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Real-time multiaxial strain mapping using computer vision
integrated optical sensors
Sunguk Hong 1, Vega Pradana Rachim 2, Jin-Hyeok Baek3 and Sung-Min Park 1,2,3,4,5✉

Soft strain sensors pose great potential for emerging human–machine interfaces. However, their real-world applications have been
limited due to challenges such as low reproducibility, susceptibility to environmental noise, and short lifetimes, which are attributed
to nanotechnologies, including microfabrication techniques. In this study, we present a computer vision-based optical strain (CVOS)
sensor system that integrates computer vision with streamlined microfabrication techniques to overcome these challenges and
facilitate real-time multiaxial strain mapping. The proposed CVOS sensor consists of an easily fabricated soft silicone substrate with
micro-markers and a tiny camera for highly sensitive marker detection. Real-time multiaxial strain mapping allows for measuring
and distinguishing complex multi-directional strain patterns, providing the proposed CVOS sensor with higher scalability. Our
results indicate that the proposed CVOS sensor is a promising approach for the development of highly sensitive and versatile
human–machine interfaces that can operate long-term under real-world conditions.
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INTRODUCTION
Soft sensors with high sensitivity, large working range, and
flexibility to overcome the limitations of traditional metallic strain
sensors, have sparked great interest in a broad array of
applications1–6. Soft strain sensors typically utilize changes in the
electrical resistance or capacitance induced by their shape
deformation. Various piezoresistive- and piezocapacitive-type
flexible strain sensors have been suggested using carbon
nanotubes (CNTs)7–12, nanoparticles13–15, nanowires16–18, thin
metal films19–21, conductive polymers22,23, or laser-induced
graphene (LIG) 24–27 as the conductive layer. Although these
sensors differ in their materials and fabrication methods, they
show large working ranges and high sensitivity compared with
conventional metallic sensors. However, despite the remarkable
performances, these sensors have limited applications in real
world because of their low reproducibility from complex micro/
nanofabrication processes, vulnerability to environmental noise,
and performance degradation by repeated use or over time. The
low reproducibility can be attributed to the randomness of the
materials and the sophisticated fabrication methods, which
adversely affect the yield rate and overall fabrication costs.
Nanomaterials contain randomness caused by their uneven spatial
and size distributions28–30. In addition, nano- and microfabrication
methods are extremely difficult to optimize because of the large
influence of human factors and external environmental factors
such as temperature, humidity, and vibration at such small
scales28,31. Meanwhile, environmental noise from the ambient
temperature and curvature during the operation adversely
influences the sensor signal13,32,33. For soft strain sensors, the
signal integrity can largely depend on the ambient temperature,
which can vary significantly under actual operating conditions.
Moreover, the deformation of a sensor can lead to a continuously
varying curvature. This changes the alignment of the nanomater-
ials, which can affect the gauge factor (GF) and linearity34–36.

Finally, the performance degradation can be attributed to the
damage or deformation of the conductive layer with repeated
stretching and compression of the sensor in the case of extremely
thin substrates19,37. Similarly, the performance of conductive
hydrogel-based sensors may be degraded by water loss over
time38,39. These remaining challenges must be addressed by the
next generation of flexible strain sensors for wider application
under real-world conditions.
Past attempts to overcome the above challenges have focused

on developing materials and fabrication methods. While those
efforts have been successful to some extent, there is some doubt
that nanotechnology alone is the optimal solution. Recently,
optical strain sensors28,40,41, which detect an optical response
instead of electrical response, have been proposed to address the
structural vulnerabilities of the conductive materials in existing
piezoresistive and piezocapacitive strain sensors. Optical strain
sensors are based on the concept of piezotransmittance, in which
light detectors are used to measure changes in the transmittance
of an elastomer layer with the varying thickness due to stretch.
Experimental results in those previous studies have demonstrated
high sensor-to-sensor uniformity and repeatability, but the
transmittance is affected by the direction or intensity of the
external light source. Thus, a sensing interface is needed to
facilitate the measurement of a stable response by automatically
correcting for the error factors of flexible surfaces.
Vision technologies have made remarkable progress, and their

advances have been accelerated by the emergence of artificial
intelligence (AI)42–44. We hypothesized that AI-based vision
technology can be integrated with optical strain sensors to
enhance their accuracy and automaticity and facilitate their
fabrication. Here, we report a computer-vision-based optical strain
(CVOS) sensor to address the challenges faced by current soft
sensor technologies: reproducibility, vulnerability, and repeatabil-
ity. The proposed sensor integrates three technologies: a
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nonmetal sensor, which can be simply fabricated by using laser
processing to apply regular micro-marker patterns on an Ecoflex
film; close-up imaging using an assembly of commercially
available parts to capture micro-markers; and advanced vision
using an automated response correction algorithm to correct
various error factors in the captured images such as the focusing
distance, hysteresis, and bending state. As the proposed sensor
stretches, the micro-markers move in the stretched direction.
Then, the optical system adaptively recognizes the change in the
micro-markers by object-tracking and sensor state detection.
Furthermore, the integration of vision technology and strain
sensors provides a significant advantage through the implemen-
tation of multiaxial strain mapping, enabling the swift determina-
tion of the magnitude and orientation of intricate strains applied
to the strain sensors. This represents a significant advantage over
previously reported strain sensors, as the direction of the strain
applied to the sensor can be thoroughly detected with greater
precision, thereby expanding the potential range of applications
by providing more comprehensive information.
Previously reported strain sensors were typically constrained to

measuring the degree of deformation, which limited their
scalability. In contrast, multiaxial strain mapping facilitates
simultaneous identification and quantification of deformations
occurring in diverse directions, providing scalability for extending
applications in real-world environments characterized by complex
strains. Our findings suggest that the proposed CVOS sensor can
meet the requirements of real-world applications (i.e., high
reproducibility, high sensitivity, long-term operability, and multi-
axial strain mapping) that conventional material-based sensors
cannot.

RESULTS
Design and working mechanism of the CVOS sensor
Figure 1 shows the design and working mechanism of the
proposed CVOS sensor. The CVOS sensor consists of two
subsystems (Fig. 1a): the sensing part comprising micro-markers
on an Ecoflex film, and the optical system to capture changes in
the marker positions due to sensor deformation. The sensing part
consists of a square-shaped white Ecoflex film with micro-markers.
The opaque white color of the Ecoflex film increases the micro-
marker detection rate by preventing unnecessary light reflection
and penetration. The symmetric square design (size: 14 mm ×
14mm) makes it easier to predict the response of the sensor to
loads such as a bending strain or biaxial strain. The micro-markers,
with average diameters of 528.11 ± 23.58 µm (mean ± standard
deviation (SD)), were measured from 32 samples, ensuring reliable
detection by the optical system. Furthermore, the distance
between micro-markers is minimized up to the operational
constraints of the laser marking machine, enabling the optical
system to recognize as many markers as possible at once
(670.23 ± 18.2 µm). The optical system comprises a tiny camera,
compact microscope lens, and light source (LED). The optical
distortion caused by changes in the light path is corrected by a
camera calibration process. The light source makes the surface of
the sensor visible to the camera, which allows the optical system
to operate even under low-light conditions. This configuration
enables the optical system to capture micro-markers at a
resolution of 640 × 480 pixels at very close distances (3–6mm).
Figure 1b presents the working mechanism of the CVOS sensor.
The relative pixel changes of the micro-markers in response to the
applied strain are measured by the optical system and are
processed in real time by the automated response correction
algorithm. The red dotted box represents the field of view (FOV) of
the camera. The algorithm tracks specific micro-markers in the
FOV and corrects the response based on the sensor state.
Figure 1c depicts the motion of micro-markers during the

occurrence of multiaxial strain. Through the analysis of the
movement of micro-markers, the CVOS sensor can detect the
direction and magnitude of complex strains.
Figure 1d displays images captured by the optical system and

the detected strain based on the micro-markers (green boxes).
Increasing the applied strain caused the center points of the
micro-markers (red dots) to move in the direction of the applied
strain because the FOV is fixed. This demonstrates that the
positions of the micro-markers could be used to detect the
applied strain. As shown in Fig. 1e, the predicted positions of the
micro-markers were almost the same as their measured positions
(mean absolute error = 4.8 pixels). These results prove that the
response of the CVOS sensor could be predicted by numerical
simulations.

Design of the real-time strain analysis algorithm
Figure 2a shows a flowchart of the custom-built automated
response correction algorithm. Current research on computer
vision has focused on deep learning-based image processing,
which has high computational costs. In our case, however, we
have a controlled and ideal optical environment (i.e., regular
pattern of objects, constant focal length, and fixed direction of
light source), which makes it possible to design a low-cost image
processing algorithm suitable for mobile processors. The algo-
rithm comprises a series of processes for micro-marker detection:
estimation of the current sensor state (curvature and loading/
unloading), tracking of micro-markers, machine learning-based
response correction, and multiaxial strain mapping. These
processes are executed sequentially, and a corrected response is
derived in real time according to the current sensor state.
The raw image of the micro-markers can include several sources

of noise, such as an unbalanced contrast due to the direction of
the light source, manufacturing error, and impurities on the
surface of the sensing part. Figure 2b shows the micro-marker
detection process, which includes several image filters to enhance
the image properties and reduce noise. The contour approxima-
tion method is applied to the filtered image to detect micro-
markers based on bounding boxes (green boxes). Figure 2c
presents visual information used to decide on the initial micro-
markers of interest (MOIs). The relative change in pixels of MOIs
represents the sensor response to the applied strain. In this case,
the initial MOIs were nine micro-markers located around the
center of the image in the no-strain state. The use of multiple
MOIs prevents a completely incorrect sensor response even if
several MOIs are tracked incorrectly. Figure 2d illustrates the
curvature state detection process by the analysis of Voronoi cell.
This process is thoroughly discussed in the paragraph related to
Fig. 4.
The CVOS sensor accurately predicts the micro-marker positions

outside the FOV by using a special object-tracking method taking
advantage of the controlled vision environment and uniform
micro-pattern (Supplementary Video 1). General object-tracking
methods focus on tracking several objects within the FOV.
Figure 3a, b suggests the limitations of this approach. One of
the limitations was the detection error at the image corners due to
the system’s limitations to capture the full size micro-marker or
changes in the intensity of the light source. Moreover, if the outer
MOIs are located outside or close to the FOV, they are no longer
tracked, and adjacent markers are tracked instead. Consequently,
the response of the outer MOIs has errors (Fig. 3c). We designed a
virtual MOI so that the positions of outer MOIs can be predicted
according to the positions of inner MOIs when the outer MOIs
exceed the threshold area at the image corners (Fig. 3d, e).
Figure 3f illustrates that the special object-tracking method using
the virtual MOI could estimate the response of outer MOIs outside
the FOV. These results suggest that the special object-tracking
method extends the working range of the sensor.
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The generation of a real-time strain map, comprising partial strain
direction and magnitude, can be achieved via micro-marker
matching. By using micro-markers as feature points, the complex
algorithms required to identify feature points between images can
be bypassed, thereby enabling real-time strain map generation.
Finally, we employed a partitioning method, dividing the image into
four quadrants and comparing the micro-marker in each quadrant
to determine the strain direction within that specific region.
The curvature state of the sensor is detected by using a Voronoi

diagram and is classified as linear or bending (Fig. 4a). Bending can
be further categorized into in-plane bending, where the sensor
bends within its own plane, and out-of-plane bending, where the
sensor bends in the vertical direction; however, our study primarily
focuses on out-of-plane bending due to its significant impact on
sensor response. The linear state is the most important considera-
tion for strain sensors and refers to when the strain sensor is
attached to a plane surface. The bending state is correlated to the
curvature radius and angle, and it refers to when the strain sensor is
attached to a curved surface. The micro-markers in the captured
image and Voronoi diagram show different shapes depending on

the curvature state (Supplementary Fig. 1). The Voronoi diagram
divides a plane into regions close to each original point45. In this
study, the center points of the MOIs were used as the original
points in the Voronoi diagram, which comprised Voronoi vertices
(orange points), edges (black line), and original points (blue points).
Our previous research showed that Voronoi cells, which are regions
surrounded by Voronoi edges in the Voronoi diagram, are suitable
indicators of the influence of micro-markers. This is because the
areas of Voronoi cells have high linearity (R2= 0.96) with the
applied strain compared with the areas of the MOI (R2= 0.39) or
MOI rectangles (R2= 0.94) (Supplementary Fig. 2). In addition, the
Voronoi diagram can reduce the computational cost of numerical
simulations because the convex and concave states are the same.
Figure 4b presents the average and standard deviation of the
Voronoi cell area depending on the curvature radius. The trend for
the areas of the Voronoi cells can be used to predict the curvature
state of the sensor. Figure 4c, d shows the finite element method
(FEM) results for simulations of the curvature state. The sensor
response in the bending state was calculated based on simulations
in the linear state with a high prediction accuracy. At 80% strain,

Fig. 1 Design and mechanism of CVOS sensor. a Design (Scale bar: 100 µm). b Strain detection mechanism. c Movement of the micro-marker
according to multiaxial strain direction. d Images of micro-markers captured by the optical system to detect the applied tensile strain.
e Comparison of micro-marker positions obtained via numerical simulations and measurements.
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the sensor responses in the linear and bending states differed by
up to 3%. These results strongly suggest that the response in the
bending state can be obtained by correcting the response in the
linear state.

Characteristics of the CVOS sensor
The various characteristics of the CVOS sensor were analyzed. The
response of piezoresistive or piezocapacitive strain sensors is
related to the change in resistance, whereas the response of the
CVOS sensor is related to the change in pixels. Therefore, the GF of
the CVOS sensor is defined as follows:

GF ¼
ΔMOI
MOI0

ε
; (1)

where MOI0 is the center coordinates of the initial MOI, ΔMOI is
the difference between the center coordinates of the initial MOI
and current MOI, and ε is the strain. Figure 5a shows that the CVOS
sensor had a high GF (503.4), low hysteresis (0.9%), and high
linearity (R2 > 0.99) at a large working range (ε= 0–81%). The high
linearity and low hysteresis indicate that the sensor response
could be predicted with sufficient accuracy. These remarkable

characteristics can be attributed to the automated response
correction algorithm and sensing part comprising a single
material. The CVOS sensor performance was affected by the
distance of the lens from the sensing part and the size of the
sensing part, and the pitch of the pattern (Supplementary Fig. 3,
Supplementary Table. 1, Supplementary Table. 2 and Supplemen-
tary Table. 3). In this test, the sensing part had a square shape
(14 mm × 14mm), the distance of the lens from the sensing part
was 5 mm and the pitch of the pattern was 700 µm. In addition,
the four samples showed almost similar performances with a
mean absolute percentage error (MAPE) of 3.1% (Fig. 5b). The
MAPE is defined as follows:

MAPE ¼ 100%
n

Xn
t¼1

1� ASt
St

����
����; (2)

where n is the number of data, St is the response of the sensor,
and ASt is the response of another sensor.
The high uniformity was attributed to the CVOS sensor being

fabricated by precise laser processing without complicated chemical
processes. Figure 5c shows the dynamic response of the CVOS sensor
to various strains in the working range. The sensor demonstrated

Fig. 2 Automated response correction algorithm of the CVOS sensor. a Schematic diagram. b Micro-marker detection process. c Decision
on initial MOIs. d Curvature state detection.
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good response and recovery properties. Figure 5d illustrates that the
CVOS sensor is capable of detecting extremely small strains, as small
as 0.19%, 0.25%, and 0.31%, which are close to the detection limit of
the most recently developed strain sensors (Supplementary Fig. 4
and Supplementary Table 4). Figure 5e shows the MOI positions of
the CVOS sensor according to the strain. All micro-markers (green
boxes) were clearly detected, and the MOIs (red boxes) moved in the
stretched direction. When the strain was over 60%, virtual MOIs (red
dotted boxes) were generated, which proves that the object-tracking
method worked as designed. Figure 5f displays the strain map of the
CVOS sensor as a function of multiaxial strain. The average strain
direction for each quadrant, corresponding well with the intended
direction in the experiment, was measured from 63 samples:
quadrant 1= 223.52 ± 26.55°, quadrant 2= 168.47 ± 20.23°, quadrant
3= 130.44 ± 35.86°, and quadrant 4= 226.41 ± 25.21° (mean ± SD).
Figure 5g shows the test results after 1000, 5000, and 10,000 cycles at
five loading–unloading curves in comparison with the initial cycle for
a strain range of 0–60%. The curves of each cycle were nearly
identical, which demonstrate the high reliability and durability of the
CVOS sensor. As a whole, the superior sensing performance, high
uniformity among sensors, and robustness of the CVOS sensor
collectively position it as a competitive option for human–machine
interfaces, compared to earlier strain sensors using diverse sensing
mechanisms and materials (Fig. 5h and Supplementary Table 4).

Sampling rate
The sampling rate of the automated response correction
algorithm was investigated according to the operating environ-
ment. Tests were run for 10 min. For the image processing, the
sampling rate was expressed in frames per second (FPS).
Supplementary Table. 5 indicates that the proposed algorithm
had a high sampling rate of FPS (83) when running on a PC but
only had a sampling rate of 15 FPS on an embedded board
(Raspberry PI 4). The CVOS sensor had a somewhat lower sampling
rate than piezoresistive or piezocapacitive strain sensors. However,

previous studies46,47 have shown that a sampling rate of 10–20 Hz
or FPS is sufficient for monitoring human motions. A higher
sampling rate can be realized by reducing the image size (e.g.,
from 640 × 480 pixels to 320 × 240 pixels). In this case, the
lowering the image resolution increased the sampling rate to 30
FPS, although the GF was low at 251.7. Furthermore, the sensor’s
limit of detection doubles to 0.38%. If an embedded board with a
high-performance CPU is available, the sampling rate can be
increased to a level that can monitor all human motions, including
skin-level motions. The embedded boards in this test used old
CPUs designed in 2012 (Raspberry PI zero2) and 2015
(Raspberry PI 4).

Experimental demonstration
The mechanical stability and repeatability of the CVOS sensor
guarantee its practical applicability (see Supplementary Video 2
and Supplementary Video 3). We built a real-time motion
monitoring system comprising the CVOS sensor and a body brace
to demonstrate its practical application. The optical system of the
CVOS sensor was packaged in a 3D-printed structure to maintain a
constant distance of 5 mm from the sensing part. The CVOS sensor
measured the bending of the elbow, wrist, and knee with high
repeatability and stability (Fig. 6a–c). In the case of wrist and knee
monitoring, the CVOS sensors were integrated into a strap-type
body brace, facilitating a strong coupling with the body, while in
the case of elbow monitoring, a non-strap-type body brace was
used. The strap-type body brace tightly fastens to specific parts of
the body using bands, which can introduce strain measurements
that deviate from the body’s original movements such as Fig. 6b, c
(i.e., a significant increase in y-axis strain compared to expecta-
tions). Given the widespread use of strap-type body braces in
practical rehabilitation and similar purposes, these findings offer
valuable insights for the integration of body braces and sensors
for practical applications. Figure 6d shows the response trends of
the CVOS sensor and inertial measurement unit (IMU) sensor for

Fig. 3 Object-tracking method. a Concept of inner MOIs [0,3,6] and outer MOIs [2,5,8]. b Limitation of general object-tracking methods. c Relative
pixel change of MOI groups with the general object-tracking method at 0–40% strain. d Concept of the threshold area at the image corners.
e Concept of virtual MOIs [2,5,8]. f Relative pixel change of MOI groups with the object-tracking method using virtual MOIs at 0–40% strain.
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the axis related to the rotation of the forearm (full IMU data are
shown in Supplementary Fig. 5). The trends of the CVOS and IMU
sensors were almost the same for forearm rotation motions (i.e.,
supination and pronation). The results confirmed that the CVOS
sensor could detect forearm rotation like the IMU sensor. This is
because the CVOS sensor can detect surface deformation with
high sensitivity and biaxial sensing performance. This is significant
because few studies have considered detecting body rotation
using a single flexible strain sensor. The random bias drift of the
IMU sensor, which builds up over time, affects its performance48,
whereas the performance of the CVOS sensor is not affected over
time. Therefore, the CVOS sensor may become a feasible
alternative to IMU sensors for long-term monitoring of body
motions, including rotation.
A strain sensor should be able to distinguish complex body

motions, which have various directions and angles, for real-world
applicability to rehabilitation. The real-time motion monitoring
system based on the CVOS sensor was tested on its ability to
detect elbow flexion and extension in two directions: moving
toward the chest (Case 1) and moving toward the humerus bone
in the arm (Case 2). The cases were distinguished by the
movement direction of the glenohumeral joint. Figure 6e presents
the monitoring results of the bending angle and movement
direction. The relative pixel change along the x-axis was almost
the same in both cases. However, the relative pixel change along
the y-axis varied greatly in Case 2 but did not change significantly
in Case 1. Therefore, the CVOS sensor could clearly classify the two
bending motions according to the movement direction. The IMU
sensor also clearly detected the body rotation and bending angle

in Case 2 (Supplementary Fig. 6). These results demonstrate the
versatility of the CVOS sensor and its potential for various real-
world applications such as in healthcare.
One of the most significant findings of this study is the

multiaxial strain mapping function of the CVOS sensor to detect
complex strains that are typically challenging to classify with
previously reported strain sensor systems (see Supplementary
Video 4). Figure 6f displays the results of monitoring different
shoulder movements, including flexion, extension, abduction,
internal rotation, external rotation, and adduction. Unlike pre-
viously reported strain sensors, which tend to focus solely on
strain magnitude, the CVOS sensor’s multiaxial strain mapping
function allows for greater precision and thorough strain direction
detection, thereby enabling the classification of various move-
ments. Although classifying movements based solely on the 2-axis
strain magnitude can be challenging due to the similarity of
responses between some movements, we successfully classified
all six movements using the strain direction of each quadrant
obtained from the multiaxial strain mapping. These results
suggest that strain direction, an often-overlooked feature in strain
sensing, can have a significant impact on the capture of complex
strain patterns in real-world applications, and the ability of the
CVOS sensor to rapidly capture strains makes it particularly well-
suited for this task.

DISCUSSION
The proposed CVOS sensor is based on integrating computer
vision with a simple sensor fabrication method. The sensor

Fig. 4 Curvature state of the CVOS sensor in a Voronoi diagram. a Cross-section, captured images, and Voronoi diagram used to define the
curvature state. b Average and standard deviation of the Voronoi cell area according to the radius of curvature. c FEM simulation results at a
radius of curvature of 40mm. d Relative pixel change with the radius of curvature.
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comprises an easily reproducible polymer-based sensing part with
micro-markers, an off-the-shelf optical system to detect the micro-
markers, and an automated response correction algorithm that
analyzes the detected micro-markers and automatically corrects
the response according to sensor state. The simple and concise
laser-based fabrication method improves reproducibility and
repeatability by eliminating the need for highly specialized
methods to fabricate a conductive layer. In addition, the CVOS
sensor has a much longer lifetime than current soft strain sensors
because it does not suffer performance degradation due to factors
such as water loss of a conductive hydrogel or degradation of a
conductive layer. Next, the micro-marker alignment facilitates
numerical prediction of their coordinates with high accuracy
(mean absolute error = 4.8 pixels in this study). Positions of the
micro-marker move according to the sensor deformation and can
be used intuitively for image processing and sensor state

detection. The optical system can capture close-up images with
microscale resolution using only a tiny camera, commercial lens,
and LED light source. The optical system and regular micro-marker
patterns provide a controlled optical environment, which mini-
mizes image processing costs. For example, we used a simple
object-tracking method based on the Euclidean distance. Further-
more, the automated response correction algorithm guarantees a
reliable biaxial response even with various error factors such as
the hysteresis and bending state. In addition to the aforemen-
tioned features, the proposed CVOS sensor offers the ability to
perform multiaxial strain mapping. The multiaxial strain mapping
function is useful to distinguish various movements, which was
difficult to achieve with existing strain sensor systems.
The proposed CVOS sensor demonstrated an detection

performance with a high GF (503.4), low hysteresis (0.9%), low
detection limit (0.19%), and high linearity (R2 > 0.99) over a large

Fig. 5 Characterization of the CVOS sensor. a Relative pixel change during a loading–unloading cycle at 0–81% strain. b Sensor-to-sensor
uniformity for four samples at 0–81% strain. c Response to strain in the range 0–77% strain. d Very small (0.19–0.31%) strain detection. e MOI
position according to strain using the object-tracking method with virtual MOIs. f Strain mapping according to multiaxial strain. g Comparison
between test results of the initial cycle and after 1000, 5000, and 10,000 cycles. h The comparison of the gauge factor and sensing range of the
strain sensors with those of the previously reported flexible strain sensors.
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Fig. 6 Body motion monitoring system with the CVOS sensor. a Elbow bending. b Knee bending according to the bending angle. c Wrist
bending. d Responses of the CVOS and IMU sensors to forearm rotation. e Detection of complex body motions based on movement direction
and angle. f Shoulder rotation motion detection via multiaxial strain mapping.
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working range (ε= 0–81%). In particular, the CVOS sensor
maintained its performance even after tests of more than 10,000
cycles, which demonstrates its readiness for real-world applica-
tions. In experiments, we integrated the CVOS sensor in a brace to
demonstrate its potential for monitoring body motions such as
the flexion and extension of the limbs. Furthermore, the proposed
sensor could measure complex strains, including shoulder move-
ment and rotational motions such as supination and pronation,
unlike previous works that only focused on measuring stretching
motions49. The multiaxial strain mapping function of the CVOS
system can quickly capture the intensity and direction of various
strains and can be used to comprehensively monitor the motions
of body parts such as the shoulder, elbow, wrist, knee, and
forearm. The capability of a single CVOS sensor to rapidly detect
the direction and rotation of complex strains offers a competitive
advantage over previous approaches, which typically require a
large-scale sensor array consisting of two or more sensors. The
performance and versatility of the CVOS sensor indicate that it can
serve as a disruptive solution to the many constraints of current
soft strain sensors. We project that the proposed CVOS sensor can
be combined with rehabilitative programs to enable feedback-
based treatment and provide a pathway for more effective
rehabilitation therapies.
Moreover, the applications of the CVOS sensor are not just

limited to rehabilitation devices, and it can be generalized to other
human–machine interface devices by customizing the design
parameters and algorithm. While our demonstration of the CVOS
sensor focused on sensing body motions, we envision the CVOS
sensor as a scalable sensing solution for various industrial
applications because design parameters such as the size of the
sensing part and micro-markers, image resolution, and focus
length are easily customizable depending on the purpose. The
current curvature state detection algorithm based on the Voronoi
diagram is focused on only out-of-plane bending, but it has the
potential to be extended to detect complex bending states
including in-plane bending. The AI architecture and image
processing are also generic and thus are easily modified. In this
study, we used a computationally light algorithm to facilitate
operation on a mobile processor, but computationally heavy
algorithms such as deep learning can be used if combined with a
high-performance computing device. Future research will involve
developing a softer device platform that minimizes the number of
rigid components for healthcare and industrial applications. This is
an exciting prospect not only for human–machine interfaces but
also for other industrial applications that require accurate motion
sensing. Our approach of combining AI and microfabrication
technology is the critical step toward achieving this ultimate goal.

METHODS
Sensing part
Ecoflex (Ecoflex 0030, Smooth-On Inc., Macungie, PA, USA)
prepolymer was prepared by mixing a base, curing agent, and
white silicon pigment (Silc Pig, Smooth-On Inc., Macungie, PA,
USA) at a weight ratio of 1:1:0.01. The prepolymer was then used
to fabricate a white Ecoflex film in a 3D-printed mold. The
thickness of white Ecoflex film was 500 µm. A CO2 laser-marking
machine (CM30D, Lasers Co. Ltd., Republic of Korea) was used to
fabricate the micro-markers on the white Ecoflex film. The
prepolymer was poured onto the 3D-printed mold and was then
cured at room temperature (25 °C) for >6 h. The laser-marking
machine scanned the white Ecoflex film along the programmed
scanning pattern comprising circular micro-markers and the edge
of the sensing part. The laser power, scanning speed, and
scanning loop were fixed at 15 W, 20mm/s, and 2 cycles,
respectively. With these parameters, the white Ecoflex film
suffered no significant thermal damage. The micro-markers were

made by burning the surface of the white Ecoflex film by a laser,
which generated impurities that would interfere with micro-
marker detection. To remove such impurities, we cleaned the
surface of the white Ecoflex film by repeatedly pasting and
peeling Scotch tape.

Optical system
The optical system of the CVOS sensor comprised a tiny camera
(IMX219 Auto Focus Camera Module, ArduCAM, China), compact
microscope lens (iMicro C, Shanghai Qingying E&T LLC, China),
and LED light source (LUW/G/B30243, HSUKWANG, China).

Calibration of the camera lens assembly
When an additional lens was attached to the camera, additional
calibration was required because suffered from pincushion
distortion (Supplementary Fig. 7). By capturing several images of
a circular grid pattern as a target from different viewpoints, the
relationship between the pattern coordinates according to a
global coordinate system and image coordinate system could be
analyzed. Then, calibration parameters were calculated by using
OpenCV, which is a Python library. Finally, the black boundary of
the image was removed, and it was resized.

Numerical simulations
The changes in micro-marker positions upon tensile deformation
were simulated by using ANSYS. The Ecoflex 0030 sensing part
was assumed a linear elastic material with Young’s modulus (E) of
126.23 kPa and Poisson’s ratio (v) of 0.49. Young’s modulus was
measured using a universal testing machine (UNITEST M1, TEST
ONE Co. Ltd., Republic of Korea), and Poisson’s ratio used a typical
value of Ecoflex 003050. As a boundary condition, one of the edges
was fixed, and the displacement of the opposite edge was
controlled according to the simulation condition (ε= 0%, 10%, …,
70%, 80%). The numerical simulation results were exported with
the micro-marker positions.

Real-time strain analysis algorithm
Micro-marker detection First, contrast-limited adaptive histogram
equalization was applied to the original image, which improves
the global contrast and enhances the edge definition of the micro-
markers by redistributing the contrast according to the histogram
of pixel intensities in an image51. Second, unsharp masking was
used to sharpen the edges of the micro-markers, and a Gaussian
blur filter was used to remove image noise. The image was
convolved with the following sharpen filter:

sharpen filter ¼
�1 �1 �1

�1 10 �1

�1 �1 �1

2
64

3
75 (3)

Third, the image boundaries were removed. The image had a
black boundary caused by the misalignment of the optical system
with the commercial lens and camera. We removed the black
boundary because this constituted noise from the bounding box
extraction process. Fourth, the image was binarized by using Otsu’s
method 52 to differentiate the micro-markers and Ecoflex substrate
into distinct colors. Finally, bounding boxes of the micro-markers
were extracted depending on the binarized image. If a bounding
box was too small or large, the bounding box was not extracted.

Deciding initial MOIs. In the no-strain state, the Euclidean
distance was calculated between the center coordinates of the
image and the center coordinates of each micro-marker:

Euclidean distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc � xmð Þ2 þ yc � ymð Þ2

q
; (4)
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where ðxc; ycÞ is the center coordinates of the image and ðxm; ymÞ
is the center coordinates of each micro-marker in Euclidean space.
Then, nine micro-markers found in the order of smallest Euclidean
distance were assigned individualized IDs. The selected micro-
markers were designated as MOIs, and their initial coordinates
were saved.

Object-tracking with virtual MOI generation. Objects were tracked
by comparing the center coordinates of the MOIs in the previous
frame and center coordinates of micro-markers in the current
frame using the Euclidean distance. Thereafter, micro-markers
with the smallest Euclidean distance became MOI of the current
frame. Moreover, if an outer MOI exceeded the set threshold, its
coordinates were predicted according to those of an inner MOI:

coordinates of outerMOIt ¼ coordinates of innerMOIt ´ coordinates of outerMOIt�1

coordinates of innerMOIt�1
;

(5)

where t is the current frame and t � 1 is the previous frame.

Detection of the loading–unloading state. The loading–unloading
state was calculated from the difference between the responses of
the previous and current frames. If the difference was positive, the
sensor was in a loading state; if it was negative, the sensor was in
an unloading state.

Detection of the curvature state based on the Voronoi diagram.
The original image was converted into the Voronoi diagram by
using the center points of the micro-markers. Only the inner
points of the Voronoi diagram were used to calculate the
curvature state, and the outer points were excluded. This is
because the outer points formed a virtual area with virtual points
that were not visible on the image. Finally, the average and
standard deviation values of the measured Voronoi cell areas were
used to calculate the degree of curvature. If the standard deviation
value exceeded 300, it was judged a bending state, and the
curvature radius was estimated according to the average value.
The trend line was used to estimate the curvature radius:

Curvature radius ¼ �62:21 ´ ln average valueð Þ þ 565:65 (6)

Fully connected network. A simple artificial neural network was
trained by using a dataset combining performance test data and
simulation data. The simulation data reflected the hysteresis of the
sensor based on the performance test data. The features of the
dataset comprised the curvature state, curvature radius,
loading–unloading state, and MOI positions of the sensor. The
model had two hidden layers consisting of 10 nodes each.
Tensorflow, which is a Python library, was used for model
development. The model was then made lightweight by using
Tensorflow Lite before it was mounted on the embedded board
(25.7 KB→ 1.73 KB).

Multiaxial strain mapping. First, corresponding points between
the initial and current positions of micro-markers were identified
using the FLANN (Fast Library for Approximate Nearest Neighbors
Matching) matcher algorithm. Second, the homography matrix
was calculated using the RANSAC (RANdom SAmple Consensus)
method based on the obtained corresponding points. Third, the
maps were initialized as empty arrays, and the computation
coordinates were defined based on a specified grid size. In this
research, a grid size of 63 (7 × 9) was employed. Finally, the grid
points were transformed using the homography matrix, and the
strain map and strain direction map were determined based on
the differences between the transformed points and the original
grid points. The strain map was computed as the Euclidean
distance between the transformed and original points, while the
strain direction map was derived using the inverse tangent.

Strain direction analysis. The pixels were partitioned into four
quadrants, and for each quadrant, the main strain directions were
determined using the weighted average method. In this method,
the importance of each pixel is increased proportional to the
magnitude of its strain.

Setup for the performance test
The mechanical properties of the proposed CVOS sensor were
measured by using a universal testing machine on 14mm ×
14mm, 17mm × 17mm, and 20mm × 20mm samples. The tiny
camera, compact microscope lens, and LED light source were
combined into a 3D-printed structure for mounting on the
universal testing machine. In this test, an embedded board was
used for real-time image processing and as a power supply for the
LED light source. The overall performance test setup is shown in
Supplementary Fig. 8.

Setup for the experimental demonstration
This experiment was approved by the institutional review board of
POSTECH (PIRB-2022-E042). The experiments involving human
subjects were performed with the full consent of the volunteers,
including the publication of identifiable images. All participants
provided written informed consent. The components of the
optical system were assembled into a specially designed 3D-
printed structure. The tiny camera was connected to an
embedded board (Raspberry Pi 4, Raspberry Pi Foundation, United
Kingdom) by using a cable. The LED light source was connected to
the embedded board with a bias voltage of 3 V. Finally, the optical
system and sensing part were integrated into the body brace. An
IMU sensor (WT901BLECL, WitMotion Shenzhen Co., Ltd, China)
was attached to the forearm to compare its detection perfor-
mance with that of the CVOS sensor (Supplementary Fig. 9).
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