
ARTICLE OPEN

Intrinsically stretchable light-emitting drawing displays
Jiaxue Zhang1,2,3, Qianying Lu1,2,3, Ming Wu4, Yuping Sun1,2,3, Shaolei Wang1,2,3, Xiaoliang Wang4✉, Ming-Hui Lu1,2✉ and
Desheng Kong 1,2,3✉

Stretchable displays that combine light-emitting capabilities with mechanical compliance are essential building blocks of next-
generation wearable electronics. However, their widespread applications are currently limited by complex device architecture,
limited pixel density, and immature fabrication processes. In this study, we present the device design and material developments of
intrinsically stretchable light-emitting drawing displays that can show arbitrary hand-drawing features. The alternating-current
electroluminescent display uses a simplified architecture comprising coplanar interdigitated liquid metal electrodes, an
electroluminescent layer, and a dielectric encapsulation layer. Ink patterns on the device are coupled with the interdigitated
electrodes under alternating voltage stimulations, generating localized electric fields for bright emissions. Various inks are prepared
for painting, stamping, and stencil printing. Arbitrary luminous features on the devices can be either long-lasting or transient in
characteristics. These skin-like devices are made entirely of compliant materials that can withstand bending, twisting, and
stretching manipulations. Due to the excellent mechanical deformability, the drawing displays can be conformally laminated on the
skin as body-integrated optoelectronic communication devices for graphic information.
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INTRODUCTION
Stretchable electronics can be a game changer for next-
generation wearables. Conformal integration with the human
body is made possible through the stable operation of skin-like
devices under bent, twisted, and stretched conditions1–7. Soft and
deformable light-emitting devices are particularly appealing for
emerging applications, such as skin-like lighting8, wearable
sensors9–11, soft robotics12,13, and fashion designs14,15. There are
two main design strategies for stretchable light-emitting devices.
A straightforward strain engineering approach develops exten-
sible configurations based on conventional optoelectronic materi-
als, including origami/kirigami architectures16,17, interconnected
island-bridge structures18,19, and wrinkled surfaces20–22. However,
these mechanically structured devices often sacrifice visual effects
and skin-like deformability. Another approach exploits all com-
pliant materials to construct various intrinsically stretchable
devices, such as organic/perovskite light-emitting diodes23–25,
light-emitting electrochemical cells26,27, and alternating-current
electroluminescent (AC EL) devices12,28,29. In particular, the
stretchable AC EL device commonly has an emission composite
sandwiched between two planar electrodes. In the composite
layer, the phosphor microparticles are dispersed in a dielectric
elastomer matrix and are activated by alternating electric fields for
light emissions30,31. The luminance patterns of these sandwiched
AC EL devices are therefore defined by the overlapping areas of
the top and bottom electrodes. Their simplified architecture and
convenient assembly have already attracted intensive research
attention recently32–34. Despite excellent mechanical deformabil-
ity, intrinsically stretchable light-emitting devices often exhibit less
competitive optoelectronic properties than traditional rigid
devices. Interestingly, recent studies have shown promise of

emerging compliant electroluminescent materials to gradually
close the performance gaps35,36.
Stretchable light-emitting devices can easily illuminate static

patterns. To provide complex visual information, dynamically
refreshable displays have also been developed comprising
luminous pixels coupled with control circuits. Intuitively, individu-
ally addressable elements form the stretchable segmented display
suitable for predetermined contents like numbers and characters.
These devices are demonstrated in practical settings in terms of
deformable counters37, skin-attachable clocks38, and interactive
textiles39,40. Alternatively, the matrix display uses conductor grids
to control each luminous pixel27. The simplified architecture
facilitates the scalable fabrication of large-area displays for
arbitrary graphic patterns. In addition, active-driven matrix
displays have been recently demonstrated with stretchable thin-
film transistors that improve the pattern refresh rates and pixel
brightness41. In addition to monochromatic emissions, compliant
multicolor displays are also developed by combining different
emissive elements42,43. Despite the rapid progress, the pixel
density of stretchable displays still needs to catch up with their
rigid counterparts due to limited material performances and
immature fabrication techniques. Creating high-performing dis-
plays in deformable form factors remains a practical challenge.
In this study, we present the design and fabrication of

intrinsically stretchable light-emitting drawing displays. In a
simplified architecture, the device utilizes the AC EL operating
mechanism to achieve luminous features that resemble the ink
patterns and allow convenient delivery of complex graphic
information. The drawing display is made entirely of compliant
components to achieve skin-like deformability, including inter-
digitated liquid metal electrodes, an electroluminescent layer, and
a dielectric encapsulation layer. The ionically conductive ink is
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easily drawn into patterned top electrodes and capacitively
coupled with interdigitated liquid metal electrodes to activate
bright emissions. Different aqueous inks formulated with tailored
rheological properties can create arbitrary patterns through
painting, stamping, and stencil printing. The standard inks
produce transient luminous patterns due to water evaporation,
allowing for continuous drawing for real-time communications.
On the other hand, ink patterns with hygroscopic salts are suitable
for long-term display and can easily be erased for repetitive uses.
The stretchable light-emitting drawing displays are robust enough
to withstand up to 200% tensile strain and repetitive stretching.
Conformally laminating them on the skin demonstrates their
practical suitability as body-integrated displays for graphic
information. The device design and material developments
reported here may find a broad range of applications in
stretchable and wearable optoelectronic systems.

RESULTS AND DISCUSSIONS
Design and fabrication of stretchable light-emitting displays
Figure 1a schematically illustrates the stretchable light-emitting
drawing display that emits light from the painted patterns. The
drawing displays in green, blue, and orange colors are achieved
using different ZnS phosphors, as shown in Fig. 1b. In contrast to
conventional sandwich architecture, the AC EL device is com-
prised of interdigitated liquid metal electrodes, a light-emitting
layer, and a dielectric encapsulation layer, as shown in Fig. 1c. The
liquid metal used here is an eutectic alloy of gallium, indium, and
tin that features high electrical conductivity of 3.46 × 104 S cm−1, a
low melting point below room temperature, and negligible
toxicity44–46. The ionically conductive ink is an aqueous solution
containing inorganic salt and polymer, which is drawn into a
floating top electrode without direct connection to the electrical
circuit. An alternating voltage on the interdigitated electrodes is
capacitively coupled with the ink, activating the embedded ZnS
phosphor microparticles for bright emissions47. Discrete luminous
patterns are consequently generated on the device consistent
with the drawing paths. In Fig. 1d, a representative device displays
a hand-painted smiling-face pattern. The device exploits

compliant materials to achieve skin-like deformability, which is
sufficiently robust to withstand bending, twisting, and stretching
manipulations. In addition, the luminous pattern is easily cleaned
through wiping or rinsing for repeated uses, as shown in
Supplementary Video 1.
Figure 2a schematically reveals the fabrication process of the

stretchable light-emitting drawing display. The liquid metal film is
prepared using a method that has been reported previously48.
Initially, a Cr/Cu film is thermally evaporated onto the elastomer
substrate as the wetting layer. The liquid metal is cleaned with
dilute acid and spread on the metalized substrate. The extra liquid
metal is removed through high-rate rotation in a spin coater,
producing a smooth and uniform film with a thickness of ~1.6 μm.
Selective laser ablation allows subtractive patterning of the liquid
metal film into interdigitated electrodes. A subsequent spin-
casting step defines the light-emitting layer comprising a PVDF-
HFP elastomer matrix, ZnS phosphor microparticles, and BaTiO3

(BTO) nanoparticles. BTO nanoparticles are high-k ceramic fillers of
the composite to boost its dielectric properties and emission
intensity (see Supplementary Fig. 1). A thin PVDF-HFP layer is spin-
cast over the entire substrate to prevent premature dielectric
breakdown. Figure 2b reveals a representative liquid metal
electrode in an interdigitated configuration comprising ~600 μm
fingers and ~150 μm gaps. The smooth edges and uniform
spacings demonstrate excellent patterning quality through
selective laser ablation. The liquid metal electrodes exhibit high
electrical conductivity, excellent stretchability, and optical reflec-
tivity48. In Fig. 2c, a cross-sectional microscopy image of the device
reveals the bilayer structure of the electroluminescent composite,
consisting of a ~10 μm-thick light-emitting layer and a ~4 μm-
thick PVDF-HFP dielectric layer. As-prepared devices display
graphic patterns following the shape of the floating electrode.
An aqueous ink dissolved with inorganic salts defines the floating
electrode. A regular aqueous droplet exhibits a large contact angle
of 105° on the dielectric encapsulation, as shown in Fig. 2d. A
fluorinated surfactant is added to the ink formulation for an
effectively reduced contact angle of 54°. The improved wettability
facilitates the formation of continuous drawing patterns. In
addition, the aqueous ink exhibits high optical transmittance
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Fig. 1 Stretchable light-emitting drawing displays. a Schematic illustrating the operation of light-emitting drawing displays. b As-prepared
devices emitting light in green, blue, and orange, respectively. Scale bars: 0.5 mm. c Exploded view of the device architecture comprising
liquid metal interdigitated electrodes, a light-emitting layer, a dielectric encapsulation layer, and an ionically conductive ink electrode.
d Mechanical manipulation of a representative device with a smiling face luminous pattern by bending, twisting, and stretching.
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from visible to near infrared wavelengths, which is well suitable to
prepare the top electrode for excellent light extraction (see
Supplementary Fig. 2).

Light-emitting mechanism and characteristics
The as-prepared light-emitting drawing display illuminates arbitrary
and complex patterns from the overlapping area of the drawing ink
and the interdigitated electrodes. Figure 3a presents a representa-
tive device displaying a hand-drawing landscape sketch. The
corresponding optical microscopy image reveals stripe-like lumi-
nous patterns. Without the ink electrode, the applied voltage on the
interdigitated electrodes is expected to create lateral electric fields.
Here, the electric field distribution during an alternating voltage
cycle has been modified with the drawing ink patterns, as shown in
the schematic diagram in Fig. 3b. Anions and cations of the ionic
conductor are collected above the positive and negative finger
electrodes, leading to the formation of miniaturized capacitors47.
The alternating voltages at adjacent finger electrodes (A and B)
therefore generate vertical electric fields in opposite directions,
activating the embedded phosphor microparticles for light emis-
sions. Due to the voltage split between adjacent finger electrodes,
the effective voltage amplitude on these miniaturized capacitors is
approximately half of the applied alternating voltage, as shown in
Fig. 3c. Figure 3d shows luminance versus applied voltage amplitude
(20 kHz, square waveform) for a representative device that emits
green light. Since our device is powered by alternating electric
fields, the luminance follows the standard behavior of AC EL devices
expressed using the equation L= L0 exp(−β/V1/2), where L is the
luminance, V is the voltage amplitude, and L0 and β are device-
specific fitting parameters49. These drawing displays emit 11 cdm−2

at 60 V and 46 cdm−2 at 100 V when using deionized (DI) water-
based ink. If a LiCl-based ink is utilized, these devices can emit
26 cdm−2 at 60 V and 134 cdm−2 at 100 V, making it the preferred

ink choice due to its abundant ions with improved polarizability. In
addition, the emission of blue and orange drawing displays also
increases with the applied voltage amplitudes (see Supplementary
Fig. 3). However, the emission intensities are lower than that of the
green one due to the strong influence of the dopants on ZnS
emission bands and efficiencies50. In Fig. 3e, the emission intensity
is also affected by modulating the voltage frequency. The initial rise
with the frequency is attributed to the increased electron injections
that activate the luminescent centers51,52. However, the luminance
drops with further increased frequency due to injected electrons
trapped at donor levels53,54. The peak emission intensity is therefore
achieved at an intermediate frequency of ~20 kHz. Additionally, the
emission color has a blue shift by raising voltage frequencies, as
depicted in Supplementary Fig. 4a. The combined contribution of
blue and green electroluminescent emitters of ZnS/Cu phosphor
microparticles is responsible for this varying emission color
modulated with the excitation frequency55–57.

Mechanical stretchability
Light-emitting drawing displays are made entirely of compliant
material components to achieve skin-like deformability. In Fig.
4a, a representative device displaying an “ACEL” pattern is
subjected to uniaxial tensile deformations. The uniform emission
intensity suggests homogeneous electric fields under highly
deformed states. No interfacial delamination signature is
identified within 200% strain to confirm the robust construction
of the device. The emission has a stable color regardless of
tensile deformations, as confirmed with chromatic coordinates
in Supplementary Fig. 4b and peak wavelengths in Supplemen-
tary Fig. 4c. According to Supplementary Video 2, the dynamic
deformation process shows the elongation of the luminous
pattern along the stretching direction. In Fig. 4b, the normalized
luminance monotonically increases with the tensile strain. The
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Interdigitated electrodesSpin-coatingEncapsulationDrawing
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Fig. 2 Fabrication process and material components. a Schematic illustration of the step-by-step fabrication process. b Optical (top) and
optical microscopy (bottom) images of liquid metal interdigitated electrodes. Scale bar: 500 μm. c SEM image showing the device cross-
section with the light-emitting and dielectric layers. Scale bar: 5 μm. d Contact angle images of the pristine (top) and surfactant-incorporated
aqueous droplets on PVDF-HFP elastomers. Scale bars: 500 μm.
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luminous pattern area undergoes significant expansions and
reaches ~1.75 times its initial value at 200% strain (see
Supplementary Fig. 5). Due to the volume conservation, the
thickness of the electroluminescent composite reduces to ~57%,
resulting in a notable increase in capacitance12. Accordingly, the
electric field is enhanced during stretching to raise the emission
intensity12,58. In addition, the device is further evaluated through
fatigue tests involving 500 stretch-relaxation cycles to different

strains. In Fig. 4c, the normalized luminance at the relaxed state
is plotted against the cycle number. The final normalized
luminance is retained at ~80% for 50% strain cycles and ~70%
for 100% strain cycles. Stretchable light-emitting drawing
displays are sufficiently durable to withstand repetitive deforma-
tions. The variations of the relative luminance during the initial
10 stretch-relaxation cycles to 50% strain are shown in the inset
of Fig. 4c. The luminescent intensity shows notable increases
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Fig. 4 Mechanical stretchability of the light-emitting drawing display. a Optical images showing a device displaying an “ACEL” pattern
under uniaxial tensile deformations. Scale bars: 5 mm. b Normalized luminance as a function of the tensile strain. c Change in the luminance at
relaxed states over 500 stretch-relaxation cycles to 50% and 100% strains. Inset: Normalized luminance at relaxed and stretched (50% strain)
states for the initial 10 cycles. d Optical images of a stretchable light-emitting drawing display attached to the forearm.
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upon stretching due to enhanced electric fields by thinning the
electroluminescent composite. The emission then recovers to
the original value after releasing the strain. In Fig. 4d, the soft
and stretchy light-emitting drawing device is attached to the
skin as a wearable display. The device deforms conformally
along with the relaxation and tension of the muscle. These
results demonstrate considerable deformability and durability of
the light-emitting drawing display for practical applications.

Ink preparation and patterning approach
Ink patterning approaches depend on their flow properties. A
highly flowable aqueous solution generates droplets by squeezing
it out from a fine needle (Fig. 5a). Additional silica nanoparticles
result in the solid gel appearance under static conditions due to
the formation of a three-dimensional nanoparticle network59,60.
The metastable nanoparticle network is easily disrupted with
sheer stress, which enables the transition into the liquid state. The
behavior allows the ink to be stably extruded into continuous
filaments (Fig. 5a). Ink characteristics are measured with a stress-
controlled rheometer. In Supplementary Fig. 6, the aqueous
solution has a low viscosity of ~3 Pa.s independent of the shear
rate. The separated moduli curves confirm its liquid characteristic
suitable for painting (Fig. 5b). In comparison, the nanocomposite
ink has a high viscosity of ~300 Pa.s at 0.05 s−1 shear rate
(Supplementary Fig. 6). The viscosity exhibits three orders-of-
magnitude reduction by increasing the shear rate to 200 s−1. A
crossover point at ~25 Pa in moduli curves suggests the reversible
transition between solid and liquid states (Fig. 5b). The
nanocomposite ink behaves like a low-viscosity liquid during
mechanical manipulation with high shear stresses, followed by
rapid transformation back into solid gel states for long-term shape

retention61. The flow characteristics are well-suitable for stamping
and stencil printing.
Nanocomposite inks inherit the high optical transmittance of

aqueous solutions, which ensures excellent light extraction (see
Supplementary Fig. 7). In Fig. 5c, the aqueous solutions exhibit
high conductivity with abundant dissociated ions. The incorpo-
rated silica nanoparticles lead to minor conductivity changes due
to their phase separation from the electrolyte60,62. All inks show
high ionic conductivity above 10 S m−1. Due to their excellent
polarizability, light emission intensity is negligibly affected by the
ink choice. Luminous patterns are easily defined through painting,
stamping, and stencil printing (Fig. 5d). Light-emitting drawing
displays can show arbitrary and complex features for visual
information communication.
Ink salt choices also influence the device operation modes.

Water loss is a common issue for aqueous inks. In Fig. 6a, the
water loss ratio versus storage time is measured at 37 °C to
simulate the skin-attached conditions. The NaCl-based ink
continuously evaporates and completely dries out in 30 s. In
contrast, the LiCl-based ink stays hydrated with ~25% water loss.
The differences come from varying hydration degrees of the
dissolved salts. The strong bonding between Li+/Cl− and H2O
pairs generates the energy barrier to suppress water evapora-
tions63,64. Water retention capability is correlated with the stability
of the luminous pattern. Figure 6b reveals the distinctive
behaviors of the device with two inks. Corresponding changes
in the light-emitting area are illustrated in Fig. 6c. The luminous
pattern is intact without any area loss after 30min for LiCl-based
ink, suggesting the suitability for long-term visual information
delivery. Using NaCl-based inks, the luminous area rapidly
decreases and fully disappears over 20 s. In Fig. 6d, the transient
characteristics support continuous drawing of different luminous
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patterns. This operation mode is the enabler of an attractive
wearable display for real-time communications.

DISCUSSION
In conclusion, we have presented the design and material
developments of intrinsically stretchable light-emitting drawing
displays. The top floating electrode of ionically conductive inks is
capacitively coupled with the bottom interdigitated electrodes.
The ink pattern defines the luminous feature by modifying the
spatial electric field distributions. The inks are formulated with
suitable rheological properties for painting, stamping, and stencil
printing. Water evaporation of the ink pattern leads to transient
emissions for continuous painting, whereas hygroscopic salt
suppresses the drying process to enable long-term display. The
light-emitting drawing display exhibits high stretchability of up to
200% strain, stable operation under repetitive deformations, and
conformal attachment to the skin. These devices offer an
appealing operating mode of skin-attached wearable displays to
conveniently generate arbitrary and complex luminous patterns
for delivering visual information. Looking forward, these displays
can potentially function as information communication interfaces
on various deformable objects, such as fashioned clothing,
interactive lighting systems, and soft robots. Alternatively, the
drawing displays may be paired with deformable drivers and
batteries for fully untethered wearable systems to further expand
the application scopes.

METHODS
Materials preparation
All raw materials and chemical reagents were obtained commer-
cially, including hydrogenated styrene–ethylene–butylene–styrene
elastomer (SEBS, Tuftec H1221) from Asahi Kasei Corporation,
poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP, Daiel
G801) from Daikin Industries, Ltd., polyethylene oxide (PEO,
MW= 300,000) from Shanghai Aladdin Bio-Chem Technology Co.,
Ltd., BaTiO3 (BTO) nanoparticles from Shanghai Macklin Biochem-
ical Co., Ltd., fumed silica (AEROSIL 380) from Evonik Degussa
GmbH., lithium chloride (LiCl) and sodium chloride (NaCl) from
Saan Chemical Technology (Shanghai) Co., Ltd., and fluorinated
surfactant (FC-4430) from 3M Inc. ZnS phosphor microparticles
from Shanghai Keyan Phosphor Technology Co., Ltd. contained
different types and concentrations of transition-metal dopants (Cu
for green and blue; Mn for orange). All organic solvents were
provided by Shanghai Macklin Biochemical Co., Ltd. In a nitrogen
glovebox, the liquid metal was prepared by alloying high-purity Ga
(99.99%), In (99.99%), and Sn (99.999%) at 75 °C for 2 h according
to a weight ratio of 68.5:21.5:10. The high-k nanocomposite was
prepared by filling BTO nanoparticles into PVDF-HFP solution in
MIBK (methyl isobutyl ketone) following a solid ratio of 30 v/v %.
The electroluminescent composite was generated by incorporating
ZnS phosphor microparticles into the high-k nanocomposite,
achieving a weight ratio of 2:1 between the phosphor micro-
particles and the PVDF-HFP elastomer. All liquid mixtures were
homogenized in a YXQM planetary ball mill from Changsha MITR
Co., Ltd.
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Device fabrication
SEBS pellets were dissolved in toluene at 20 w/v % and then cast
onto an octadecyltrichlorosilane (OTS)-modified glass wafer.
After natural evaporation for ~24 h, stretchable substrates were
obtained by further heating at 90 °C for 2 h to thoroughly
remove the solvents. A Cr/Cu film (10 nm/100 nm) was
deposited using a ZHD400 thermal evaporator from Beijing
Technol Science Co., Ltd. The substrate holder was actively
circulated with the coolant during deposition to reduce the
thermal strain on the deposited film. Inside a 4 w/v %
hydrochloric acid solution, the liquid metal was drop cast and
naturally spread onto the metalized substrate. A uniform liquid
metal film of ~1.6 μm was obtained by rotating the sample at
2000 rpm for 60 s in a spin coater. The as-prepared liquid metal
film was subtractively patterned into interdigitated electrodes
with ~600 μm fingers and ~150 μm gaps by selective laser
ablation using a 1064 nm laser marking system (XM-FB30,
Xianming Optoelectronic Equipment Co., Ltd.). A single ablation
pass (laser power = 0.3 W, scan speed = 1000 mm s−1) can
completely remove the liquid metal film from undesired regions.
A ∼10 μm-thick electroluminescent composite layer and then
a ~4 μm-thick PVDF-HFP dielectric layer was spin cast on the
interdigitated electrodes. In a 2 w/v % aqueous PEO solution, the
aqueous solution ink for painting was prepared by dissolving
LiCl (10 mol L−1) or NaCl (4 mol L−1), respectively. The fluori-
nated surfactant was also added to the inks at 1 w/v ‰ to
improve their wettability to the device. Additional fumed silica
(10%, w/v) was thoroughly blended into the polymer solutions
using a planetary ball mill (YXQM, Changsha MITR Co., Ltd.),
generating aqueous nanocomposite inks suitable for stamping
and printing.

Characterization
Optical images and videos were acquired with a Fujifilm X-T10
camera. Microscopy images were captured by a digital optical
microscope (VHX-6000, Keyence). SEM images were acquired with
a Zeiss GeminiSEM 500 field emission scanning electron micro-
scope. Contact angles were measured using a goniometer (SDC-
200, Dongguan Sindin Precision Instrument Co., Ltd.). Rheological
properties were characterized with a stress-controlled rheometer
(RheoStress 600 HAAKE) using parallel-plate testing fixtures with a
fixed gap of 1 mm. A 60mm fixture was employed for aqueous
solutions, whereas a 20 mm fixture was used for aqueous
nanocomposites. The frequency was fixed at 1 Hz in dynamic
oscillatory shear measurements. The ionic conductivity was
measured using an LCR Meter (LCR-6300, GW Instek). The
capacitance and dielectric constants of elastomers were measured
with parallel-plate capacitor structures by the LCR Meter. Optical
transmittance/emission spectra were acquired by a fiber optical
spectrometer (PG2000-Pro, Ideaoptics) equipped with integrating
spheres (IS-30-6-R, Ideaoptics or IC50-T, Wyoptics). A function
generator (AFG-2500, GW Instek) was coupled with a high-voltage
amplifier (10/10B-HS, Trek) to power the devices. An oscilloscope
(DSOX2024A, Keysight) was employed to record the voltages. The
emission intensity and chromatic coordinates were measured
using a luminance and color meter (CS-150, Konica Minolta).
Stretching tests were carried out on a homemade motorized linear
translation stage.
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