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In-situ artificial retina with all-in-one reconfigurable
photomemristor networks
Yichen Cai1, Yizhou Jiang 1, Chenxu Sheng1, Zhiyong Wu1, Luqiu Chen2, Bobo Tian 2✉, Chungang Duan2, Shisheng Xiong1,
Yiqiang Zhan 1, Chunxiao Cong 1,3, Zhi-Jun Qiu1, Yajie Qin 1✉, Ran Liu1 and Laigui Hu 1✉

Despite that in-sensor processing has been proposed to remove the latency and energy consumption during the inevitable data
transfer between spatial-separated sensors, memories and processors in traditional computer vision, its hardware implementation
for artificial neural networks (ANNs) with all-in-one device arrays remains a challenge, especially for organic-based ANNs. With the
advantages of biocompatibility, low cost, easy fabrication and flexibility, here we implement a self-powered in-sensor ANN using
molecular ferroelectric (MF)-based photomemristor arrays. Tunable ferroelectric depolarization was intentionally introduced into
the ANN, which enables reconfigurable conductance and photoresponse. Treating photoresponsivity as synaptic weight, the MF-
based in-sensor ANN can operate analog convolutional computation, and successfully conduct perception and recognition of
white-light letter images in experiments, with low processing energy consumption. Handwritten Chinese digits are also recognized
and regressed by a large-scale array, demonstrating its scalability and potential for low-power processing and the applications in
MF-based in-situ artificial retina.
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INTRODUCTION
The emerging advanced communication technology has dramati-
cally propelled the evolution of the internet of things (IoT) era that
tens of billions of devices/sensors1–4 are involved in a vast data
network. For the outburst of redundant data, artificial intelligence (AI)
and computer vision (namely computers gaining information from
visual inputs) are introduced into IoT devices for data acquisition,
desired information extraction and automatic decision-making5–9.
However, the traditional Von Neumann architecture are extremely
costly in time and power10–12 for AI computing, especially artificial
neural networks (ANNs), because of the isolated memories and
processors (namely the Von Neumann bottleneck). With the
capability of memory and processing, ANN hardware based on
memristor arrays were recently implemented for in-memory
computing13–16. Intelligent computer vision or visual neural network
computing was also proposed by further introducing photosensing
functionality into in-memory computing17–29, realizing the bio-
inspired visual information processing, mimicking human eyes and
brains (Fig. 1a). With tunable photoresponsivity as ANN weight,
sensors themselves can constitute an ANN to sense and process
images synchronously and thus in a real-time manner18,20. Never-
theless, it is challenging to store weights locally into a sensor itself
and the frequent weight extracting from the have-no-alternative-but
external memory suffers additional latency and energy consump-
tion18,19,28. Several tunable photosensors for AI vision have been
reported, in which various techniques were introduced to improve
the speed18, power23,30, and programmability29 of the photosensors.
Most of these works characterize the photoresponse on an individual
device and construct array-based networks for AI vision by computer
simulation, instead of their hardware implementation.
To address these challenges on the way to in-sensor ANNs, a

qualified candidate should possess uniform array, scalability, and
considerable photoresponsivity in response to normal visible light.

Inorganic ferroelectric photovoltaic effect has been successfully
used for local sensor weighting20,31–33 to build sensors serving as
neurons integrating the functionalities of sensing, memory and
processing. However, heavy metals or toxicity, processing
technique issues with a high cost, and the intrinsic wide bandgap
of insulating ferroelectrics strongly limit their in-sensor applica-
tions. The emergent non-toxic and lead-free molecular ferro-
electrics (MFs)34 with high ferroelectricity could provide an
alternative choice for such ANNs. Some MFs even show
semiconducting properties which can sense visible light35, which
implies the feasibility of MF-based in-sensor ANNs with the
advantages of low cost, scalability, flexibility and biocompat-
ibility36–38, though the exploration for MF-based devices is still on
the early stage.
In this paper, we implement the hardware of self-powered in-

sensor ANNs using MF-based photomemristor arrays for in-situ
optical signal acquisition and recognition. A 5 × 5 array of the
photomemristors was fabricated as a reconfigurable artificial retina
(as shown in Fig. 1b, c), with the tunable conductivity and
photoresponse of a lateral MF/semiconductor heterojunction39. In
spite of the insulating feature of the MFs, photoresponsive
functionality for white light illumination is achieved simply by
attaching a molecular semiconductor layer onto the MF layers. The
functionalities of sense-memory-computation (i.e, light sensing,
nonvolatile optoelectronic memorization and convolution sum of
photocurrents from multiple devices) were integrated into one actual
device array. In experiments, the in-sensor ANN successfully
performed image classification with a 100% experimental accuracy.
Recognition and regression for hand-written Chinese characters were
also simulated using a larger scale optical and electrical hybrid in-
sensor ANN, exhibiting the capabilities of machine identification and
recalling of different optical inputs. The successful in-situ hardware
implementation of in-sensor ANNs using an MF-based
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photomemristor array pave an avenue for in-sensor computing
applications with flexibility, biocompatibility, low cost, and so on.

RESULTS AND DISCUSSION
Electrical characterization of the memristor array
Figure 2a is the device architecture of the interfacial type MF
photomemristors. Organic semiconductor layers (copper phthalo-
cyanine, CuPc) were thermally deposited onto various substrates

with interdigitated electrode arrays whose channel length is 2 μm.
MF Diisopropylammonium bromide (DIPAB)34,36,37,39 films were then
blade coated (Supplementary Fig. 1) on the CuPc films. Molecular
structures are given in Supplementary Fig. 2a. The thickness of CuPc
and DIPAB films is estimated to be 100 and 300 nm (see the cross-
sectional scanning electron microscope (SEM) image in Supplemen-
tary Fig. 2b), respectively. X-ray diffraction (XRD) patterns were
collected for the DIPAB films, which indicate a high crystallinity and
crystallographic preferential orientation with the in-plane

Fig. 1 Concept diagram and device arrays for in-sensor ANNs. a Comparison between biological vision and artificial vision processes. b The
experimental platform with a flexible sample connected to a flexible printed circuit (FPC). c Optical micrograph of a 5 × 5 photomemristor
array on a flexible substrate. The colorful patterns can be ascribed to optical interference due to the smooth film with a roughness of 2 nm.
The scale bar is 50 µm.

Fig. 2 Electrical characterizations of the MF/CuPc photomemristor array. a Diagram of the MF photomemristor device. b I-V curves
collected by continuous positive (red line) and negative (blue line) voltage sweeps. The inset shows a whole I-V curve with an ON/OFF ratio of
~10. Current dependence on (c) pulse amplitude Vp, e period T, and g pulse width W, from which PPRs were respectively extracted d, f, h.
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polarization c-axis (Supplementary Fig. 2c). The phase-voltage
hysteresis loop and switchable ferroelectric domain images collected
by piezoelectric force microscopy (PFM) (Supplementary Fig. 3)
further confirm the ferroelectricity of the DIPAB films with its c-axis
parallel to the coating direction. The high ferroelectricity of the
DIPAB films with very small coercive fields Ec and large spontaneous
polarization Ps can ensure a small operation voltage (<3 V) for the
lateral two-terminal devices, even for the devices with a wide
electrode gap on a micron scale.
Electrical characterizations for the devices with the coating

direction perpendicular to electrodes were performed (see the
arrow shown in Fig. 1c). The interfacial devices can be in-plane
polarized using bias voltages exceeding its coercive voltage (around
2 V for this device, see Supplementary Fig. 4). Symmetrical counter-
clockwise (both in the first and third quadrant) current-voltage (I-V)
hysteresis curves were observed from this DIPAB/CuPc interfacial
device (Fig. 2b). ON/OFF ratio of the hysteresis curve can be
estimated to be ~10 (see the inset of Fig. 2b). Continuous voltage
sweeps with a consistent polarity can gradually increase (decrease)
the conductivity of the MF/CuPc interfaces, exhibiting an analog
behavior (i.e., gradual resistive switching).
The analog switching behavior shows a high potential for

hardware-based multi-state neuromorphic systems40 due to the
voltage pulse-induced conductance changes, as experimentally
demonstrated in Fig. 2c–h. The amplitude, period and width (or
duration) of the voltage pulses can be defined as Vp, T, and W,
respectively. The stimulus threshold for the firing of neural signals can
be simulated by the coercive voltage Vc of the ferroelectric material.
As shown in Fig. 2c, d, when W and T are kept at 50ms and 200ms,
the current or conductance nearly keeps unchanged for the Vp less
than 2 V, even when a large number of pulses are applied. In contrast,
the conductance abruptly increases once the Vp values exceed the
threshold at which the polarization reversal of the MF layer
immediately occurs. At this moment, massive charges can be injected
for the screening of polarization, including the electron injection
through the p-type CuPc layer due to a magnified huge built-in
electric field39. Under thermal equilibrium, the stored screening
charges can contribute to the conductance of the MF/CuPc interface,
even after withdrawing the applied voltages. The compensation
degree of ferroelectric polarization can be tunable by controlling the
charge injection via applying voltage pulses. Both multiple inter-
mediate ferroelectric domains and the tunable incomplete compen-
sation ensure the tunable neuromorphic synaptic behavior for ANNs.
Paired-pulse ratio (PPR) for each data set was extracted, which

describes the weight changes of ANN neurons depending on the
probability of vesicular release in synapses. The parameters W and
Vp were fixed to 50ms and 4 V with a change of T from 60ms to 2 s,
as shown in Fig. 2e, f. It is noted that longer pulse periods lead to a
lower possibility of facilitation for the synaptic devices even with
constant stimuli. In Fig. 2g, h, T and Vp were fixed to 1 s and 4 V with
a change of W from 20ms to 0.5 s, respectively. A positive
correlation between pulse durations and synaptic facilitation can
be observed. Hence, continuous pulses lead to continuous changes
in conductance, similar to the excitatory and learning behavior of
synapses in response to repeated stimuli. The energy consumption
is estimated to be as low as 1.87 nJ for one operating event, which
can be further improved by optimizing the device architecture, such
as reducing the channel length and semiconductor layer thickness.
To investigate the flexibility of the MF-based photomemristor

array, conductivity variation with different bending radiuses was
also investigated under saturated positive and negative states
after poling using ±4-V bias voltages with a 5-s duration. As shown
in Supplementary Fig. 5, the array can maintain 70–80% of its
original performance before bending untill the bending radius
reaches 3 mm. It should be pointed out that better flexibility of the
MF-based photomemristor array can be expected if patterned
films are adopted due to the release of bending stress, which has
been demonstrated in our previous work38.

Optoelectronic characterization and synaptic behaviors
In addition to the tunable conductivity, optoelectronic properties of
this memristor are also expected to be programable due to the
semiconducting CuPc and ferroelectric polarization. The conductance
states obtained after poling with a positive voltage and a negative
voltage far exceeding its Vc are defined as ‘S+’ and ‘S-’, respectively.
The applied bias voltage for poling is 4 V with a pulse duration of
20 s. Then, the I-V curves under dark and white-light illumination
(using a white-light LED, 340–750 nm, 54.55 µW cm−2) conditions
were collected from −2 to 2 V for comparison (Fig. 3a). Under dark
condition, the interfacial device after poling shows a distinct
rectification behavior, which can be ascribed to the incomplete
compensation induced built-in electric fields. Note that, without
illuminations, the I-V curves under both polarization orientation
honestly cross the zero point. Under the white-light illumination,
significant changes for the I-V curves were observed with their short-
circuit current Isc about −0.28 nA (S+) and 0.31 nA (S-), respectively.
Furthermore, combined with the quantized writing of conductance
state by the voltage pulses above, multiple self-driven photocurrents
after each stimulus can be obtained (Fig. 3b). The writing voltage
pulses with an amplitude of 4 V can ensure a wide programmable
photoresponsivity ranging from −6 mA W−1 to 6mAW−1.
Under a series of pulses (4-V amplitude/100-ms width/1-s period),

a reversible, quasi-continuous and quasi-linear photoresponse was
obtained and shown in Fig. 3c. It demonstrates that the weights of
devices can be precisely tuned by pulse stimulation. For each
electric stimulus (i.e., a 4-V poling pulse) with a duration of 2 s
(Supplementary Fig. 6), the photocurrents were kept essentially
constant in seconds, which is able to endure conventional ANN
processing events. However, an obvious decline of the photocurrent
after a 10-h duration is observed. For a long-term ANN processing, it
is essential to inhibit depolarization effect by better charge
compensation. As the basis for convolution of light intensity and
weight (photoresponsivity), a light intensity-independent photo-
responsivity should be required, which asks for a linear relationship
between the photocurrent and light intensity. The dependence of
these photocurrents with light intensity was obtained and shown in
Fig. 3d, which demonstrates a good linearity at different polarization
degrees (i.e., from state I to IX). Therefore, this MF photomemristor is
applicable for in-sensor computing.
A schematic illustration of the operation mechanisms for the self-

driven photoresponse is depicted in Fig. 3e, which can be ascribed
to the net electric fields in the MF (Ef) with tunable multi-step
remanent polarization (Pr). As shown in Fig. 3e(i), e(ii), the injected
charges from the electrodes for screening polarization generate an
opposite field Esc (blue arrow) to the depolarization field Ed (red
arrow) caused by polarization bound charges. The thick screening
length in the CuPc leads to an incomplete compensation (i.e.,
Esc < Ed), which induces a partially screened Ed and thus a net built-in
field (i.e., Ef= Ed - Esc). The Ef naturally results in a potential difference
between the two sides of the MF layer.
To address the relations among the Ef, Pr and screening effect of

the injected charges, the semiconductor/ferroelectric/semicon-
ductor structure (i.e., a S/F/S physical model in Supplementary Fig.
7a) is employed for analyses41. After solving Maxwell’s equations,
the solution of Ef and Pr can be written as

Ef ¼ � 2αLD
2αLDε0εf þ l

Pr; (1)

where

α ¼ cosh L�l
2LD

� 1

ε0εs sinh L�l
2LD

; (2)

LD is the Debye length of CuPc and ε0 denotes vacuum
permittivity. εf and εs are the relative permittivity of the MF
(εf= 85) and CuPc (εs= 3.6), respectively. l is the thickness of the MF
in the model, while (L-l)/2 represents the thickness of compensation
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layer (see the theoretical analyses in Supplementary Fig. 7). Upon
light illumination, excitons in the CuPc could be separated by the
stray fields in the compensation layer with a significant band
bending (Fig. 3e(iii), e(iv)) and the transient net electric fields at the
vicinity of the MF dipoles42, as well as the Ef. Photogenerated
charges can be collected due to the potential difference. As

expected, the polarities of the resultant photocurrents are opposite
to the polarization orientation. As given in Supplementary Fig. 7b, Ef
and Pr are positively correlated, indicating a degeneration of the
screening effect with a lager Pr. Hence increased Pr caused by
multiple stimuli with constant polarities can generate a larger Ef in
the multi-layer structure and lead to a larger Iph (Fig. 3b), enabling

Fig. 3 Photoresponse of the MF/CuPc memristor array. a I-V curves of ‘S+’ (blue) and ‘S-’ (red) under light (lines) or dark (dots) state. Inset
gives the magnified curves with short-circuit photocurrent at 0 V. b Pulse number dependence of the current (lines) with corresponding
photoresponsivity (dots) after each pulse. c The photoresponsivity evolution under the stimuli with alternated 100 negative pulses and 100
positive pulses (4-V amplitude, 100-ms width and 1-s period). d The light intensity dependence of the multi-level photocurrents. The linear
fitting coefficient of determination (R2) linearity. e Schematic illustrations of the mechanism for the self-driven photoresponse.
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the capability for optoelectronic synaptic behavior. In addition, the
device with symmetric Au electrodes naturally exhibits a bipolar
performance (Fig. 3e(ii), e(iv)).

MF photomemristor array-based ANN for image recognition
With the capability of fundamental arithmetic calculation for in-
sensor ANNs (i.e., summing of multilevel photocurrent, Supple-
mentary Fig. 8), a single-layer ANN hardware of the MF

photomemristors was designed and fabricated, with a 5×5pat-
terned optical image (Fig. 4a, b) and a test platform (Fig. 1b and
Supplementary Fig. 9). In this ANN, weights of the synapses are
defined by different degrees of ferroelectric polarization in prior
(as given in Fig. 3b, c). To ensure the availability of the array, the
weight (photoresponsivity) mappings throughout all the devices
in both ‘S+’ and ‘S-’ states are collected under white-light
illumination. No defective unit can be observed (Supplementary
Fig. 10). Examination of photocurrent accumulation was

Fig. 4 An ANN hardware for image acquisition and recognition. Schematics of (a) the 5 × 5 single-layer ANN and (b) a mask for optical
image. c Iout versus the number of devices in the states of ‘S+’ or ‘S-’. d The photomemristor array with quantized weights (3 steps). e Iout under
five independent tests for each letters, i.e., 'F', 'D' and 'U'. f–h Design diagrams (left) of the ‘F’, ‘D’ and ‘U’ letter masks with their resultant image
(right). After writing weights to the 5×5 array, 3D images (bottom) of the short-circuit photocurrents from each device are collected, as well as
correpsonding Iout values.
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conducted by connecting one terminal of each device in the array
to a common node (the specific test circuit and procedure are
shown in Supplementary Fig. 11). The other terminal of each
device is for independent writing. During the collection of
photocurrent, the array is illuminated by white light illumination.
Figure 4c shows that output photocurrent Iout varies (from
−7.11 nA to 7.05 nA) with the number of written devices (i.e.,
poled devices). The horizontal coordinate of Fig. 4c indicates the
number of synapses under ‘S+’ and ‘S-’ states, with the rest
synapses at their original state. The linear relationship between
the photocurrent values and involved synapse numbers indicates
the capability of the array for convolution sum based on
Kirchhoff’s current law.
This ANN was then used to receive and recognize three letter

images ‘F’ ‘D’ and ‘U’ from letter-shaped masks (see Fig. 4b). Dataset
consisting of 5×5 pixel images for each letter was built in advance.
Random pixel absences and noise were then introduced to enlarge
the dataset to 100 samples per letter, enhancing the robustness for
recognition (Supplementary Figs. 12–14). A single-layer perceptron
with 25 input neurons and 1 output neuron (Fig. 4a) was trained
using this dataset. Output levels represent different recognition
results. The cost function, mean square error (MSE), during training
is shown in Supplementary Fig. 15a. After training, the weights were
quantized into multiple steps (levels) by minimizing the MSE
between the weights before and after quantization. Each step refers
to a degree of ferroelectric polarization. Also, recognition MSEs with
different quantization levels (all the weight distributions were
drawn in Supplementary Fig. 16) are given in Supplementary Fig.
15b. The results show that 3-step quantization is enough to present
a reasonable outcome. After writing the 3-step weights (as shown
in Fig. 4d) into the array, the optical letter images were casted to
obtain accumulated photocurrent (Iout). For repeatability, five
independent experiments for each letter were conducted, as
shown in Fig. 4e. All the data were written and read within seconds,
avoiding state variation from fatigue. Designed and practical
photomasks, as well as the corresponding photocurrent for each
pixel and Iout after weighting, are given in Fig. 4f–h.
The classification uniformity of the optical letters is evaluated

with the quotient (QUO) of between-class covariance and within-
class covariance, based on Fisher linear discrimination, as given in
below equation:

QUO ¼
PN

i¼1 mi μi � μð Þ2
PN

i¼1

Pmi
j¼1 xj;i � μi

� �2 ; (3)

where N is the number of classes, mi is the number of samples in
the ith class, xj,i is the jth sample in the ith class, μi is the mean
values of samples in the ith class, and μ is the mean values of all
samples. The value QUO ≈ 173 can be calculated with the data in
Fig. 4e, which shows a high classification uniformity here with the
experimental accuracy reaching 100%. It is worth noting that the
ANN itself operates in a short-circuit state with a zero processing
energy consumption (i.e., self-powered processing), implying the
potential of the MF photomemristor arrays for low-power in-
sensor neuromorphic computing.

Simulation of large-scale arrays for Chinese character
recognition and regression
To further exhibit the potential of the MF photomemristors for
artificial retina applications (Fig. 5a), hand-written Chinese character
recognition and regression by simulation were performed based on
a larger array. Figure 5b gives the neural network diagram,
including two cascaded recognition and regression parts, respec-
tively. Figure 5c depicts the principal schematic of the MF
photomemristor array. As a configurable artificial retina, the array
integrates the functions of sensing, memory, and computing. It was
designed to perceive and process optical patterns of hand-written

traditional Chinese characters of digits from 1 to 10 (see the
datasets in Supplementary Figs. 17 and 18). The array consisting of
48 × 36 pixels was proposed for perceiving optical patterns with the
same size, where each pixel acts as an input neuron. Figure 5c
shows a magnified view of the pixel <m, n> with 10 MF
photomemristors whose photoresponsivities represent 10 synaptic
weights. Hence, the array contains 17,280 devices with 48 row lines
and 360 column lines. Unlike the normal strategy with two
memristor devices connected in inverse-parallel for one synaptic
weight to realize negative weight values43, the photoresponsivity of
the proposed photomemristor can be pre-programmed into either
positive or negative value. Both the positive and negative synaptic
weight can be implemented with only one device, reducing the size
of whole systems by a factor of 50%. As shown in Fig. 3b, c this
photomemristor is a programmable two-terminal device, hence the
topology containing row and column lines throughout the entire
array could be realized without requiring any extra configuration
pin for individual devices18. This topology guarantees the possibility
of implementing an array shown in Fig. 5c on an even larger scale.
Figure 5d, e displays the acquisition procedure of the dataset

for the Chinese characters and the examples for confusion
matrixes during the ANN training process, respectively. Then,
synaptic weights were quantized by minimizing the MSE between
the values before and after quantization according to the
experimental results of the photoresponsivity in Fig. 3b. Figure
5f draws the quantized photoresponsivity of the kth devices
arranged in the order of pixels. It can be clearly observed that the
features of each character have been learnt successfully. Accuracy
and loss for the test set during the training are also demonstrated
in Fig. 5g. The final classification accuracy is 96.9%. The histogram
indicating the weight distribution is also given as Supplementary
Fig. 19.
Although the classification network exhibited a good outcome,

it remains necessary to realize the regression of numbers 1 to 10,
so that AI could recall the input digits. Therefore, a regression
network composed of 2 hidden layers and 1 output layer was
constructed after the classification layer. Detailed network design
is presented in Supplementary Fig. 20. If the regression network
does not exist and the regression output is obtained simply by
convolving the classification output with the vector [1, 2, 3, 4, 5, 6,
7, 8, 9, 10], the result would be unsatisfying, as compared in Fig.
5h. Figure 5i shows the error distribution and its probability
density function (PDF) with and without the regression network,
which indicates that the result becomes more precise with the
regression network. For instances, mean absolute error (MAE) and
root mean square error (RMSE) of the regression results are only
0.2895 and 0.5029, respectively, much smaller than those without
the regression network.
Compared with traditional ANN strategy for optical pattern

processing, the all-in-one reconfigurable photomemristor array in
this work can not only avoid data conversion and transmission
between separate units, but also possesses the capability of zero
energy consumption for sensing. The comparison with other
photomemristor arrays for in-sensor ANN18,20,24,25,29,44,45 are
summarized in Supplementary Table 1. Our all-in-one organic
photomemristor networks show low energy consumption com-
parable to present inorganic ones, which naturally possess the
advantages of organics with low cost, scalability, flexibility and
biocompatibility. The organic ferroelectric array with a simple
2-terminal device architecture implies a potential for broader
applications in healthcare wearables, interactive robots, smart
packagings46.
In conclusion, we successfully demonstrated ANN hardwares for

artificial retina using MF-based photomemristor arrays. MF DIPAB/
CuPc interfacial photomemristors were employed to construct in-
sensor ANNs with continuously reconfigurable conductance and
photoresponsivity. The photoresponse of each device is in-situ,
multi-level and linear with light intensity, which lay the basis for

Y. Cai et al.

6

npj Flexible Electronics (2023)    29 Published in partnership with Nanjing Tech University



convolutional computation of in-sensor ANNs. Then, a 5×5
photomemristor array was prepared for optical letter image
recognition. Positive/negative synaptic weights can be logically
expressed by bi-directional ferroelectric polarization degree,
which can reduce the hardware complexity by at least half for

conventional in-sensor neural networks. It is demonstrated that
the depolarization-driven photoresponse can lead to low latency
and even zero processing energy consumption for in-sensor ANNs.
We also successfuly simulated a large-scale optical and electrical
hybrid ANN for the recognition and regression of hand-written

Fig. 5 A Large-scale array for Chinese character recognition and regression. Schematics of (a) human vision with feedbacks, and (b) an ANN
for artificial vision. c A large-scale photomemristor array for Chinese character recognition and classification. d Data acquisition process for
Chinese character image. e Confusion matrixes during the training process from epoch 1 to 100. f Quantized photoresponsivity of the kth

devices arranged in the order of pixels. g Accuracy and loss for test set during training. h Output comparison with and without the regression
network. i Error histogram and distribution with and without the regression network.
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traditional Chinese characters. The realization of artificial vision
clearly give the hints of MF-based photomemeristor arrays for in-
sensor and neuromorphic computing.

METHODS
Device fabrication
All materials and solvents were commercially obtained, except
DIPAB which was synthesized as described in ref. 34. Various
substrates were employed including silicon, glass and polyimide
(PI), which are ultrasonically cleaned with acetone, isopropanol,
and deionized water in turn for 30 min, respectively. The residuals
on the substrates were blown off using nitrogen. Subsequently,
electrode patterns were developed on a spin coated photoresist
film by deep ultraviolet lithography. Cr (5 nm)/Au (70 nm)
electrodes were then deposited by physical vaper deposition
(PVD). After lift-off, Au pair electrodes with a gap of 2 μm was
obtained. Semiconductor interlayers of CuPc thin film were
thermally evaporated. The thickness of the CuPc films was
estimated to be around 100 nm. Finally, a 300-nm DIPAB film
was prepared by blade coating on the CuPc layers. To remove
residual solvents, the samples are heated at 80 °C in air for 1 h. The
substrate of mask is a glass with a thickness of 200 μm. After
depositing a thin Ag film with a thickness of 200 nm, deep
ultraviolet lithography was employed for patterning as
described above.

Characterizations
To characterize the devices, SEM images were recorded using a
Zeiss Sigma HD scanning electron microscope. The thicknesses
were tested by a step profiler (Alpha-Step D-500 Stylus Profiler)
Piezoresponse force microscopy (PFM, Asylum Research, Cypher)
was utilized to obtain the surface morphology and ferroelectric
properties of the DIPAB films at room temperature in air. Samples
were characterized with an AC tip bias of 1 V. For poling, a DC tip
bias of 30 V was applied with electrodes disconnected to
measurement circuits. XRD patterns were recorded on an X-ray
diffractometer (Bruker AXS D8) at room temperature.

Electrical measurements
Electrical characterization was carried out by fixing samples on a
probe station with electrodes connected to a source meter
(Agilent B1500A). The array sample is held in a specially designed
fixture and connected to the external circuit via FPC. A UV-Vis LED
of 340 nm-750 nm was employed as the light source for the
photocurrent measurements through a microscope system. For
electrical writing, inputs are fed to the corresponding electrodes in
turn. For optical reading, all the electrodes are grounded to collect
the sum of the self-powered photocurrent under illumination.

Chinese characters recognition and regression simulation
The traditional Chinese characters of digits 1 to 10 (Supplementary
Figs. 17 and 18) were written on papers in calligraphy by
volunteers and scanned into a computer. As illustrated in Fig. 5d,
the images were firstly filtered with threshold filters for dust
removal. Next, character regions were selected and scaled to a
normalized size, approximately 80% of entire page in this case.
Then the images were down-sampled into 48 × 36 size, which
refers to the shape of a retina array. Finally, the pixels were
quantized into 256 levels (8-bit) ranging from 0 to 1, correspond-
ing to the optical power (0 to 54.55 μW cm–2). Totally 20 samples
for each character were obtained. For each digit in the dataset,
data were randomly divided into two sets, 60% for training and
40% for testing.
Figure 5c draws the principal schematic of the photomemristors

array. One end of all the devices in every pixel are shorted

together, while the common nodes of all the pixels in each row
are connected to a row line. Conversely, only photomemristors
with same index in the pixels in each column are connected to a
column line. In the pre-programming stage, photoresponsivity of
all the 17,280 photomemristors are programmed by applying
voltage pulses to the row and column lines. During the sensing
stage, the array forms a single-layer perceptron to realize the
classification of hand-written Chinese digits. Overall, there are
totally 48 row lines and 360 column lines. Each photomemristor
yields a photocurrent under illumination, Im,n,k= Pm,nRm,n,k, where
Pm,n is the light intensity on pixel <m,n > , Rm,n,k is the pre-
programmed photoresponsivity of the kth memristor in the pixel
<m,n > , k= 1,2,…,10 is the index of synaptic weights. By shorting
the column lines of the same synaptic weight index, the
photocurrents sum up as

Ik ¼
X48

m¼1

X36

n¼1
Im;n;k ; (4)

constructing ten output neurons. Among the ten output neurons,
the one with the most significant output value represents
classification result. The neural network for classification is only
composed of photomemristors, and does not employ any bias
values and activation function that require complicated circuitries
or additional softwares.
The regression network was trained with MATLAB using

Levenberg-Marquardt backpropagation. Outputs of the classifica-
tion network (200 samples) are used as dataset, of which 70% for
training, 15% for validation, and 15% for testing.
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