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Intelligent upper-limb exoskeleton
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deep learning for intention-driven
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The age and stroke-associated decline in musculoskeletal strength degrades the ability to perform
daily human tasks using the upper extremities. Here, we introduce an intelligent upper-limb
exoskeleton system that utilizes deep learning to predict human intention for strength augmentation.
The embedded soft wearable sensors provide sensory feedback by collecting real-time muscle
activities, which are simultaneously computed to determine the user’s intended movement. Cloud-
based deep learning predicts four upper-limb joint motions with an average accuracy of 96.2% at a
500–550ms response rate, suggesting that the exoskeleton operates just by human intention. In
addition, an array of soft pneumatics assists the intended movements by providing 897 newtons of
force while generating a displacement of 87mm at maximum. The intent-driven exoskeleton can
reduce human muscle activities by 3.7 times on average compared to the unassisted exoskeleton.

Many individuals suffer from neuromotor disorders that primarily arise
from stroke-induced and age-associated declines in musculoskeletal
strength and control. Statistically, strokes affect one out of four adults over
the age of 25 in their lifetime, and 12.2 million of the global population
experience stroke each year1, resulting in neuromotor disorders for 20–40%
of victims2. The population with neuromotor disorders will amount to a
much larger number if we also consider the elderly population with neu-
romotor disorders. Such a disorder restricts the functional independence of
the inflicted population because the reduced motor control and unwanted
tremorof theupper limbusually pose considerabledifficulties in performing
everyday tasks that require the dexterity of the upper limbs. Moreover,
neuromotor disorders generate tremendous social expenditure in

healthcare. The direct and indirect social costs of stroke amount to
approximately $65 billion annually in the United States3.

There is an immediate demand to address these problems, and the
existing robots can mechanically augment human upper-extremity
strengths. However, the previously reported exoskeletons cannot provide
pragmatic solutions because they lack essential functionalities to augment
the upper-extremity movements. Primarily, the most critical limitation of
the existing exoskeletons originates from their incapability to predict the
real-time intention of the user4–14. In other words, many of the existing
solutions can only assist the user’s movements as pre-programmed due to
the absence of sensory feedback pathways and artificial intelligence to
predict the real-time intention of the user. Another limitation of the
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previously reported exoskeletons is their structural design. The existing
exoskeletons use a stationary mode, limiting their potential use to assist
everyday tasks in a mobile style4,10,15–18. Moreover, these systems rely on
complex hardware in large form factors with complicated electrical wiring,
which makes it difficult for the users to use and adapt to6,9,10,12,16–18. Besides,
most of the previous upper-extremity exoskeletons assist only a single joint
movement, such as an elbow or shoulder joint movement4,5,7,8,13,19. Thus,
these systems cannot meet the needs of everyday tasks that use both elbow
and shoulder joint motions and combined movements.

In addition, sensory haptic feedback in human assistive robotics is
crucial because it translates human physiological signals into strength
augmentation. Although various strain sensors offered promising features
in human motion recognition20–27, these sensors could not detect strength
information. In contrast, electromyogram (EMG) signals can offer direct
information about upper-extremity movements as EMG records the elec-
trical signals in the presence of muscle activities. Still, some existing upper-
extremity exoskeletons do not incorporate physiological sensors4,15,19. Fur-
thermore, many previous works, including EMG sensors in their systems,
use the sensory information to compare the relative muscle involvement
rather than to implement the sensory feedback5,6,8–14. These critical limita-
tions of the current upper-extremity exoskeletons restrain the realistic use of
exoskeletons indaily life. In this respect,webelieve that the ideal exoskeleton
robot for human strength augmentation should be able to (i) predict the
user’s intended movement with high accuracy, (ii) be portable, (iii) be
lightweight, (iv) be easy to use, (v) support the multiple upper-limb joint
movements, and (vi) incorporate the high-fidelity sensory feedback. To the

authors’ best knowledge, there has been no work that seamlessly integrated
all the ideal elements into a fully functional exoskeleton that can assist
individuals with neuromotor disorder in performing everyday tasks in a
completely user-friendly fashion.

Here, this paper reports a human-intent-driven robotic exoskeleton
that assists the upper-extremity joint movements by a deep-learning-based
cloud computing platform with high-fidelity sensory feedback using soft
bioelectronics. Incorporating the cloud computing platform with the
human assistive robot enables the real-timeprediction of the user’s intended
movement with high accuracy. Moreover, an array of pneumatic artificial
muscles generates a high magnitude of mechanical force to assist the
wearer’smultiple intendedmovements. Furthermore,we introduce an array
of wireless, soft, EMG sensors that can monitor high-quality electro-
physiological signals to constitute reliable sensory feedback.Table 1 captures
the distinguishable advantage of this work by drawing a comparison
between this work and the existing exoskeletons.

Results
Overview of the system architecture featuring an intelligent
upper-limb exoskeleton with wearable bioelectronics
Figure 1 shows the overviewof an intelligent upper-limb exoskeleton system
that uses wearable sensors and cloud-based deep learning to predict human
intention for strength augmentation. The embedded soft sensors provide
sensory feedback by collecting real-time muscle signals, which are simul-
taneously computed to determine the user’s intended movement. Specifi-
cally, the soft sensors attached to the wearer’s skin acquire muscle activities

Table 1 | Comparison of this work with other upper extremity augmentation exoskeletons

References Integrated
systema

Real-timepredictionof human
intention and constant model
update

Human strength augmentation Sensory feedback

Real-time deep-
learning

Cloud
computing

Portable Motions Target movements Sensor
configuration

Sensor type Wireless

This work O O Yes O 4 Shoulder flexion/ extension/elbow
extension/ flexion

Skin-
conformable

Dry electrode O

44 O O X O 3 Vertical shoulder flexion/elbow
extension/flexion

Rigid Gel electrode X

45 O O X O 2 Elbow extension/ flexion Rigid Gel electrode X
16 O O X X 2 Elbow extension/ flexion Rigid Gel electrode X
18 X O X X 3 Shoulder abduction/ Vertical shoulder

flexion
Rigid Gel electrode O

17 X X X X 2 Elbow extension/ flexion Rigid Gel electrode X

15 X X X X 2 Elbow extension/flexion No sensor No sensor No sensor
7 X X X O 1 Elbow flexion Rigid Gel electrode O
8 X X X O 1 Elbow flexion Rigid Gel electrode X
46 X X X O 2 Elbow extension/ flexion Rigid Gel electrode X
19 X X X O 1 Vertical shoulder flexion No sensor No sensor No sensor
6 X X X O 3 Vertical shoulder flexion/elbow

extension/ flexion
Rigid Gel electrode X

9 X X X O 2 Vertical shoulder flexion/elbow flexion Rigid Gel electrode X

14 X X X O 2 Shoulder abduction/ Elbow flexion Rigid Gel electrode O

11 X X X O 2 Vertical shoulder flexion/elbow flexion Rigid Gel electrode X

12 X X X O 2 Vertical shoulder flexion/elbow flexion Rigid Gel electrode X

13 X X X O 1 Shoulder abduction Rigid Gel electrode O

5 X X X X 1 Elbow flexion Rigid Gel electrode X

10 X X X X 3 Vertical shoulder flexion/elbow
extension/ flexion

Rigid Gel electrode X

4 X X X X 1 Elbow flexion No sensor No sensor No sensor
aIt means a system that integrates sensory feedback and human intention-predicting algorithms into exoskeletons.
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through EMG signals and wirelessly transmit the collected signals to a
Google cloud in real-time. When the human wearer intends to perform an
arbitrary joint movement by activating the associated upper-limb muscles,
the multi-channel sensors simultaneously send the EMG signals to the
cloud, which conducts the signal processing and the deep-learning algo-
rithm to predict the intended movement. Finally, the prediction output is
wirelessly transferred to the exoskeleton such that the robot assists the
planned action in real time. All these sequential processes occur within
550ms. The wearable exoskeleton system can support four types of upper-
limb movements in human strength augmentation: shoulder flexion,
shoulder extension, elbow flexion, and elbow extension (Fig.1), which are
crucial joint movements to perform everyday tasks in the real world. The
intelligent robotic system with cloud-based deep learning offers immediate
assistance to the user based on the onset of the specific muscle activation.
Theupper-limb exoskeleton integrates soft thin-film sensors and electronics
with soft pneumatic artificial muscles (PAMs), packaged as an all-in-one
wearable system to maximize user convenience and comfort.

Design and characterization of PAM and exoskeleton
Figure 2 delineates the first component of the intent-driven exoskeleton, the
PAM and exoskeleton frame, which augment human upper-limb strength
for supporting daily tasks. We employed soft pneumatics as a driving force
for the systemdue to its desirable characteristics suchas natural compliance,
low power consumption, lightweight, high force-to-weight ratio, simple
controllability, and inherently safe mechanism28–30. Hence, to deliver such
benefits of soft pneumatics, we designed PAM that operates just like human
muscles, as in Fig. 2a, which shows its contraction in the longitudinal
direction and generates force as PAM inflates, converting the compressed
air energy into mechanical motion. As shown from the exploded view of
PAM in Fig. 2b, the soft actuator inflates as the air is infused into its
elastomeric silicone bladder via the pneumatic tube, and the polyestermesh
sleeving serves to restrict the strain of PAM to a certain extent. Figure 2c
characterizes the relationship between force and contraction length of a

single PAMunit as the air pressure increases from 10 psi to 80 psi. Through
maximum strength testing, we found that forces above 900 N can cause the
PAM to fail in a controlled manner mechanically. At such high forces, the
silicone tubing is cut at the interface between the tubing and aluminum end
fittings, which results in the high-pressure air leak out. As a result, the
pressure range of the exoskeleton was set from 10 psi to 60 psi, and a 70 psi
pressure relief valve was integrated for additional safety. Since the
force–contractor profile retains an approximately linear relationship with
constant pressure, this relationship can provide the desired exoskeleton
assistance force for a given joint angle. It is reported that approximately
10–15% of the body weight is needed to lift the arm vertically, so it would
require 120 N for a person who weighs 80 kg to lift the arm31,32. The result
suggests that a single PAMcan produce 897 N at the pressure of 80 psi, for a
PAMwith a bladder length of 34 cm, owing to the high force-to-weight ratio
of soft pneumatics. A single PAM unit only weighs 104 g, and the exoske-
leton system utilizes three PAMs to assist different upper-extremity joint
movements. In addition, it demonstrates 87mm of displacement when a
pressure of 80 psi is applied to the PAM.

Figure 2d shows the exploded view of the exoskeleton and constituting
components. The exoskeletonwas constructed primarily out of carbonfiber
with machined aluminum connectors and stainless-steel bolts to be strong,
stiff, and, more importantly, lightweight (670 g) for the user’s comfort. The
exoskeleton attaches to the backpack with a super swivel ball joint, which
allows the exoskeleton to move naturally with the body. Carbon fiber will
weave telescoping tubing, and two telescoping collet sets constitute themain
vertical strut between the hip and shoulder joint and the strut between the
shoulder and elbow joints. This method allows for easy exoskeleton
adjustment to different subject body sizes (Fig. 2e). Quick adjustments can
be made to the hip-to-shoulder, shoulder-to-elbow, and elbow-to-wrist
lengths. However, creating a comfortable interface between the exoskeleton
and the user can still present fitment challenges. Nevertheless, by leveraging
3Dprinting for the upper and lower armmounts, both “one sizefits all,” and
personalized arm mounts can be easily developed and bolted to the

Fig. 1 | Overview of the system architecture fea-
turing an intelligent upper-limb exoskeleton with
embedded soft sensors and soft actuators. This
system uses cloud-based deep learning to predict
human intention for strength augmentation (four
different types). A user wears an array of wireless
soft EMG sensors on the skin to get sensory feed-
back. At the same time, the backpack contains three
soft pneumatic artificial muscles that operate just as
the human muscles contract/relax to translate the
generated force and displacement to the exoskele-
ton frame.
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exoskeleton. In this design, the armmounts are 3D printed as a flat pattern,
and hot water thermoformed ergonomically attached to the curved geo-
metry of the arm. An inline ball joint interfaces between the 3D-printed
upper arm mount and the carbon fiber tubing for additional arm mobility.
We place the PAMs inside the backpack, as in Supplementary Figure 1, such
that PAMs do not interfere with the wearer’s natural movements while
delivering the required augmentation force via cables asPAMscontract. The
backpack also contains compressor and solenoid valves that infuse or
remove air into/from each PAM unit rapidly, following the flow diagram
and power diagram in Supplementary Fig. 2 and Fig. 3, respectively. Figure
2f presents snapshots of the human subject wearing the integrated systemof
the exoskeleton and backpack. Also, a user wears four skin-like soft sensors
to have sensory feedback for the exoskeleton control. The integrated system,
which also consists of a battery, cables, a printed circuit board (PCB), and a
PAM frame, weighs only 4.7 kg, and the weight of each component is
tabulated in Supplementary Table 1. Themoderate load should be carryable
quickly, even forpeoplewithdeclined strength.Thebackpackdistributes the
load evenly across the shoulders and back, making it more stable and
comfortable to carry than other methods. The effect of wearing a backpack
with a load of up to 10% of body weight remains disputable. However,
althoughwearing the exoskeletondoes indeedadd extraweight to the user, a
largenumberof studies indicate that 10%of bodyweight should causeonly a
minor inconvenience to the body33–36. Supplementary Fig. 4 and Note 1
describehow10%ofbodyweight affects thehumanphysiological condition.
The electronics in the backpack enable wireless data acquisition from the
Android cloud. The device provides mechanical force for strength aug-
mentation by controlling the solenoid valves, as illustrated in Supplemen-
tary Fig. 5. In addition; the pressure sensormonitors eachPAM’s pressure in
real-time so the user can keep track of the input pressure with the portable
device. Supplementary Figure 6 exhibits the screenshot images of the cloud-

based GUI for motion training and informative purposes. The user can
recognize the real-time pressure information and manually control all the
PAMs bymoving the toggle bars in the GUI. Besides, the user can also vent
the PAMs when no assistance is needed. In this regard, the real-time
monitoring of pressure allows the facilemanipulation of PAMs via theGUI,
enabling easy manipulation of the strength augmentation process.

Characterization of soft wearable EMG sensors
To incorporate the sensory feedback into the intent-driven exoskeleton, we
developed an array of soft wearable sensors that can wirelessly monitor the
muscle activity signals with minimized motion artifacts and ultimate user
comfort. Figure 3a illustrates the assembled and exploded view of the soft
EMG sensor that mainly consists of stretchable gold nanomembrane elec-
trodes, a silicone-based adhesive patch, a flexible circuit, and a customized
magnet-chargeable battery that can be switched on and off. The soft sensor
developed herein can be attached to the skin surface just as a thin-film
adhesive patchdue to its extremely small form factor and lightweight nature,
as presented in Fig. 3b. Unlike the commercial sensor that uses the gel-type
rigid electrode, the soft and dry nanomembrane electrode does not cause
skin irritation even if it is used for a long-term37.We conducted the skin test
to validate by wearing the soft EMG sensor and the commercial sensor all
day (Supplementary Fig. 7).While the dry nanomembrane electrode in this
work did not cause skin irritation, the commercial gel-type electrode left a
skin rash due to the inflammatory reaction. In this study, all subjects were
asked to wear both sensor types for 12 h. Furthermore, the skin compat-
ibility of the soft sensor was assessed to ensure safety and comfort during
prolonged usage (Supplementary Fig. 8). The breathability of the same
materials was validated in several studies38,39 as demonstrated by vapor
transmission rate measurements. In addition to the inflammation-free
nature of the soft EMG sensor, the devicemakes conformal contact with the

Fig. 2 | Design and characterization of PAM and
exoskeleton. a Graphical illustration of the PAM in
the contracted and relaxed states. bExploded view of
the PAM showing all components. c Relationship
between force and contraction length as pressure
increases from 68.9 to 552 kPa. d Exploded view of
the exoskeleton frame, including multiple compo-
nents to cover the forearm and upper arm. Themain
frame is made of carbon fibers. e Photos of two
subjects (190 cm male and 157 cm female) wearing
the size-adjustable exoskeleton system to capture the
“one size fits all” design rationale. f Photos of a
human subject wearing the exoskeleton and soft
sensors. There are four sensors mounted on the skin
targeting the biceps, triceps, medial deltoid, and
latissimus dorsi.
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deformable skin surface. It thusminimizes themotion artifactmainly due to
the serpentine electrode design and compact, flexible wireless circuit. The
computational finite element analysis in Fig. 3c delineates the readily
deformable mechanics of the serpentine nanomembrane. The graphical
representation shows the von Mises stress distribution of the serpentine
electrode under 30% of strain. It suggests that the stress concentration at the
inner circle of the serpentine design enables the electrode to stretch under
strain40. The experimental study in Fig. 3d shows the stretchable mechanics
of the electrode, and the result indicates that the normalized resistance
remained stable with a slight gradual increase even after 300 stretching
cycles under 30% of strain. Besides the serpentine electrode, the flexible
circuit used in thiswork delivers steadywireless EMGdata after hundreds of
bending cycles despite the presence of the rigid microchips on the board, as

in Supplementary Figure 9. In this regard, the high stretchability of the
serpentine nanomembrane and flexibility of the circuit with a miniaturized
form factormake a synergistic contribution to the high skin-conformality of
the device as it makes intimate contact with the irregular geometry of the
various human body surfaces (Supplementary Fig. 10). Figure 3e depicts the
circuit design that enables real-time data acquisition of the EMG signals as
well as the wireless data transfer to the cloud, thereby eliminating the need
for complicated wiring during EMG monitoring. Despite the exceptional
strengths of the soft EMG sensor, for the device in this work to be widely
utilized in real-life studies, it should demonstrate comparable performance
to the commercial EMG sensor. Hence, during repeated elbow flexions, we
collected the EMG signals with the EMG sensor in this work and the
commercial sensor (BioRadio). Figure 3f explicitly captures a highly

Fig. 3 | Characterization of soft wearable EMG sensors. aGraphical illustration of
the soft wireless sensor package (left) and its exploded view (right), showing the
stretchable electrode43, adhesive patch, battery, and flexible circuits. b Top, bottom,
and side views of the low-profile ultrathin soft sensor, including amagnetic charging
port formultiple uses, a switch to turn the device on and off, and electrodes placed for
the muscle fiber direction. c Finite element analysis of the stretchable electrode,
estimating the mechanical stability upon stretching. The inset figure captures the
magnified view of the von Mises stress distribution, which is below the strain limit.

d Cyclic stretching test of the electrode on the adhesive patch. With 30% tensile
strain, the electrode has negligible resistance changes during 300 cycles. eGraphical
illustration of the wireless circuit that consists of an antenna, microprocessor, inertia
measurement unit (IMU), and EMGmeasuring chip. fComparison of EMG signals
from the soft sensor and a commercial sensor during intermittent elbow flexion.
g Signal-to-noise ratio of the EMG data measured in (f), showing similar mea-
surement quality.
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equivalent performance of our device because the EMG signals acquired by
both devices completely overlap. As Fig. 3g indicates, the soft sensor that is
much smaller and thinner than the rigid one, shows a signal-to-noise ratio
(SNR). The long-term reliability of the soft sensor was confirmed by mea-
suring signals for 6 h (Supplementary Fig. 11). The sensor’s reusability based
on soap cleaning over a week validated consistent performance (Supple-
mentary Fig. 12).

Control and motion classifications of upper-limb joint
movements
Figure 4a clarifies how the intent-driven exoskeleton operates based on the
flow chart, which comprises three sections: EMG sensing artificial skin,
cloud computing, andwearable robotic exoskeleton. It beginswith the onset
of muscle contraction during an arbitrary upper-limb movement by the
user. Next, themulti-channel sensors detect the EMG signals and wirelessly

transmit the data to the cloud, which conducts real-time signal processing
andmotion prediction. Signal processing segments raw EMG data into one
secondwith a 250-ms overlap and applies a bandpass filter before rectifying
the data. Afterward, the deep-learning model based on the convolutional
neural network (CNN) and long short-term memory (LSTM) predicts the
motion class, which is then wirelessly transmitted to the exoskeleton unit
(the detailed information about the deep-learningmodel is described in the
Methods section). Based on the predicted motion, the PAMs contract, and
the displacement produced byPAM is then translated to the exoskeleton via
cables such that the exoskeleton can assist the user’s intendedmovement in
real time. Utilizing cloud computing in our system enables advanced
machine learning models, such as CNNs and LSTMs, which demand
computational resources beyond the scope of local portable devices. This
strategy secures greater processing capabilities and scalability and ensures
uniform updates and consistent performance across different local devices.

Fig. 4 | Control andmotion classifications of upper-limb jointmovements. aFlow
chart capturing the processes of the intent-driven exoskeleton actuation for strength
augmentation, including soft sensor-based EMG sensing, cloud computing, and
actuation of soft pneumatics. b Photos of skin-mounted soft sensors on a subject.
There are four sensors on the skin to record EMG signals from muscles like the

biceps brachii, triceps brachii, medial deltoid, and latissimus dorsi. cProcessed EMG
signals measured from four muscles in (b) during intermittent muscle activations.
dWork logic flow of the upper-limb strength assistance based on sensory feedback,
exoskeleton, and deep-learning algorithm for real-time joint movement
classification.
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Moreover, it allows real-time data analysis and system adaptability to
evolving user patterns without hardware alterations. The centralized com-
putation also streamlines maintenance and supports the deployment of
immediate enhancements without physical intervention on the user’s end.
Figure 4b shows four soft EMG sensors attached to upper body muscles to
collect the muscle activities from the biceps, triceps, medial deltoid, and
latissimus dorsi since these muscles are responsible for target upper-limb
movements in thiswork. Figure 4c portrays the collectedEMGsignalswhen
the human subject advertently contracted the corresponding muscle. All
graphs show a substantially decreased amplitude of EMG signals during
rest, followed by explosive EMG activities during muscle contractions. In
this work, we use the onset signals of muscle activation to determine the
user’s intendedmovement and instantaneously assist the user’s movement.
We devised the logic flow as in Fig. 4d to classify and augment four different
upper-limbmovements in real time. Startingwith the ready state, the intent-
driven exoskeleton distinguishes whether the biceps or medial deltoid is
activated based on the EMG signals.When the soft EMG sensor detects the
onset signal of the biceps, the exoskeleton starts pumping the PAM that
augments elbow flexion. The user can pause or continue the movement
using the triceps muscle. Thus, if the user activates the triceps muscle, the
exoskeleton pauses and returns to the rest position by venting the biceps
PAM in the presence of additional triceps activation. We developed this
algorithm function because the user might intend to stopmoving or want a
partial movement instead of a full range of motion. In real-life situations,
people donot always use the full range ofmotions for everyday tasks or even
cease to move in the course of the movement. Otherwise, without triceps
intervention, the exoskeletonkeeps augmenting the elbowflexion.The same
pattern applies for shoulder flexion except that the antagonistic muscle is
latissimus dorsi. Therefore, the exoskeletonwill begin to pump the shoulder
PAMwhen the soft EMG sensor detects the onset EMG signal of themedial
deltoid. As with elbow flexion, the shoulder flexion ceases under the latis-
simusdorsi activation and returns to the rest position if additional activation
signals exist. Likewise, the exoskeleton continues shoulder flexion without
latissimusdorsimuscle intervention. Furthermore,we can also combine two
upper-limbmovements to perform amore complex activity. For example, if
the user pauses during elbow flexion by triceps activation and then activates
the medial deltoid muscle, the exoskeleton augments shoulder flexion, and
the same posture can be attained in the reversed order (see dashed arrows in
Fig. 4d). The combination of upper-limb joint movements makes the
exoskeleton much more functional because it allows multiple movements
that canbeutilized to conductdaily tasks. In addition, theGUIwedeveloped
in this work offers the cloud-user interface so that the user receives visual
information about the current status. It also allows the user to control each
PAMmanually. As illustrated in the first image, the GUI shows whether all
the soft EMG sensors and the PAM controlling circuit in the backpack are
connected to the cloud. The second image shows the interface during the
real-time motion classification, in which the user can see the augmented
motion and air pressure for eachPAM.The last screenshot depicts theEMG
monitoring during themotion training session.Here, the user can pause the
ongoing movement assistance of the exoskeleton robot in case of emer-
gency, and the individual PAM can be manually controlled simply by
moving the three dots on the GUI in the top right corner.

Deep-learningmodel examinationand integration into the intent-
driven robotic system
Figure 5a illustrates the deep learning architecture of eachmusclemodel
designed for the classification of muscle activation in our study. The
CNN+ LSTMmodel proposed in this work receives epoch-by-epoch 1-
second-long filtered EMG signals as inputs, which are then directed to
one of the four single models depending on the location of the attached
sensor. The individual models classify muscle activation, and their
outputs are aggregated to determine the necessary motion activation.
Supplementary Tables 2–5 elaborate on the details of the machine
learning layer employed for four muscle activation classifications. To
start with, we normalized the filtered EMG signals using the Standard

Scaler method to convert them to values ranging from 0 to 1. Then, we
employed the non-linear activation functions called Leaky Rectified
Linear Units (Leaky ReLU). To optimize the CNN architecture, we used
ADAM optimization with a learning rate of 0.0001 and utilized the
cross-entropy loss function to calculate the error. During optimization,
the batch size was set as 20, and a dropout deactivation rate of 0.3 was
utilized to avoid overfitting. Early stopping was also used to prevent
overfitting by randomly selecting 20% of the data from the training set
and using it as a validation set at the beginning of the optimization
phase. We conducted learning rate annealing with a factor of 5 once the
validation loss stopped improving and utilized two one-dimensional
convolutional layers in the CNN+ LSTM model along with four units
in the LSTM layers. A single convolutional cell (Conv_1D) includes two
convolutional layers, a layer of batch normalization, aMax pooling step
layer with a filter size of 4, and a Leaky ReLu function layer. After the
data was flattened, it was followed by fully connected layers and passed
through a softmax layer to compute the predicted three classes (rest,
onset, activation). Through the random selectionmethod, we optimized
hyper-parameters, and the training was stopped when two successive
decays occurred with no improvement in the network performance on
the validation set. We constructed the model architecture based on our
previous deep-learning models after major modifications to serve the
motion prediction scenario41,42. Figure 5b demonstrates real-time
upper-limb movement augmentation for four target motions enabled
by the intent-driven exoskeleton due to the deep-learning model
architecture discussed earlier. For all motions, if the user attempts to
perform an arbitrary target motion and activates the corresponding
muscle in charge, the exoskeleton detects the onset of the generated
EMG signals and instantaneously assists the user’s intended movement
right after the muscle activation. For instance, if the user at the rest
position tries to conduct elbow flexion, the cloud-based deep learning
algorithm classifies the motion, and the exoskeleton starts to assist the
elbow flexion in real-time, as inMotion 1 of the figure. ForMotion 2, the
human subject at the rest position activates the triceps muscle. The
embedded deep learning algorithm determines the intendedmovement
is the biceps extension, which is then assisted by the robot within a few
seconds milliseconds. The same applies to Motion 3 and 4, which deal
with joint shouldermovements. Hence, inMotion 3, when the wearer at
the rest position attempts to activate the medial deltoid, the exoskeleton
quickly captures the user’s intention and augments the shoulder flexion.
Lastly, the exoskeleton assists the shoulder extension when the user
activates the latissimus dorsi, as in Motion 4. Supplementary Movie 1
also shows the exoskeleton that assists all the upper-limbmovements in
a continuous real-time sequence along with the GUI screen. In brief, all
the user needs to do for strength assistance is to conduct any of the
trained upper-limb movements because the system is completely
intent-driven. Until now, no work has successfully delivered a fully
functional intent-driven prototype with total integration of sensory
feedback, strength augmentation, and a human intention predicting
algorithm in a way that assists four upper limbmovements based on the
user’s intention in real time. TheCNN+ LSTMmodel developed in this
work can classify muscle activation based on filtered EMG signals, and
we evaluated its performance using a confusion matrix. We obtained 50
sets of EMG data for each movement data from five human subjects for
the model architecture. We used 80% of the obtained EMG data for
training and the other 20% of data to construct and validate the deep-
learning model. As depicted in Fig. 5c, the model achieved a high test
accuracy of 95.38% for biceps/triceps muscle activation classification
and 97.01% for medial deltoid/latissimus dorsi muscle activation clas-
sification. This work’s high accuracy (96.2%, on average) corroborates
the model’s reliability. It suggests that the exoskeleton assists joint
movement as intended with minimized errors. The cloud returns
motion classes with a 200–250 ms response rate to the tablet for exos-
keleton driver actuation. Considering the 100-ms delay for PAM
actuation and the 200-ms delay in the EMG data windows, the overall
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Fig. 5 | Deep-learningmodel examination and integration into the intent-driven
robotic system. aModel architecture of the cloud-based deep-learning algorithm.
bDemonstration of four augmentedmotions in real-time in sequential order, which
includes elbow flexion, elbow extension, shoulder flexion, and shoulder extension.

c Confusion matrices showing the model classification accuracy of 95.38% and
97.01% for biceps/triceps (left) and medial deltoid/latissimus dorsi (right),
respectively.
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time for movement assistance is 500–550 ms, which is fast enough to
support the jointmovement.We expect that the deep-learningmodel in
this work can also be directly implemented in developing advanced
prosthetics or assistive devices that can respond to changes in muscle
activation in real-time.

Demonstration of human strength augmentation in real-life
To examine the quantitative strength augmentation that the intent-driven
exoskeleton can provide, we compared the EMG signals when performing
the trained upper-extremity joint movements with and without exoskele-
tons, as in Fig. 6a–d. Figure 6a demonstrates the EMG signals generated as
the human subject repeated elbowflexionwith andwithout the exoskeleton.
The result in Fig. 6b substantiates substantially reduced muscle activities in
the presence of the exoskeleton assistance because the average EMG

activation (MVC normalized amplitude) of the biceps with the exoskeleton
was 3.9 times lower than that without the exoskeleton during elbow flexion.
Here, the human subject repeated the elbow flexion five times, and we
plotted mean values for both assisted and unassisted modes along with
standard deviations. Similarly, the EMG signals of the medial deltoid
exhibited a substantial difference when the exoskeleton augmented the
shoulder flexion (Fig. 6c). Figure 6d implies that the average MVC nor-
malized signal amplitude was 3.5 times lower with the assistance of the
exoskeleton robot, underling the high force and displacement generation
capability of the PAM to assist the upper-extremity movements. This
experimental study demonstrates that the exoskeleton could serve to reduce
the efforts to maneuver the upper-extremity activities significantly. In
addition to the strength assistance without any mechanical load, Fig. 6e
shows the EMG signal reduction even with a moderately heavy load. The

Fig. 6 | Demonstration of human strength aug-
mentation in real life. a Comparison of EMG sig-
nals between two cases with and without
exoskeleton assistance during repeated bicep flex-
ion. b Comparison of maximal voluntary contrac-
tion (MVC) normalized signals during bicep flexion.
This result shows 3.9-fold strength augmentation by
the exoskeleton for EMG activation and MVC sig-
nals, respectively. Mean and standard deviation
values are 9.36 ± 4.54 for unassisted and
2.43 ± 0.91 for assisted. c Comparison of EMG
signals between two cases with and without exos-
keleton assistance during shoulder flexion (medial
deltoid). d Comparison of MVC normalized signals
during shoulder flexion. The results indicate a 3.5-
fold strength augmentation by the exoskeleton for
EMG activation and MVC signals, respectively.
Mean and standard deviation values are
70.98 ± 8.52 for unassisted and 20.12 ± 4.23 for
assisted. e A subject holding a 6.8 kg weight with
exoskeleton assistance, reducing the required power
by 1.4–1.6 times. f Potential exoskeleton applica-
tions to assist daily activities, such as placing a box
on the shelf, drilling, reaching out for a doorknob,
and getting up from a chair with arm support.
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human subject was asked to conduct elbow flexion and shoulder flexion
while holding the 15 lb. dumbbell. The result shows that the exoskeleton
reduced the EMG activities by 1.4 fold and 1.6 fold for elbow flexion and
shoulderflexion, respectively (Supplementary Figure 13), indicating that the
exoskeleton can still help reduce muscular activities even when holding
considerably heavy objects. In addition to assisting dynamic joint move-
ments, the exoskeleton can help the human subject hold the weight against
gravity in a static manner for an extended period of time. For instance, in
SupplementaryMovie 2, the human subject was then asked to keep holding
the 6.8 kg weight with and without the assistance of the exoskeleton. While
the human subject, with the assistance, could lift the weight without much
difficulty for longer than 3min, the same human subject could not proceed
longer than one minute without the assistance of the exoskeleton. Figure 6f
demonstrates real-life examples of the exoskeleton being used to assist in
movement for completing daily tasks. Since the exoskeleton in thiswork can
support a variety of upper-limb joint movements, including the combined
movement of shoulder flexion and elbow flexion, it can assist in completing
several daily tasks such as placing a box in the shelf, drilling, reaching out for
a doorknob, and getting up from a chair with the arm support. Lastly, the
cloud-computingplatform in thisworkenables the systemtocollectmassive
training data frommultiple users who use other local deviceswith the global
data cloud server. It also allows us to update the deep-learning model
simultaneously to further enhance the classification accuracy. Table 1
captures the advantages and uniqueness of our exoskeleton compared to
prior work. In addition, Supplementary Table 6 also summarizes the
comprehensive comparison with other assistive robots for human upper
limbmovements that target a similar demographic or purpose. Future work
will include establishing the universal, generalizeddeep-learningmodel that
accurately predicts the intended movement of multiple human subjects
instead of just a single person, such that it can serve to augment the strength
of a large mass of human subjects, as it is illustrated in Supplementary Fig.
14. In this regard, the cloud-computing platform integrated with the soft
bioelectronics and human strength augmenting exoskeleton will lay a
fundamental groundwork for our future work and substantially contribute
to various next-generation human–robot interaction studies.

Discussion
In summary, this paper reports the total integration of a motion-predicting
cloud computing platform, a robotic exoskeleton for strength augmentation,
and soft bioelectronics-enabled sensory feedback todevelop an intent-driven
robotic exoskeleton that assists the human upper-extremity joint move-
ments. The PAMmodule can provide amaximumpower source of 895Nof
force while generating 87mm of displacement translated to the exoskeleton
frame. As a result, the multiple upper-extremity joint movements can be
augmented while retaining a lightweight structure. Soft bioelectronic sensor
systems enable sensory feedback by monitoring the EMG signals, which are
processed through cloud computing to predict the user’s intended move-
ment. The cloud-based deep-learning algorithm can successfully classify
four upper-extremity activities with a high test accuracy of 95.4% and 97.0%
for biceps/triceps and medial deltoid/latissimus dorsi movements, respec-
tively. The overall response time for the movement assistance, which
includes the EMG onset signal detection, cloud-based motion prediction,
and actuation, consumes only about 500–550ms.Moreover, owing to PAM
units’ high force and displacement generation capability, the intent-driven
exoskeleton assists the upper-extremity strength substantially as it reduces
the EMG activities by 6.9 and 3.4 times during elbow and shoulder flexion,
respectively. the exoskeleton can also assist the loadedmovements by 1.4–1.6
times for elbow and shoulder flexion, demonstrating that it can be used to
carryormovemoderately heavyobjects indaily life.Overall, thiswork shows
the first demonstration of a class that integrated all the cutting-edge tech-
nologies into an intent-driven, fully working robotic exoskeleton that can be
directly employed in real-life situations. In this context, we expect that the
intent-driven exoskeleton in this study will contribute significantly to next-
generation robotics technology and have a transformative impact on the
lifestyle of individuals with neuromotor disorders.

Methods
PAM fabrication and characterization
The actuator consists of a bladder made of ¾“ silicone tubing (51135K45,
McMaster), a 1 ¼“ polyester mesh expandable sleeving (2837K77,
McMaster), two custommachined 6061-T6 aluminum end fittings, two ¾“
stainless steel PEX-Bpinch clamps (HomeDepot) and a¼“push to connect
fitting (5779K494, McMaster). To characterize the PAM, the quasistatic
testing of the PAMs was performed with a Mark-10 ESM303 1.5 kN
motorized test stand with a Mark-10 Series 5 1 kN force meter (M5-200).
The test procedure involved a blocked-force test where the PAMswere held
at maximum length and then pressurized. This was followed by program-
ming the motorized test stand to perform a slow unloading and loading
ramp at 100mmmin−1, where the PAMwas allowed to contract until zero
force and then stretched back to maximum length. Force and length data
were recorded for 10–80 psi in steps of 10 psi.

Exoskeleton fabrication and integration with the PAMmodule
Tomake the exoskeleton firm, stiff, and lightweight, it was mostly made
of carbon fiber with machined aluminum connectors and stainless steel
fasteners. The super swivel ball joint (6960T23, McMaster) that con-
nects the exoskeleton to the backpack enables it to move naturally with
the body. Themain vertical strut between the hip and shoulder joint and
the strut between the shoulder and elbow joints were built using two
telescoping collet sets (Dragon Plate), 0.5” and 0.625” ID carbon fiber
twill weave telescoping tubing. This technique makes it simple to adapt
the exoskeleton to various subject body sizes since the lengths from the
hip to the shoulder, the shoulder to the elbow, and the elbow to the wrist
can all be quickly altered. Fitment problems may arise while attempting
to create a comfortable interaction between the exoskeleton and the
user. However, by utilizing 3D printing for the upper and lower arm
mounts, both universal and custom armmounts can be quickly created
and attached to the exoskeleton. The arm mounts in this design are
ergonomically attached to the curved geometry of the arm by being hot
water thermoformed after being 3D printed as a flat shape. An inline
ball joint (8412K12, McMaster) connects the carbon fiber tubing to the
3D-printed upper arm mount to increase arm movement. As shown in
Supplementary Fig. 15, 3 mm and 4 mm carbon fiber plates (generic 3 K
carbon fiber plate, Amazon) are used to construct the shoulder joint.
The plate carbon fiber is cut to the appropriate shape using a waterjet,
and the plates are sanded and epoxied together (Scotch-Weld™ DP-
2216, 3 M) to form the joint geometry. A similar manufacturing process
is used for the elbow joint. The interface between the telescoping tubing
and the joints is machined aluminum and epoxied into the telescoping
tubing. To provide smooth joint motions, a standard 605 bearing with
an aluminum press-fit housing is bolted into carbon fiber.

Soft sensor fabrication
The fabrication process of the proposed system involved three main
steps, including fabric substrate fabrication, circuits and encapsulation
fabrication, nanomembrane electrode fabrication, and overall assem-
bly. Fabric substrate fabrication involved mixing Silbione (A-4717,
Factor II Inc.) parts A and B in a 1:1 weight ratio for ten minutes. The
mixed uncured Silbione was then spin-coated on a polytetra-
fluoroethylene (PTFE) sheet at 1200 RPM for one minute to ensure
uniform adhesion layer thickness. The surface was covered with brown
fabric medical tape (9907 T, 3 M) and subjected to curing in an oven at
65 °C for 30 min. The PTFE sheet was then detached after the Silbione
was cured. In the fabrication of circuits and encapsulation, we used a
flexible PCB (fPCB) and mounted all electronic components on it with
a reflow solder process. Laser cutting was performed to remove
unnecessary areas to enhance the mechanical flexibility of the circuit.
For power supply and management, we utilized a lithium polymer
battery assembly with a slide switch and a circular magnetic recharging
port. A low-modulus elastomer (Ecoflex Gel, Smooth-On) was placed
underneath the integrated circuit to isolate the strain. The entire
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electronic system was encapsulated and soft-packaged with an addi-
tional elastomer (Ecoflex 00-30, Smooth-On), with only the switch and
charging port exposed. The nanomembrane electrode fabrication
process involved utilizing gold/chromium electrodes (thickness:
200 nm for Au and 25 nm for Cr), which were deposited by E-beam
evaporation and facile laser cutting. PDMS (Sylgard 184, Dow) was
employed as the bottom layer of the electrode fabrication due to its
proper adhesion and easy-release features. A polymer film (18-0.3 F,
CS Hyde) was laminated onto the cured PDMS surface, and gold was
deposited on the film using an electron-beam deposition process. The
film was then laser ablated to obtain a stretchable serpentine pattern of
the electrode. Non-functional materials besides the electrode patterns
were removed by delaminating them from the PDMS surface with a
tweezer. For the final assembly of the electrode system and fabric
substrate, gold electrodes were transferred to the fabric’s soft adhesive
side using water-soluble tape (ASW-35/R-9, Aquasol Corporation).
The electrode system-mounted fabric was then patterned using a laser
cutting process, and the soft-packaged electronic system was attached
to the fabric side of the fabric substrate by adding and curing a thin
layer of silicone.

Soft sensor characterization
The experimental setup for themechanical and electrical tests consisted of a
digital force gauge (M5-5, Mark-10) and a motorized test stand (ESM303,
Mark-10) for measuring mechanical properties, and an LCRmeter (Model
891, BK Precision) for measuring electrical resistance. For the cyclic
stretching test, the electrode systemwas stretched and relaxed verticallywith
a speed of 100mm/min for 300 cycles, while for the circuit bending test, the
systemwas repeatedly stretched and relaxedat the same speed for 400 cycles.
The EMG voltage signal was recorded using a custom Android software
application (Bio-monitor) during the test. To compare the skin impedance
of the electrode, the gold electrode was transferred to the brown tape with
the adhesive on it (1200 RPM spin-coated Silbione, Ecoflex 00-30, PDMS).
A control group experiment was also conducted with a gel electrode to
compare electrode-skin contact impedance. The test was conducted on the
biceps, and the electrode attached area was cleaned with a skin preparation
gel (NuPrep Skin Prep Gel, Weaver & Co.). The electrode-skin contact
impedance was measured by a skin impedance meter (Model 1089NP
Checktrode,UFI) connected to two electrodes on the skin. For the signal-to-
noise ratio (SNR) calculation of the data, the noise was assumed to be the
data measured before elbow flexion without any activity, and its amplitude
was computed. The SNR value was calculated using the following equation:
SNRdB ¼ 20log10ð

ASignal

ANoise
Þ Finally, the finite element analysis (FEA) study

focused on themechanical reliability of the two-layered electrode (gold and
polyimide) when applied for the yield of 30% strain. We used commercial
finite element analysis software (Abaqus, Dassault Systemes Simulia Cor-
poration, Johnston, RI) for simulation and plotted strain distributions with
the system on human skin. The simulation used the following material
properties: Young’s modulus (E) and Poisson’s ratio (v): E (PI) = 2.5MPa
and v (PI) = 0.34 for PI, E (au) = 78MPa, v (au) = 0.44 for Au.

Data processing and acquisition
All data processing was done with Python, and the data measured with our
system was first processed by a bandpass filter and notch filter. The cut-off
frequencies of the bandpass filter used were 10–250Hz for EMG. The stop
band frequency of the notch filter was set to 59–61Hz to remove the power
line noise at 60 Hz. During the first stage of EMG acquisition, an instru-
mentation amplifier (IA) was utilized to amplify the voltage differential
between each channel. To prevent electrode DC offset from causing IA
saturation, the IA gain was set appropriately. Moreover, the high common
mode rejection ratio (CMRR) of the IA reduced the commonmode voltage
required by the user. A negative feedback circuit utilizing a reference elec-
trode was employed to reduce common mode voltages, which is a popular
method for capturing biopotentials. The second stage employed a bandpass
filter (BPF) that consists of a low-pass filter and a high-pass filter. The

second-order high-pass filter eliminated lower-frequency noise caused by
electrode positioning, skin-electrode contact, and other movements. After
removing the DC component, the signal was amplified once more, and a
potentiometerwas used to supplybias voltage to the amplifiers, resulting in a
positive output voltage that was adjusted to match the analog-to-digital
converter’s input signal.

Data cloud computing interface and firmware development
The circuit used for wireless recording of non-invasive EMG signals on the
biceps brachii, triceps brachii, and medial deltoid muscles includes a
microcontroller (nRF52832, Nordic Semiconductor) and a Bluetooth
system-on-chip with an analog front-end (ADS1292, Texas Instruments).
The ADS1292 IC component and hardware structure are used to organize
the analog-to-digital converter (ADC) operation and digital data encoding
for Bluetooth buffer transfer. The digital signal with a 10-bit ADC is
transmitted with the ADC output’s decimal value representing the mini-
mum to maximum muscle movement range. The microcontroller
nRF52832wirelessly transmits data to themobile device (tablet, Galaxy Tab
S8, Samsung) via Bluetooth low energy (BLE). The device is powered by a 40
mAh rechargeable lithium–polymer battery, which has a battery life of
approximately 5.1 h after a full charge. The EMGdata frommultiplemuscle
locations are recorded and sent to Google Cloud using a custom Android
app on a Galaxy Tab S8 tablet. Cloud computing is used for real-time
motion applications due to computing power and processing limitations.
The cloud software architecture includes amobile application that connects
captured sensors to cloud data storage, where the machine learning algo-
rithm is hosted. The cloud software preprocesses the data and sends it to a
CNN+ LSTM algorithm that was developed using the Keres library in
Pythonwith other libraries formatrix operations. The cloud returnsmotion
classes with a 200–250ms response rate to the tablet in real time for exos-
keleton driver actuation. The exoskeleton driver uses a microcontroller,
internal and external pressure feedback system, and valve control GPIOs.
The pressure system provides pressure feedback to the entire system for
valve and compressor control. The valve control works withmultiple GPIO
of the microcontroller, with a response time of 50ms. The user’s onset and
specificmusclemotion signals, classified from the cloud, actuate the robotic
exoskeleton for user strength augmentation.

Deep-learning motion classifications
A CNN+ LSTM model was utilized in this study using TensorFlow in
Python on a laptop equipped with an Intel i7 processor (I7-9750H). The
1-second segmented EMG signals were divided into three parts for model
training: 60% for training, 20% for validation, and20% for testing. TheCNN
network parameter weight was updated during each training step based on
the model training validation accuracy. Hyperparameter values, such as
learning rate, kernel size, a filter of each convolutional layer, and the unit of
eachdropout, were selected using a randomsearchmethod. Themodelwith
the highest validation accuracywas chosen as the bestmodel. To evaluate its
performance, the test dataset was used to determine the prediction accuracy
of the bestmodel. The study usedfilteredEMGsignals thatwere normalized
using the standard scaler method and Leaky ReLU activation functions.
ADAMoptimization was used with a learning rate of 0.0001 and the cross-
entropy loss function. The batch size was set to 20, and a dropout deacti-
vation rate of 0.3 was utilized to prevent overfitting. Early stopping was also
employed with a validation set. The CNN+ LSTM model included two
one-dimensional convolutional layers, two convolutional cells, and fully
connected layers that predicted three classes. Supplementary Tables 2–5
contain more detailed information about the deep-learning model.

Strength augmentation demonstration
To evaluate the effectiveness of the exoskeleton, the EMG signals collected
during the experiment were analyzed. Specifically, the average EMG signal
amplitude was calculated to quantify the level of muscle activation. The
comparison of average EMG signal amplitude between the two conditions
(with and without exoskeleton assistance) determined the strength
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augmentation provided by the exoskeleton. Additionally, the results were
compared between the two versions of the exoskeleton (with and without a
10 lb dumbbell) to evaluate the impact of the added weight on the effec-
tiveness of the exoskeleton.

Human subject study
The study involved multiple volunteers aged 18 or older, and the study was
conducted by following the approved Institutional Review Board protocol
(No. H21214) at the Georgia Institute of Technology. Before the in vivo
study, all subjects agreed to the study procedures and provided signed
consent forms.

Data availability
The data that support the findings of this study are available in the Sup-
plementary Information of this article.
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