
theory11, kinetic Monte Carlo12 and finite element approaches13.
The second and contemporary wave of CAMD includes and builds
upon this science-based foundation by adding the potent
opportunities offered by the application of machine learning
and data informatics14–16. This opportunity was recognized early
on by the Materials Genome Initiative17, and has since spawned
several other initiatives such as the Materials Project18. An
organizing principle for conducting informatics projects related
to corrosion of materials was produced by Taylor in 2015 and used
a hierarchical approach to organize the various sources of
knowledge and information related to problems in corrosion
science and engineering19. In the present work, the focus is on
applying a materials informatics approach to compiling and
visualizing the data on the oxidation rate constants of candidate
high-temperature materials, and then developing a machine
learning model for the classification and prediction of materials
according to high-temperature oxidation rate constant.
Prior attempts to predict the rate of high-temperature oxidation

for alloys based on their composition have included genetic and/
or regression algorithms based on notional ideas of the functional
dependencies of oxide layer transport properties on composition.
Most approaches rely in some way on the Wagner model for oxide
growth20, which predicts a t1/2 power law for corrosion, in which
case the corrosion performance of a material can be quantified by
a characteristic parabolic rate constant which may vary by
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temperature and chemical environment for any given material21.
In this form, the square of the weight change per unit area is linear
with respect to time, with the proportionality constant kp:

ΔW
A

� �2

¼ kpt (1)

The parabolic rate constant, kp, is often given in units of g2/cm4/
s. Microstructural as well as composition factors will also influence
the corrosion performance of the alloy and alter the parabolic rate
constant.
We note here that kp may mask a multiplicity of processes in

addition to mass gained due to the chemical oxidation of alloy
elements. For example, if oxides formed are volatile, then kp
calculated in this way will underestimate the extent of oxidation
since it does not take into account the mass loss when materials
volatilize. Likewise when the oxide spalls and may not be
recovered in post-exposure examination. Oxide-film breakdown
is another important failure mechanism that is not fully
represented by the parabolic rate constant and in such cases
the combination of thermal, mechanical and corrosion effects will
determine the ultimate materials limitations in service.
Chatterjee et al.22 introduced a kinetic model for the high-

temperature oxidation of nickel-base alloys based on a modified
Wagner’s oxidation model. Namely, the parabolic rate constant
was related to the partial pressure gradient of oxygen across the
oxide film, via the diffusivities of cations and anions according to
the equation:

kp ¼
Z pO2ðIIÞ

pO2ðIÞ

αD�ðMÞ
fM

þ D�ðOÞ
fO

� �
d ln pO2 (2)

here pO2ðIÞ and pO2ðIIÞ are the partial pressures of oxygen at the
metal/oxide and oxide/gas interfaces, α is a stoichiometry
coefficient, D*(M) and D*(O) are the tracer diffusivities of cations
and anions in the oxide and fM and fO are correlation factors for
self-diffusion. The authors then used a genetic algorithm to
parameterize a model for oxide growth that was formulated under
the assumption of a chromia/alumina solid solution phase. In
particular, the parabolic rate constants were fitted against the
composition of the alloys, which were inputs to a thermodynamic
model based on CALPHAD that provided the partial pressure of
oxygen at the metal/oxide interface. The model was significantly
focused on nickel-base alloys, primarily alloyed with Cr and/or Al,
and the physics of the model was limited to the diffusivity of O, Cr
and Al defects in the oxide film. Hence, the role of other alloying
elements was not directly taken into account.
Sato and co-workers in 2011 outlined a predictive model for

oxidation kinetics23, beginning with an expression for the rate
constant that is proportional to the free energy of oxide formation:

kp ¼ � σttiontel
z2c z

2
ae

ΔGf (3)

where σt is the conductivity of the oxide, tion and tel are transport
numbers for ion and electrons, respectively, zc and za are the
valencies of the cation and anion, and e is the electronic charge.
Consequently, the authors then related the various transport and
valence terms to the free anion vacancy concentration in the
oxide, resulting in an expression for the rate constant that should
be proportional to the free energy and the oxygen anion vacancy
concentration:

kp / V€oΔGf (4)

Given that vacancy concentrations are not readily determined,
the authors estimated the defect concentration of vacancies from
the effective valence of the oxide phase, Valefft , as determined by
the atomic fraction of elements having a valence different from
the parent oxide phase (in their study it was Al2O3). Thus the
vacancy concentration was assumed to be proportional to Valefft ,

computed by:

Valefft /
X
n¼i

zi � zAlð Þcγi (5)

where zi is the valence of cations i that may be co-present with Al
as defects in the oxide phase (assumed to be Ni and Cr), and cγi is
the composition of that element i in the alloy matrix.
Bensch developed an oxidation-creep model for the nickel-

based superalloy material René N524. The diffusion kinetic code
DICTRA was used to simulate the oxidation front of the alloy25.
Within this sophisticated multiphysics model, the oxidation was
proposed to modify the near-surface concentration of the
oxidized elements, which were also the precipitation hardening
forming elements (Ti, Al). Based on this outgoing flux of the
oxidized element(s), two microstructurally distinct zones emerged
in the near-surface region: a precipitate free zone, and a
precipitate depleted zone. Accordingly, there was predicted to
be a decrease in mechanical properties in those two zones.
Ultimately, a model was developed as shown linking these
components (oxidation, diffusion, precipitate depletion, mechan-
ical property degradation) together to predict the creep response
of the material due to oxidation.
Bensch further developed the model to take into account

variations in the oxidation rate constant due to changes in the
alloy composition26. In this model the rate constant was expressed
with an equation of the form:

kp ¼ c2 exp c3Uð Þ (6)

where U is essentially an activation energy, related to the energy
to form a unit of Al2O3, and is influenced by the alloy composition
by the expression (which includes Eq. 5):

U ¼
XN
i¼1

½ðzi � zAlÞ � xγi � � ðΔGf þ c1Þ (7)

The underlying physical principle behind adopting this expres-
sion for U is that elements with a higher valence state (zi) than Al
should increase the trapping state for defects responsible for
oxide growth. c1, c2, and c3 are fitting constants, as developed by
Sato and co-workers and described above23. ΔGf is the free energy
of aluminum oxide formation, and xγi is the composition of
element i in the γ-phase. The model was applied to alloys SCA425
+ and Rene N5, and the formula for U only considered Ni and Cr
as dopants in the oxide scale. As in the earlier work by Bensch
et al.24, the goal of modeling the oxidation was in part to
understand the near-surface depletion of the strengthening
precipitates induced by the oxidation. We will revisit this
expression in the work that follows, as we extend the model to
a very broad class of high-temperature alloys and provide some
further theoretical basis for the identity of the variables U and the
parameters c1, c2, and c3.
Carter, Gleeson, and Young in 1996 solved for the near-surface

depletion profile of the more reactive primary scale-forming
element by assuming a flux condition associated with the
parabolic oxide film growth and provided an analytical solution27.
The method was applied to Ni–Si alloy and used to infer the
dissolution of the Ni3Si precipitates in the near-surface region.
Perez-Gonzalez et al.28 studying the oxidation of Haynes alloy

282 and reported parabolic rate constants. Microscopic analysis
indicated that the oxide scale consisted of an outer TiO2 and an
inner Cr2O3 scale, with an internal oxidation zone of mixed
titanium and aluminum oxides. Despite the heterogeneity of the
oxide composition and structure, the parabolic rate law still
applied and should be considered a composite function for the
mass change as a function of time across the various oxides forms.
Similar findings were reported by Liang et al.29 under flowing air
and steam exposures, with an acceleration in the corrosion rate
observed to occur under flow and in the presence of water vapor.
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Pint et al.5 studied the oxidation properties of a variety of alloys
under ambient and supercritical CO2 conditions at 700 and 750 C,
including alloy 25, 740H, 625, and 282. The mass change with
oxidation for very long times of exposure was highest for alloy 25
(Fe-based alloy), and decreased in effect from 282 to 740H to 625,
which was the most resistant to oxidation. Over shorter times, the
order of mass increase was 282 > 25 > 625 > 740. The oxides
formed in CO2 at 1 bar or 300 bar were similar to those formed
in air.
Oleksak et al.30 studied the oxidation behavior of several Fe and

Ni commercial alloys in high-temperature environments contain-
ing CO2, H2O, O2, and SO2. A variety of alloys were studied
including 617, 230, 740H, 347H, Grade 22 and 91, 310S, 625 and
282; i.e., spanning low-Cr ferritic, high-Cr austenitic steels, as well
as Ni alloys. The materials were exposed to temperatures of 700
and 750 C for up to 2000 h. Ni alloys were shown to be superior,
followed by the austenitic (high Cr) steels, and inferior were the
low Cr ferritic steels.
Chyrkin (2015 and 2018) studied the oxidation characteristics of

alloy 602CA, a chromium-rich, carbide strengthened wrought Ni-
base alloy used in many high-temperature applications31,32. The
alloy was exposed to temperatures from 800 C to 1200 C.
Oxidation rate constants were reported as a function of
temperature. Oxidation resistance at the high temperatures was
attributed to the formation of alumina scale, which formed in
conjunction with a depletion of the Al in the near-surface region
of the microstructure. Beyond 1100 C the pre-formed alumina
oxide film breaks down, resulting in only internal Al oxidation. The
influence of oxidation on carbide stability was also investigated,
with Cr depletion driving the dissolution of carbides in the near-
surface region. Both the depletion in Al and Cr would be expected
to limit alloy lifetimes due to its effect on alloy strengthening
mechanisms.
Hou (2003) collected oxidation kinetics data on a large number

of aluminides (iron, chromium, nickel, and platinum aluminides in
various combinations and some incorporating reactive elements)2.
The data was collected and visualized using the Arrhenius plot
format (1000/T vs kp in g2/cm4s). Hou observed that the effect of
alloying and shifting the majority base element (Fe, Cr or Ni) on
transport rates seemed small. At the same time, oxidation rates of
the Fe- and Ni-based alloys were reported to be about one order
of magnitude higher than the Pt-based ones.
Due to the significance of chromium in high-temperature alloy

development, and the important role of chromia films in providing
a barrier to corrosion, Hallstrom et al. studied the kinetics and
microstructure of oxidation of chromium metal. Oxidation results
were reported at 600, 625, and 700 C33. They compared the extent
to which grain boundary as well as in-grain transport contributed
to oxide growth mechanisms. The contribution of grain boundary
diffusion indicated that the size of the oxide grains and thermally
activated boundary diffusion rates would be significant in overall
oxidation performance of chromium.
Christofidou et al. studied the oxidation performance of nine

Ni–Co–Al–Ti–Cr alloys at 800 C34. The alloys were primarily Ni–Co
alloys, with Cr varying from around 10–20% and around 2–8% of
Al and Ti blended in to form a series of model alloys. A fit was
made to determine the parabolic rate constant to the mass
change upon oxidation for 1000 h. Microscopy (secondary
electron imaging) was used to look at the elemental distribution
in the scales. Ni–17.5Co–7.5Al–2.5Ti–20Cr was found to be the
most resistant to oxidation. For a given Cr concentration,
increasing Ni and Al had the most effect on reducing oxidation.
The formation of γ’ phase was noticed to enhance the chromium
content of the matrix, increasing corrosion resistance.
Cruchley compared the oxidation behavior of RR1000 to pure

chromium, Inconel 718, Astroloy, Waspaloy, Inconel 720, Haynes
75, Alloy 230, and Rene 9535. An effective activation energy of
286 kJ/mol was reported for the RR1000 alloy, comparable to the

other chromia forming alloys reviewed in their paper (250–300 kJ/
mol). Titania crystallites were observed on the outermost part of
the scale. A γ’ denuded zone was observed near the surface, as in
similar work on complex precipitation-hardened alloys exposed to
an oxidizing environment.
Schiek et al.36 studied the oxidation kinetics of 602CA exposed

to various gas environments characterized by their Ar-O2-H2O
ratios at 800 oC. Alumina and chromia scales were observed to
different extents and alumina could be internal or external
depending on the temperature. Chromia growth rate was believed
to be influenced by the presence of titanium, which could surface
from the film as metallic nodules.
Collectively, the above-reviewed papers provide a significant

data set of high-temperature oxidation properties of alloys
spanning a diverse range of materials: nickel-based superalloys,
aluminides, low-Cr ferritic steels, and higher-Cr austenitic steels. To
facilitate the present and future development of CAMD of alloys
with high-temperature oxidation resistance, we have collected this
data and evaluated several models for predicting the parabolic
rate constants published in the literature (or in some cases,
derived from the provided oxidation measurements) as a function
of composition. As will be described in the methods section, the
basic form of the models constructed was drawn in part by the
works of Chatterjee, Sato, and Bensch22,23,26, and provides further
insight into the role of alloying elements in influencing the
susceptibility of materials to high-temperature corrosion.

RESULTS AND DISCUSSION
Visualization of materials data
Parabolic rate constants, kp, were collected either directly from
published reports, or calculated from corrosion product data
(sample mass gain or corrosion product thickness) and tabulated
for 75 alloys exposed to temperatures between ~800 and 2000 K
(~500–1700 oC; 900–3000 oF). Data were collected for environ-
ments including lab air, ambient and supercritical carbon dioxide,
supercritical water, and steam. When the environment was not
directly reported, it was assumed that laboratory air was used.
As can be seen in the data spread, most of the data-points

collected corresponded to (or were assumed to be, when
information was unavailable) laboratory air. As further data are
collected in our ongoing efforts in this area, increasing the
diversity of environments and more granularity regarding, for
example, partial pressure of different gas components, will be an
objective. However, the process of data curation remains largely
manual and, therefore, time-consuming, and, so for the purposes
of this manuscript, the focus will be on exploring the roles of alloy
composition and temperature on oxidation kinetics, and the
influence of environment will be considered to be within the
spread of data-points for any given material. Typically, the role of
the environment can change the oxidation rate constant by a
factor of one order of magnitude, in the order of steam/water >lab
air >CO2.

Arrhenius model selection using linear regression
The Arrhenius plots used to infer reaction kinetics are generally
characterized by a slope and an intercept. Visual examination of
Fig. 1 suggests that the data to the left of the plot have a steeper
slope (corresponding generally to aluminide alloys), whereas the
central set of data-points have a shallower slope (nickel-based
superalloys), and low-Cr alloys potentially an even shallower slope,
although the data-points are sparse in that region (top right).
Generically, the form of the rate constant as a function of
temperature should take the Arrhenius form:

Log10kp ¼ log10 Aþmð1000=TÞ (8)
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A simple and subjective visual examination of the data suggests
that there may be a common pre-factor log10A which lies
somewhere around zero. Since, within Arrhenius theory, the pre-
factor relates generically to an attempt frequency, it seems
reasonable that this value for the y-intercept may be common, or
nearly common among all materials classes, whereas the
activation energy (expressed by -m) will vary depending on the
rate-limiting step for oxide growth and will be a function of
materials composition and microstructure.
In the work of Sato et al. and Bensch et al. the activation energy

for oxide growth was associated with the content of “dopants” in
the alumina scale, and thus fitted to a function of the alloy
composition variables, with a focus only on the role of Ni, Cr, and
Al. Chatterjee et al.’s model likewise focused on transport23,26 in
the oxide and focused on the influence of Cr and Al content on
the diffusivity22. For this reason, we attempt similar linear
regression methods for the composition of the alloys against
the value of m, for different selections of c= log10A varied
between 0 and +20. Effectively deciding on a value of c maps
each data-point in Fig. 1 to a unique, temperature-independent
value of m, given by the expression:

m ¼ log10kp � c
� �

= 1000=Tð Þ (9)

This method has the advantage of providing multiple estima-
tors of m for the same material independently of temperature but
still remaining sensitive to changes in the environment and
variations in the alloy composition, as well as any other variations
in methodology, measurement or numerical accuracy.
Using the TIBCO Spotfire package we follow a similar procedure

to Sato et al. and Bensch et al. to fit the activation energy term m
to a linear function of the Ni, Cr and Al composition of the
alloys23,26. We perform fits for various values of the pre-factor
term, varying c from 0 to +20, since it was noticed that the R2

coefficient appeared to improve as the value for c was varied in
the positive direction. By eye it appeared that a common intercept
for the various linear clusters perceived in the plot would be
somewhere around 0. However, the linear regression fitting
appeared to favor higher (more positive) values of c, reaching a
local maximum at c= 8. The results of the regression fitting are
shown in Supplementary Information Fig. 1. In a following section

we have provided a physics-based derivation of the pre-factor c,
and then show different choices of c influence the machine
learning and other outcomes of this analysis.
The linear regression methods were varied to include other

potential alloying elements of significance: Si, Fe, Mo, yet the
regression was not significantly improved. The most significant
alloy elements included in this data analysis were ranked
according to their t-statistic as Al > Ni > Cr (Supplementary
Information Table 1). In Supplementary Information Fig. 2, we
plot the rate constants and color them according to the values of
m derived for the low intercept case (c= 0), and (b) the high
intercept case, which is the optimal value from Supplementary
Information Fig. 1 (c= 8). In Supplementary Information Fig. 3 we
present parity plots on the predictor variable m for the various
selections of c.
To assess the validity of this method for selecting different

choices for the intercept c before proceeding to further analysis,
we consider the physical interpretation and compare to the
methods of Bensch et al.26. and Chatterjee et al.22.
Modifying the equation provided by Bensch et al.26, the

parabolic rate constant can be expressed as

log kp ¼ log c2 þ log eð Þc3U (10)

here c2 and c3 are fitting parameters. The intercept in the present
model should be approximately equivalent to Bensch’s value for
log10 c2. The c2 values are given as 10−2, 10−5, and 10−45 for three
attempts to fit26. Thus, the Bensch model would indicate lower c
values around −2 to −5 compared to those obtained by the
fitting procedure in Supplementary Information Fig. 1 (we assume
that 10−45 is most likely to be an extreme outlier). The Arrhenius
slope in the Bensch model should relate to the parameter c3U
(Bensch’s data is at 1000 oC and 900 oC, and since there is no
temperature dependence in their equation, c3U incorporates both
a temperature effect, as well as an adjustment between ΔGf and
the kinetic parameter). According to Bensch’s work, at 1000 oC, U
is around 50 kJ/mol for the Ni superalloys, and c3 is on the order of
−0.5. Making the equivalency from the Bensch model to the

Fig. 1 Scatterplot of parabolic rate constants vs. temperature. Arrhenius plot (x= 1000/T, with T in Kelvin; and y= log10kp, with kp in units of
g2/cm4/s) for the collection of alloys curated from the high-temperature oxidation literature. For alloys where no environment is explicitly
reported in the paper, it is assumed the environment is air. aCO2 is ambient pressure CO2, and sCO2 is supercritical CO2. sH2O is
supercritical water.
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functional form of the Arrhenius equation:

log10 eΔEa=RT ¼ log10e c3U (11)

c3U � �0:5�50 ¼ �Ea=8:314=1273 (12)

Ea � 260 kJ=mol (13)

This value for the activation energy is consistent with activation
energies for chromia forming alloys in the literature. Chen et al.
determined activation energies of 270, 300, and 250 kJ mol ~ for
Astroloy, Waspaloy, and Udimet 720, compared to 255 for Cr in
chromia37. Tawancy et al. report activation energies for alumina
formers of about 396 kJ/mol, comparable to 382 kJ/mol for growth
of α-Al2O3 on a number of Ni-Al-Cr alloys38 and 388 kJ/mol for
alloy MA 95638. Chyrkin et al. determine an activation energy of
~360 kJ/mole in the oxide scale on 602CA compared to that for Al
diffusion in the alloy (264 kJ/mol)32. For NiO, the diffusivity of
cations is reviewed by Stott and a value of 257 kJ/mol seen to be
consistent with a wide range of data, although others prefer the
lower value around 170 kJ/mol39. Cruchley et al.35 survey several
alloys and determine activation energies of 286 kJ/mol for RR1000,
a little higher than for chromia ~250 kJ/mol35. Taylor’s study of
RR1000 found an activation energy significantly higher for RR1000,
326,740 kJ/mol indicating that other elements than Cr are being
oxidized, likely Al given that the alloy has 3 wt.% aluminum40.
Young’s textbook tabulates activation energies for Fe, Ni, Cr and
Co as 164 (700–1000 oC), 120 (600–1100 oC) & 240 (1100–1400 oC),
243 (980–1200 oC), and 230 (800–950 oC) & 150 (950–1150 oC) kJ/
mol, respectively1. For alumina scales, the activation energy can
vary between 300–400 kJ/mol depending on the extent of grain-
boundary diffusion and the role of other alloying elements1.
The primary significance of Ni, Cr, and Al, over the presence of

other alloying elements in determining the best-fit model for the
parabolic rate constant is also consistent with the prior models
developed by Chatterjee, Sato, and Bensch22–24,26.
Since the intercept term c is related to the Arrhenius pre-factor,

another argument for the rough order of magnitude for the
prefactor associated with kp can be made using some other logical
arguments. The attempt frequency is related to the natural
vibration frequency of atoms and is given by the value kBT/h
which is around 2 × 1013 /s at 1000 K. To convert to units of g2/cm4

we need to multiply by the square of the mass/area density of the
atoms responsible for oxide growth. The molar mass of an oxygen
atom is 16 g/mol. The surface density corresponds to ~1 site per
unit cell which is on the order of ~0.5 nm, so the pre-factor for
oxidation in the units of g2/cm4/s should be given by the
expression:

A ¼ kBT
h

16g=mol
6 ´ 1023 atoms=mol

1 atom

ð0:5 ´ 10�7cmÞ2
 !2

(14)

For T ~ 1000 oC this would yield a value of c of −2.6, which is
generally consistent with the values determined for c2 by Bensch
(10−2 to 10−5)23,26, and the apparent intercept which seems closer
to 0 or slightly <2 as determined “by eye”. In the following section,
we will show that values of c close to −3 provide lower mean
absolute errors for a variety of machine learning approaches
applied to the data set, although values close to zero provide for
activation energies more in line with those observed for the
various alloy classes studied in this work.

Supervised learning techniques
To improve the predictivity of the models and further explore
relations between alloying elements and oxidation behavior, we
next considered the application of alternative regression methods
based on supervised machine learning. Whereas the linear
regression models assumed in part B and prior work may be

expected to approximately apply within the constraints for a
limited class or similar classes of alloy (i.e., with small variations in
alloy compositions and a common base metal), across different
alloy classes (aluminides, Ni-based CRAs, chromia formers and
ferritic vs austenitic steels) the relationship between alloy
composition and oxidation rate constant would be expected to
be non-linear. We therefore consider approaches such as artificial
neural networks41 and support vector machines (SVM)42, since
these apply to non-linear systems. We also consider classification
based methods, such as k-nearest neighbor43, which should favor
finding the rate constants based on similarities in composition, as
well as tree-based methods such as tree and random forest44,45,
based on the intuitive concept that alloys in similar ‘family trees’
may be expected to have similar oxidation rate constants. The
models were tested and scored using five-fold cross-validation.
In Table 1 we plot the mean standard error, the root mean

standard error, the mean absolute error, and the R2 value for
various machine learning approaches with three different
assumptions for the intercept term c: the low c case (c= 0), the
‘optimized’ value or high c case (c=+8) and the physically
estimated value case, c=−3 (which is also in the range of values
parameterized for the analogous constant by Bensch26). As can be
quickly appraised from the table, the non-linear methods of
Random Forest, KNN and Tree give the lowest errors, and for the
negative and low c cases, with the errors being significantly higher
for the ‘optimized’ c case, despite this value leading to higher R2

scores.

Table 1. Mean-squared error (MSE), root mean-squared error (RMSE),
mean absolute error (MAE) and R2 coefficient for the various machine
learning approaches used to fit the Arrhenius slope for the parabolic
rate constant as a function of materials composition.

MSE RMSE MAE R2

Low c (c= 0)

Linear (Ni, Cr, Al)c 1.69 1.30 0.90 0.79

Linearc 0.99 1.00 0.75 0.88

NN 0.81 0.90 0.64 0.80

SVM 1.03 1.02 0.78 0.75

KNN 0.78 0.90 0.61 0.81

Tree 0.82 0.90 0.64 0.80

Random forest 0.72 0.85 0.61 0.83

High c (c= 8)

Linear (Ni, Cr, Al) 4.66 2.16 1.62 0.83

Linear 2.73 1.65 1.24 0.90

NN 2.41 1.55 1.00 0.91

SVM 3.90 1.97 1.51 0.85

KNN 2.12 1.46 0.95 0.92

Tree 2.29 1.51 0.99 0.91

Random forest 2.09 1.45 0.95 0.92

Physical (c=−3)

Linear (Ni, Al, Cr)a 1.29 1.13 0.83 0.70

Linearb 0.78 0.88 0.66 0.81

NN 0.81 0.90 0.64 0.80

SVM 1.03 1.02 0.78 0.75

KNN 0.78 0.88 0.61 0.81

Tree 0.82 0.90 0.64 0.80

Random forest 0.72 0.85 0.61 0.83

aInitial linear fits were done on Ni, Cr, and Al compositions.
bLinear fits performed in orange/python using all composition data.
cTested on train data only.
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This more rigorous analysis reveals that the high c value of c= 8
leads to significantly larger errors in the linear and non-linear
models. Hence the lower values of c= 0 and c=−3 lead to more
accurate predictions for the parabolic rate constants, within the
Arrhenius model.
To further investigate the veracity of the various model

predictions, we plot the activation energies that can be readily
derived from the slope m of the Arrhenius plot as follows:

Ea ¼ �1000 8:314ð Þm= log10 eJ=mol (15)

The distribution of activation energies from the data set
collected for this work are provided for the low c (c= 0), high c
(c= 8) and physical (c=−3) assumptions in Fig. 2. The activation
energies for the c= 0 case most accurately align with the
activation energies in the literature for iron oxide (~150–200 kJ/
mol), chromia (250–300 kJ/mol) and alumina forming (300–400 kJ/
mol) alloys1. The c= 8 assumption leads to activation energies
that are ~2x higher and the c=−3 assumption leads to activation
energies that are roughly 25% lower.
Given this finding, we focus on the c= 0 assumption for the

remainder of the discussion and analysis in this paper, as it leads
to the most realistic distribution of activation energies for the
oxide scales when compared to the literature data.
The relative significance of the elements in the alloys to the

oxidation kinetics was evaluated based on the rank correlation
between element composition % and the value for the Arrhenius
slope, m, obtained in the low c (c= 0) assumption. Both linear and
random forest models (for which rankings were available)
indicated that Ni, Cr and Al were in the top four most significant
compositions.
The linear model lists Fe composition as the most significant

variable, whereas the random forest lists Al as the most significant,
and the fourth most significant as Mo, and then Fe as fifth. The
other elements in the top 10 most significant are also given in
Table 2. Elements in common to both methods (in addition to Fe,
Ni, Cr and Al) include Co and Cu.
The decision tree regression model for the Arrhenius slope in

the c= 0 case is shown in Fig. 3. As can be seen, the most
significant split in the decision tree is Al, which differentiates at

the outset aluminides, having very steep Arrhenius slopes (high
activation energies) from the nickel and iron-based superalloys.
Subsequent splits differentiate between higher iron contents, low
and high chromium steels, cobalt content, and then again
according to the extent of aluminum versus nickel in the alloy.
As can be seen visibly by the color differentiation, the right-most
branch signals the aluminides, the center branch is the low-
chrome ferritic steels, and the left-most branch divides according
to stainless steels and nickel super alloys.
The random forest model creates a “forest” of such decision

trees and collectively uses the trees to make a composite
prediction for the target variable, i.e., the Arrhenius slope in this
case. A sample of the decision trees, presented in the Pythagorean
tree representation is shown in Supplementary Information Fig. 4.
The weighted signifciance of the different variables taken among
the various “family trees” so constructed is given in Table 2. Figure
4 shows the parity plot for the random forest model, signifciantly
less scatter than the linear models in Supplementary Information
Fig. 3.

Fig. 2 Activation energies calculated with three different Arrhenius pre-factors. Activation energy distributions from the data set with
different assumptions for the constant c which corresponds to the Arrhenius intercept. The distribution of activation energies is shown for the
data when using the assumption of intercept (a) c= 0, (b) c=+8, (c) c=−3.

Table 2. The ten most significant elements according to rank for
linear and random forest.

Element Linear Rank Element Random forest

Fe 1.547299 Al 0.396931

Ni 1.466135 Cr 0.163614

Cr 1.170996 Ni 0.086381

Al 1.059325 Mo 0.073809

Co 0.888269 Fe 0.064088

S 0.854328 C 0.043457

Pt 0.83646 Co 0.028014

N 0.667273 Mn 0.02771

Cu 0.653015 Cu 0.022063

Hf 0.410626 Pt 0.021459
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Unsupervised learning
Stochastic neighbor embedding according to the t-statistic (t-SNE)
was used to explore the composition data set in an unsupervised
fashion46. This technique allows for non-linear dimensionality
reduction, which seeks to capture both local and global complex-
ity of high dimensional data sets. It is essentially a non-linear
extension of principal component analysis. The two-dimensional
reduction of the composition data space that can be achieved
using t-SNE is shown in Supplementary Information Fig. 5. There
are two primary distributions of data as seen in the lower left and
upper right quadrants of the two-dimensional plot. K-means
analysis was used to further divide the data into clusters47. Six
clusters were used for the analysis, as, from experience there
should be at least 4 clusters of alloy classes present: ferritic and
stainless steels, nickel superalloys, and aluminides. The t-SNE
distribution clusters C6 and C5 closer together, C1 closer but
separate, and C2–C4 separately. The Arrhenius slopes are grouped
according to the clusters in Fig. 5, where it can be seen that C1 has
the slope characteristic of the iron-based alloys (ferritic and
stainless steels), C6 and C5 are the less corrosion-resistant nickel
superalloys, C2 are the aluminides, and C3 and C4 span the
aluminides and more resistant nickel superalloys. In Fig. 6 we

further break down these clusters according to their composition
distributions, where these relations become further apparent.

● C1: high Fe content (ferritic and austenitic steels) alloys
● C2: the aluminides
● C3: higher Ni composition, chromia forming nickel superalloys

without Al
● C4: higher Cr containing nickel superalloys with appreciable

amounts of Al
● C5: lower Cr nickel superalloys with small amounts of Al
● C6: intermediate Cr nickel superalloys including some with Fe

The expected oxidation resistance based on compositions
would be C2 > C4 > C3 ~ C5 ~ C6 > C1. The cluster analysis
therefore provides some further classification of the nickel
superalloys according to their extent of alloying with aluminum
and chromium. As the database is further populated it is expected
that such analyses can reveal insights as to the role of other alloy
elements and may be used to guide composition optimization.
In this work we have collected data on parabolic rate constants

for alloys spanning the classes of low- and high-Cr ferritic and
austenitic steels, nickel superalloys, and aluminide materials and
used a combination of Arrhenius analysis, simple linear regression,
supervised and unsupervised machine learning methods to

Fig. 3 Decision tree for activation energy proxy based on elemental composition. Decision tree for the determination of the Arrhenius
slope based on the elemental composition.

Fig. 4 Parity plot of random forest versus actual activation
energy proxies. Parity plot of random forest (fitted) versus actual
slope values using the intercept assumption that c= 0.

Fig. 5 Arrhenius slopes distributed according to k means
clustering. Distribution of Arrhenius slopes according to k means
clustering of the t-SNE two-dimensional projection of alloy
composition space.
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investigate the relations between composition and oxidation
kinetics. The supervised machine learning techniques produced
the lowest mean standard errors on the datasets when five-fold
cross-validation was used. The most significant elements control-
ling oxidation kinetics were Ni, Cr, Al, and Fe, with Mo and Co also
playing significant roles. The activation energies produced from
the machine learning analysis were in the correct distributions for
the diffusion constants for the oxide scales expected to dominate
in each class. The database developed and the initial machine
learning analyses described in this work should provide a basis for
further investigations of the role of minority elements and
variations in the environment for affecting the oxidation kinetics.
The unsupervised learning provides an alternative way to group
the composition data in the dataset through dimensionality, and it
provides further granularity to the composition classes by further
subdividing the nickel superalloys according to the relative
richness of their aluminum, chromium or nickel content.

METHODS
Approach
High-temperature oxidation kinetics, in this work and most of those
reviewed in this paper, are assumed to follow the Wagner kinetic model20

where the rate of oxidation is characterized by the parabolic rate constant
kp, although it is known in many cases for highly corrosion-resistant alloys
that growth may become sub-parabolic, and, in less resistant alloys and/or
extreme service conditions, particularly cyclic temperature variations,
involve successive events of oxide growth and spallation. The reason for
utilizing parabolic oxide kinetics in the present work is that it provides the
most expedient starting point for applying an informatics based approach:
parabolic rate constants have been reported for a wide variety of alloys
across numerous classes (austenitic, ferritic, intermetallic, and superalloys)
and can be readily extracted by fitting t1/2 curves to oxidation mass change
data reported in the literature. Future improvements of this work, and
indeed, the theory of high-temperature oxidation of alloys, can then add

successively more complex models. For example, one might consider in an
alternate analysis using only the observable mass change or oxide film
thickness, rather than the post-analytical rate constant, and other
mechanisms relevant to materials could also apply, such as oxide film
breakdown, spallation, and thermo-mechanical corrosion fatigue. However,
these are beyond the scope of (a) this analysis, and (b) the types of data
reported in the measurements collected for this work.

Data collection
Data on high-temperature oxidation was collected from a series of original
reports and review papers2,5,22,28–36,48. 237 unique rate constants were
obtained with a total of 75 different materials exposed to different
environments and temperatures. The compositions for the materials were
obtained from these papers and converted into atomic percent. The rate
constants were converted into equivalent units of g2/cm4/s. Information
was also collected, where available, on exposure environment, including
temperature and gas composition.

Featurization
A machine learning approach was adopted to classify and model the
materials based upon their parabolic oxidation rate constants using the
techniques of data curation, data visualization, logistic regression49, linear
regression, random forest45, single decision tree44, artificial neural
network41, and k-nearest neighbor (KNN)14,16,43. To facilitate the classifica-
tion process, an assumption was made to convert the parabolic rate
constant into an equivalent activation energy for oxidation. This step was
taken to remove the effect of temperature from the parabolic rate
constants obtained for tests performed on the same alloy material but
under different temperatures. Effectively, it was assumed that the parabolic
rate constant was of the form:

kp ¼ A exp �ΔEa=RTð Þ (16)

in which case, the usual Arrhenius presentation would have the form:

log10 kp ¼ c þm�1000=T (17)

Fig. 6 Alloy distributions according to Ni, Cr, Al, and Fe content. Alloy distributions according to Ni, Cr, Al, and Fe content for the six clusters
identified in the k-means analysis.
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i.e., taking the y-axis as the decadal logarithm of the parabolic rate
constant and the x-axis as 1000/T. Based on an initial visualization of the
plot of log10kp versus 1000/T it seemed reasonable to assume that the
intercept of the Arrhenius plot had a nearly common value for the pre-
factor c= log10A. The value of the unknown parameter log10A was varied
to optimize the goodness of fit of the regression techniques attempted in
this work. Whereas the environment may affect the pre-factor term, most
of the experimental data-points collected appear to come from experi-
ments performed in laboratory air and, furthermore, we assume that the
environment is likely to have no more than approximately ±1 order of
magnitude effect on the rate constants (and this assumption was borne
out by casual inspection). For these reasons, and due to the limited nature
of the data set in terms of diversity of environments studied, we do not
include environmental effects on the rate constant in the present analysis,
choosing to focus only on composition. As the data sets become richer it
will become possible in the future to incorporate the environment as a
‛feature’ in the machine learning analysis.

Computational tools
The computational tools used to visualize and model the data include
TIBCO Spotfire (https://www.tibco.com/products/tibco-spotfire), Orange
v3.23 (https://orange.biolab.si/), and Python scikit-learn (https://scikit-
learn.org/).
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