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Skin-interfaced colorimetric microfluidic devices for on-
demand sweat analysis
Weiyi Liu 1, Huanyu Cheng 2✉ and Xiufeng Wang1✉

As sweat biomarker levels are continuously changing over metabolism and daily activities, pathological and physiological processes
can be dynamically analyzed by wearable devices. The colorimetric skin-interfaced microfluidic devices that do not have external
circuit modules exhibit enhanced deformability with a small footprint. However, it is difficult to achieve sampling over time and
self-feedback for closed-loop systems. This review summarizes recent advances in microfluidic valves for biofluid management and
chrono-sampling, as well as active triggers in microfluidics self-feedback. After enumerating the current limitations in temporal
resolution and reliability, we further point out a few potential feasible strategies for future developments.
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INTRODUCTION
The increasing demand for preventive health/fitness monitoring
has led to rapid developments of wearable devices that can detect
biophysical and biochemical signals over various activities1–12.
Different from invasive/inconvenient blood sampling and inter-
mittent sampling from urine, saliva13, tear14, or interstitial
fluid15,16, continuous in situ sweat analysis can be performed on
most of the body surface due to sweat generation by human
thermoregulation9,17 or local chemical stimulation18. Meanwhile, a
large number of biomarkers in sweat have been correlated with
the concentrations of circulating analyte in blood. Continuously
monitoring changes in the concentration of these sweat
biomarkers provides opportunities for early diagnosis of many
diseases19, including cystic fibrosis, diabetes, and gout based on
monitoring of chloride20,21, glucose22,23, uric acid and tyrosine24. In
addition, tracking sweat loss would provide personalized and
time-sensitive feedback to athletes, military personnel, and
physicians in clinical care for in-time water intake, which can
prevent dehydration or heat stroke25–27.
It is vital to collect, capture, and subsequently analyze (discrete)

sweat samples at well-defined time points across body positions,
leading to the efforts in the development of both electrochemical
and colorimetric sweat sensors5,28. With the bio-sensitive sub-
stances (e.g., enzymes, non-enzymatic nanomaterials, aptamers,
molecularly imprinted polymers) decorated on the working
electrode, the electrochemical biosensor can capture the target
analyte and generate an electrical signal that correlates with the
concentration. The sensor can either analyze the sweat with
onboard electronics on skin29 or collect sweat with a microfluidic
network for subsequent analysis30,31. With the circuit module32,
the detection results can be transmitted to and displayed on
terminal devices such as computers and mobile phones for
visualization33. Both enzymatic and nonenzymatic electrochemical
biosensors are widely explored34, with the former involving the
use of enzymes and the latter using non-enzymatic nanomaterials.
The enzymatic sensors often showcase high selectivity (e.g.,
enzymatic glucose sensor using glucose oxidase29,35), but they are
expensive, less stable over time, and are affected by environ-
mental conditions36–38. In contrast, nonenzymatic sensors can

exhibit high sensitivity, relatively good selectivity, and high
stability30,39. But they often show slow reaction kinetics, poor
selectivity compared to enzymatic sensors, and the need for
alkaline solutions40,41. Efforts to address these challenges have led
to the exploitation of (1) nanostructured electrodes for increased
contact area with the bioanalytes, and (2) a porous cavity
containing mild alkali solutions for sweat glucose analysis30.
Nevertheless, these electrochemical sweat devices in various
forms (e.g., wristband More accurate results in29, headband42, or
skin patch18) provide real-time and convenient readout32,43–45.
However, electronic modules inevitably increase the cost and
footprint of the resulting wearable devices and have compliance
issues for the elderly46.
Different from electrochemical sensors, colorimetric sweat

sensors are more compliant, low-cost, and easy to use due to
the elimination of electronics (used for data analysis and
transmission). Used as color indicators, the chromophore mole-
cules can change their electron state when interacting with target
biomarkers to result in the absorption of photons with different
wavelengths, visualized as color changes with intensity correlated
with the concentration28. The colorimetric assays with dry
reagents added to the reaction chamber can detect a series of
biomarkers, including metabolites, electrolytes, and micronutri-
ents. For instance, the generated H2O2 form glucose oxidation
changes colorless o-dianisidine into red-colored oxidized o-
dianisidine, which can detect glucose in range from 0.1 to
0.5 mM with a limit of detection (LoD) of 0.03 mM47. Similarly, the
increase in the lactate concentration from 0 to 30mM oxidizes
4-aminoantipyrine to change the color from yellow to purple with
LoD of 1.58 mM48. The chloride ions (Cl-) reacts with silver
chloranilate to produce a color response from white to purple in
proportional to Cl- concentrate from 0 to 120mM with LoD of
10mM21, whereas calcium ions (Ca2+, 0–15 mM) reacts with
o-cresolphthalein complexone (o-CPC) to yield a violet-colored
complex (LoD of 2 mM)49. The detection of vitamin C relies on the
reduction of ferric ion (Fe3+) to ferrous ion (Fe2+ during
interaction with vitamin C in the range from 0 to 100 μM to
generate a compound with a color change to pink (LoD of 2 μM)50.
Compared with point-of-care sweat analysis, the wearable
colorimetric sensors can provide continuous sweat collection
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and analysis over time for early disease diagnostics (e.g., elevated
sweat chloride for cystic fibrosis21 and increased cortisol levels
over prolonged time periods for obesity, depression, hyperten-
sion, and diabetes51). Traditional colorimetric detection relies on
the use of a smartphone or the standard colorimetric card for
direct comparison because of the difficulty to recognize a single
color change with the naked eye52. More accurate results in terms
of the exact degree of color reaction can be based on a preset
coordinate axis in the distance method53,54 or multicolor
colorimetric methods55. However, the most used method is
relying on the real-time image analysis of smartphones to provide
quantitative readout56,57 require the image to be well-framed and
uniformly lit20,58. For colorimetric assay measurement, the LAB
color space algorithm can be used to accurately extract small
differences in color59, which enhances reliability in practical
scenarios with uncontrolled lighting compared to assessments in
the RGB color space60. Both traditional computer vision and
advanced machine-learning algorithms can also be exploited to
assist image capture and feature quantification25,58,61,62. The
irreversible color change of the colorimetric sensor is often
associated with (1) single or limited-time use, (2) sweat mixing at
different time points, and (3) undesired sweat contamination and
evaporation to affect sweat analysis63. To address these
challenges, the colorimetric sensor is often integrated with
microfluidic devices, which also allows the detection of multiple
analytes in a single platform20. The microchannel connected with
a series of independent storage chambers allows sweat sampling
and analysis over time, while minimizing the issues from sweat
cross-contamination or evaporation. Although the chromogenic
reagent is not reversible to provide “continuous” monitoring64,65,
microfluidic networks can be used to separate newly secreted
from previous sweat into a series of chambers for temporary
storage or sequential detection66,67 even in intensive contact
sports25 and aquatic settings27. Therefore, the rational design of
microfluidic devices makes it possible to reliably monitor the
concentration variation of biomarkers in sweat with the colori-
metric method.
This review briefly outlines the recent developments of

colorimetric microfluidic sweat devices, with an emphasis on
chronometric sampling and electronics-free control or feedback
technologies (Fig. 1). The former mainly focuses on the structural

design of microfluidic valves, whereas the latter highlights self-
feedback reminders and active triggers for closed-loop sweat
analysis systems. After reviewing the current limitations, possible
directions for future developments are discussed.

Chrono sampling behavior in colorimetric microfluidic sweat
devices
In the electrochemical sweat sensors, the circuit module is often
used to first electronically program a microfluidic valving system
for active biofluid management32 and then generate electrical
signals based on the collected biofluids for wireless transmission
and visual readouts on a smartphone or electrochromic
display18,43.
Without electronic components, the colorimetric sweat sensor

can only rely on the natural sweat pressure from osmosis effects to
drive sweat through soft microfluidic structures for sweat
sampling. Therefore, it is vital to design valve structures in
microfluidics to actively manage biofluid flow in microfluidic
networks for chrono-sampling and analysis. The commonly used
designs include capillary bursting valves66–70, hydrophobic
valves71, and polymer valves72.
In the capillary bursting valve (Fig. 2a), the bursting pressure is

determined by the microchannel geometry and surface wettability
to control the flow of the fluid into different collection chambers69

in the programmed order67 (Fig. 2b) for offline analysis60. For
instance, reducing the dimension of a rectangular channel can
increase the bursting pressure according to the Young-Laplace
equation66. Secondly, the bursting valve enables the individual
analysis of multiple biomarkers to be performed in the same
microfluidic chip73. A series of bursting valves with different burst
pressures can also be used to accurately and routinely measure
the secretory fluidic pressures generated by eccrine sweat glands
at different parts of the body66. While the discontinuous flow of
sweat may generate bubbles, the bursting valve in each branch of
the connected micro-flow channel network can adjust the air
pressure in the channel and release the produced bubbles69. By
modulating the geometry of the microchannel with photolitho-
graphy, the Tesla valve (Fig. 2c) also accelerates the flow in the
forward direction and inhibits the flow in the reverse direction74,75,
resulting in one-direction flow (with high diodicity) for fluid
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controls. The driving force for the flow in the Tesla valve from the
pressure difference between the inlet and outlet56 allows the fluid
to flow from the high-pressure to low-pressure area (Fig. 2d)74.
The resulting sweat collection chip prevents backflow at the
entrance and restrains the flow to contact the outside at the exit.
Without any mechanical structures, the Tesla valve optimizes
stability and provides a reusable wearable microfluidic device.
Different from the capillary bursting (Tesla) valve that explores

geometric changes of the microchannel, the hydrophobic valve
relies on the modulation of the wettability in the inner surface of
the microchannel (Fig. 2e). The hydrophobic valve is often
prepared by exposing the other (except for valve) regions with
plasma to generate hydrophilicity72. However, hydrophobic
recovery occurs within hours in the ambient environment76.
Efforts to address this challenge include subsequent surface
modification of the plasma-treated PDMS with low-energy
polyvinylpyrrolidone (PVP), resulting in long-term stability (6
months)77. Introduced at the junction of the chamber and the
microfluidic channel, hydrophobic valves can result in the design
of one-opening chambers to significantly reduce evaporation and
contamination of sweat samples during collection and storage for
enhanced accuracy (Fig. 2f)71. The hydrophobic valve blocks the

advancing front of the liquid so it can spontaneously wick into the
hydrophilic chambers, followed by bursting the hydrophobic valve
to continue onto the next chamber for sequential collection and
chrono-sampling (Fig. 2g). The same mechanism could also be
applied to paper-based wearables78,79 by embedding the hydro-
phobic channel barrier (e.g., with wax printing62,80) in the
hydrophilic paper microfluidics to direct sweat flow. Because of
the capillary flow into the porous paper that causes saturation81

and its disposable nature, most paper-based microfluidic devices
are designed for one-time use only. Combined with a sweat
evaporator and pre-defined hydrophobic barriers to drive the
continuous sweat flow, the paper-microfluidic devices can allow
the flow of fresh sweat across the electrodes and avoid sweat
accumulation82,83. However, the durability of paper-based micro-
fluidic devices over long-term use still needs to be thoroughly
investigated.
Polymer valves are also simple in design with polymer locally

embedded in the microchannel to either expand/contract32,72 or
dissolve84 for reversible or irreversible control of the fluid flow
(Fig. 2h). For instance, the polymer valve triggered by a certain
amount of collected sweat swells upon hydration to close the inlet
passage and prevent backflow while allowing air ventilation
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(Fig. 2i)72. The dissolvable polymer valve mainly used in paper-
based microfluidics, on the other hand, gradually dissolves itself
upon sweat collection to open the valve made entirely of filter
paper after a certain time84. The other dissolvable barriers made of
sucrose85,86, trehalose87, or salts88 can only slow down the flow
(e.g., a delay time of 48 s for the sucrose barrier86) without
blocking the microfluidic channels, which are suitable for mixing
of reagents. The dissolvable polymer valves consisting of dried
polymers as a closing valve allow the liquid to flow in sequence to
different multisensory transducers for revealing fluctuations in the
analyte concentration.
Each type of these valves is associated with advantages and

limitations (Table 1) to provide unique application opportunities in
chronometric sampling and colorimetric readout. It is also possible
to combine different types of valves to leverage the synergy for
noninvasive and in situ monitoring of sweat. For instance, the
passive polymer valves that route the sweat into the desired
reservoirs for analysis and block the channel for preventing
backflow after triggering still need to be coupled with other valves
(capillary bursting valves or hydrophobic valves) for chrono-
sampling. The hydrophobic valves on the primary branches of the
microfluidics control the sweat to sequentially close the polymer
valves on the secondary branches for stable collection and
quantitative analysis (Fig. 2j)72.

Electronics-free sweat control or feedback technologies
The major challenges of colorimetric microfluidic devices include
(1) uncontrolled flow and mixture of sweat, (2) backflow of soluble
chemical regents from the reaction chamber to the skin, (3)
uncertainty in the precise analysis time due to varied sweat rate,
(4) difficulty to perform multi-step colorimetric assays, (5)
irreversible colorimetric reaction for continuous analysis, and (6)
lack of in-time self-feedback. A potential solution to some of the
above challenges could explore the combination of the sweat
analysis system with an electronically programmable microfluidic
valve that uses the individually addressable microheater to control
the sweat flow in the microchannels blocked by the thermos-
responsive hydrogel32. The active control of the valves allows
sweat analysis at user-defined times, independent of sweat flow
rate and external disturbances. The electrochemical sweat analysis
combined with a wireless flexible printed circuit board (FPCB) also
allows reversible sweat analysis and instant feedback. Although a
complete solution for electronics-free colorimetric microfluidic
devices is yet to be reported, the inspiration from the above
electrochemical sweat analysis system and many others could
open up opportunities for future developments.
The use of relatively high modulus polymers (e.g., polyurethane

resin with a Young’s modulus of 1.1 GPa) as relatively rigid but
deformable serpentine “skeletal” structures (Fig. 3a)89,90 in
microfluidics devices can minimize errors caused by microchannel
deformation or microcavity collapse91. The “skeletal” structures are
further surrounded by a low-modulus polymer (Esubstrate,1= 60
kPa, Esubstrate,2= 1 MPa) to provide an elastic restoring force and a
soft interface to the skin. To prevent the backflow of chemical
reagent (and sweat) for reduced risks of potential chemical harm

to the skin, the check valve located between the reaction chamber
and microchannels can be explored to direct the sweat flow along
the pre-defined direction (Fig. 3b)47.
To perform sample analysis at the user-defined time, the finger-

actuated pumps are introduced at the end of microchannels
(Fig. 3c)92. After collecting the pre-defined amount of sweat in the
inlet chamber with excess sweat expelled through the outlet,
pulling a thin tab can deform the cavity to generate air pressure to
suck the collected sweat from the inlet chamber into the sensing
chamber for quantitative analysis on-demand. Besides the analysis
on-demand, active triggers in microfluidic wearables can also help
reset the device that will saturate with sweat over time. The reset
feature can also initiate the collection of freshly secreted sweat to
avoid mixing with the previously collected sweat for improved
accuracy in biomarker analysis. Upon pulling the bottom of the
resettable skin-interfaced microfluidic device, sweat from the
collection channel would be sucked into the elastomeric suction
pump, and then ejected through the outlet once the strain is
released (Fig. 3d)93. Acting as a pressure pump, the manually
activated reset button can also reset the channel using a negative
or positive pressure mechanism (Fig. 3e)94. With the reset,
expelling the collected sweat from the device once full can
provide continuous, prolonged sweat analysis.
The irreversible property of the activated colorimetric assays

often renders the colorimetric microfluidic devices to be single-
use and disposable. One possible solution to this problem is to
replenish the colorimetric assay in a “sweatainer” that is further
integrated with an epidermal port interface to provide a long-term
and fluid-tight interface with the epidermis (Fig. 3f)95. The specific
aligned access point on the backside of the epidermal port
interface facilitates a rapid replacement of sweatainer within 30 s
for a minimized interruption during sweat collection.
The colorimetric microfluidic devices with self-feedback func-

tions to deliver time-sensitive sensations to the skin without
electronics can provide critical information such as the physiolo-
gical status or the device’s working status to the users. Therefore,
the resulting system can avoid frequent observations and reduce
device complexity without using electronics. As a representative
example, the sense of touch can provide chemesthesis self-
feedback based on an efflux pump that is preloaded with food-
grade chemicals (e.g., menthol or capsaicin)93. As the amount of
sweat reaches a preset threshold for sweat loss, the released
menthol or capsaicin causes skin irritation to actively remind the
user of water intake (Fig. 3g). Due to the high sensitivity of human
skin to temperature96, the thermal warning from endothermic/
exothermic chemical reactions triggered by sweat such as the
reaction between CaO and water is also promising. However,
chemesthesis can contaminate the skin and be erratic (depending
on different parts of the body and the sensitivity of different
individuals93), whereas thermal warning requires careful control of
temperature and duration to prevent burns97.

Conclusions and perspectives
Different from the electrochemical sweat sensors, the detection
of biomarkers in sweat with colorimetric sweat sensors relies

Table 1. Comparison of different microfluidic valves.

Valve Capillary bursting valve Tesla valve Hydrophobic valve Polymer valve

Mechanism Bursting pressure Diodicity Surface wettability Wettable materials

Elements Microchannel geometry and
surface wettability

Difference in flow
distribution

Blocking the advancing front
of the liquid

Expansion/contraction/
dissolution of polymer

Types of wearables Polymer Polymer Polymer/ paper/fabric Polymer/paper

Limitations High precision requirement, long preparation time Instability of surface
modification

Hysteresis, possible sample
contamination
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on the design of valve structures and colorimetric reagents.
The design of varying valves with different structures and
materials provides opportunities to control sweat flow,
chronological collection, and quantitative detection. Combined
with advanced sweat control and feedback technologies, the
electronic-free colorimetric microfluidic device starts to show
the potential for closed-loop devices. Combining colorimetric
reagents with different materials such as fabric42, paper22,98,
and hydrogel99,100 facilitates the colorimetric readout (e.g.,
accurate measurements of sweat rate due to measurable
swelling and color change in hydrogels100). Effectively fixing
colorimetric reagents in these well-designed substrate materi-
als also prevents color leaching, chemical diffusion, and
spatially nonuniform color responses (caused by the contin-
uous flow of sweat). Despite the significant advances, there are
still many grant challenges in the field of colorimetric sweat
sensors before they can achieve an improved level of comfort,

stable functions upon mechanical deformation, and reliable
manufacturing at a low cost for various applications.
The soft and deformable design of the wearables is needed to

reduce discomfort and iatrogenic injury, especially for those with
delicate skin such as infants101,102. However, the deformation of
the device during operation or other non-specific external factors
can affect the sweat flow behavior in microfluidic devices or even
accidentally trigger the feedback component. Although the
microfluidic devices with relatively rigid microchannels and soft
substrate can be explored to alleviate this issue, the fabrication
involves expensive and time-consuming processes (photolitho-
graphy and deep reactive ion etching with encapsulation over
16 h), as well as large material and modulus mismatch89,90. In
comparison, the digital light processing (DLP) technology could
provide rapid fabrication (<1 h) of 3D printed channels with
micron-scale feature sizes (<100 μm) and enhanced optical
transparency (Fig. 4a)95. Meanwhile, the grayscale in DLP allows
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the use of different intensities of light to fabricate the functionally
graded materials with a mechanical gradient up to three orders of
magnitude, mitigating the issue of abrupt modulus difference
(Fig. 4b)103. To mitigate the environmental concerns from
disposed devices, the commonly used silicone elastomer such as
PDMS and Ecoflex104 can be replaced by biodegradable materials.
For instance, a biodegradable microfluidic device consisting of
thermoplastic copolyester elastomers (TPCs) for the microfluidic

layer, a cellulose film and pressure-sensitive adhesive as a sealing
layer, and natural chemical reagents as colorimetric assays can be
fully degraded in the soil to organic compounds for plant growth
(Fig. 4c)60.
In addition, accurate sweat analysis with skin-interfaced

wearables needs to mitigate the contaminants secreted from
the skin (e.g., sebum, skin debris, dust). A paper-based sandwich-
structured pH sensor that uses common oil-control sheets can
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filter the sebum mixed in sweat (Fig. 4d)105. With ten micropillars
in the inlet for sweat filtration, the integrated microfluidic chip can
effectively filter out microspheres with a diameter of 20 μm and
skin debris (Fig. 4e)44. The micropillars can also be designed into a
wedge shape to form a polar array of interconnected sawtooth-
shaped capillary channels and allows the continuous flow in the
forward (or reverse) direction is facilitated (or inhibited) (Fig. 4f)106.
Moreover, anti-collapse needs to be considered when designing
the micropillars to effectively avoid the collapse of arbitrary-
shaped soft microchannels or reservoirs107.
Most of the colorimetric sweat sensors also suffer from a one-

time use of the reagents and non-continuous measurements,
despite the recent developments in recyclable colorimetric
reagents such as phosphotungstic acid (PTA) for alcohol detection
in saliva and sweat. As a colorless photochromic heteropoly acid,
PTA can be reduced by ethanol to produce an intense blue color
under ultraviolet radiation, which can be oxidized and returned to
a colorless state after exposure to air (Fig. 4g)108. Before the
advent of reversible colorimetric reagents, the use of replaceable
colorimetric devices can be an alternative. The design concept of a
replaceable porous encapsulating reaction cavity (Fig. 4h)30 may
be leveraged for the robust reagent chamber. It is also of high
interest to determine the chamber filling time for obtaining the
temporal variation of sweat biomarkers. The colorimetric micro-
fluidic device integrated with sweat-triggered flexible galvanic
cells can serve as sweat-activated “stopwatches” to record
temporal information associated with the collection of discrete
microliter volumes of sweat (Fig. 4i)109. The galvanic cells triggered
by sweat generate a time-dependent decayed voltage that is
recorded and obtained with a battery-free NFC module to serve as
a “stopwatch”. Although the finger-actuated pumps can provide
on-demand sweat analysis, the needed user engagement can be
challenging in practical use, so automatic trigger or self-feedback
is desirable.
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