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Stretchable array electromyography sensor with graph neural
network for static and dynamic gestures recognition system
Hyeyun Lee1,6, Soyoung Lee2,6, Jaeseong Kim1,6, Heesoo Jung3,6, Kyung Jae Yoon4✉, Srinivas Gandla1✉, Hogun Park 2,3,5✉ and
Sunkook Kim 1✉

With advances in artificial intelligence (AI)-based algorithms, gesture recognition accuracy from sEMG signals has continued to
increase. Spatiotemporal multichannel-sEMG signals substantially increase the quantity and reliability of the data for any type of
study. Here, we report an array of bipolar stretchable sEMG electrodes with a self-attention-based graph neural network to
recognize gestures with high accuracy. The array is designed to spatially cover the skeletal muscles to acquire the regional sampling
data of EMG activity from 18 different gestures. The system can differentiate individual static and dynamic gestures with ~97%
accuracy when training a single trial per gesture. Moreover, a sticky patchwork of holes adhered to an array sensor enables skin-like
attributes such as stretchability and water vapor permeability and aids in delivering stable EMG signals. In addition, the recognition
accuracy (~95%) remained unchanged even after long-term testing for over 72 h and being reused more than 10 times.
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INTRODUCTION
The development of human–machine interaction (HMI) methods
using surface electromyogram (sEMG) signals generated by
neuromuscular activity and categorized based on hand gestures
used to communicate with and control smart electronic devices is
of significant interest1–4. sEMG signals are a qualitative measure of
neuromuscular activity, with which disorders, activation levels,
fatigue, and body movements can be detected or analyzed5–10. In
addition to biomedical attributes, the quality, and quantity of
sEMG signals are used as control signals to control prosthetic
devices or some artificial devices11–13. In contrast to single bipolar
sEMG electrodes, by which only a specific gesture associated with
a localized muscle can be recognized, sEMG electrodes distributed
in an array covering a portion of the skin can substantially increase
the quantity and reliability of the information received14,15. This
guarantees more precise control over multiple artificial devices
that may be useful in daily life activities. To provide such
functionality, the positioning and interelectrode distance of the
sEMG electrodes are crucial. Moreover, skin-mimicking function-
alities such as stretchability and breathability are essential for
stable and long-term monitoring of sEMG signals, as they provide
comfort and conformability.
Controlling an artificial device requires a high degree of

freedom of discrete sEMG signals with gesture pattern recognition
(PR) algorithms to perform the desired task according to a user’s
intention. PR algorithms such as classifier-based16–19, probabilistic
model-based20, fuzzy logic-based methods21, artificial neural
networks (ANNs)22,23, and linear discrimination analysis (LDA)24

algorithms have been reported in the literature. These algorithms
are trained to predict gestures using a sampling dataset. Among
these methods, those based on neural networks have been of
increasing interest because they require less handcrafted feature
selection. However, most sensors are constrained to flexible EMG

sensors, the performance of which may deteriorate under external
physical disturbances and long-term monitoring.
Herein, we report a stretchable, wireless, multichannel sEMG

sensor array with an artificial intelligence (AI)-based graph neural
network (GNN) for both static and dynamic gesture recognition.
The GNN is a neural architecture that operates on data structured
as a graph25. A graph consists of a set of nodes and edges, and an
edge can express the relationship between two nodes through a
floating weight. In the GNN, the latent representation of each
node is updated by taking the aggregation function of the
representations of its connected neighbors, followed by a
nonlinear activation function. The GNN approach has shown
promising results in semi-supervised node classification; however,
it has been seldom applied to gesture recognition using sEMG
signals. Even though channel signals can be considered as nodes
and their relations can be expressed with edges, one limitation of
applying graph neural networks (GNN) directly to sEMG signals is
that deciding how each sensor is associated with others is difficult.
In other words, they should be presented with an appropriate
edge weight. To mitigate the problem, STCN26 introduces fixed
learnable parameters to determine the weights of edges for
presenting the inter-sensor association. However, it may suffer
from spurious signals due to long-term use or gestures with heavy
movement; It can fail to capture gesture-relevant muscles.
Moreover, when there are more sensors available, the overall
time complexity becomes polynomial to the number of sensors.
Therefore, it is essential to reduce the noisy information by
constructing an adaptive sensor association graph, which leaves
only salient information.
To overcome the limitation of prior work, a self-attention-based

GNN layer is incorporated into a spatiotemporal gesture recogni-
tion model so that we can construct a sequence of more robust
adjacency graphs for representing the evolution of spatial
relevances among sensors on each gesture input. The self-
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attention-based mechanism of our proposed GNN model is to
adaptively determine the relationship between the nodes of EMG
signals and decide edge weights. For learning the temporal
information, a CNN-based neural model is exploited to process the
raw data or learned spatial representations. Furthermore, our
model is robust to reuse scenarios and more effective at
recognizing dynamic gestures, which include more interactive
movements like rotating the wrist clockwise. The classification
accuracy and robustness of our system were evaluated over
multiple acquisition sessions, including some that involved
repositioning the sensor. In addition, the AI algorithm can learn
quickly from a single trial per gesture, enabling simple yet robust
online learning. The adhesive stretchable patchwork of holes, with
the array sensors attached conformably to the skin, delivers stable
sEMG signals, which enabled skin-like attributes. Long-term, real-
time wireless monitoring of sEMG signals with self-attention-
based robust graph neural network can provide various oppor-
tunities to control prosthetic and artificial electronic devices with
high accuracy.

RESULTS AND DISCUSSION
Stretchable multichannel sEMG sensor system
Wearable electronic devices with extended skin-like attributes,
such as stretchability and breathability (or water vapor perme-
ability, WVP), tend to be more wearable overall, as well as more
adaptive to external physical movements. Mimicking the modulus
and stretchability of the skin requires wearable electronic devices
with robustly engineered mechanical designs. Different types of
two-dimensional (2D) filamentary stretchable designs, such as
fractal and mesh-based motifs, have been widely applied to
integrate soft and hard materials. Electronic devices covering a
large portion of the skin demand filamentary stretchable design
with skin-like functionalities to accomplish the desired task while
preserving the quality and quantity of the measures without
interruption25. Recently, nature- and Kirigami-inspired mechani-
cally deformable motifs arranged in an array design had been
used to fabricate EMG array sensors to manipulate robotic arms27.
In this study, a similar design with slight modifications is adopted
to fabricate the stretchable multichannel sEMG array. We present a
Bluetooth-equipped onboard printed circuit board (PCB) package

for real-time wireless monitoring with an artificial graph neural
network (GNN)-based algorithm to identify gestures with high
accuracy. The overall working concept is shown in Fig. 1. A manikin
wearing the stretchable sEMG sensor patch around their forearm
with a wireless acquisition device on top is shown in Fig. 1a. The
details of the sensor structure, fabrication, and integration with the
PCB are discussed in subsequent sections. The sensor patch, sensor
facing the topside, and pristine and stretched (30%) conditions are
shown in Fig. 1b. Figure 1c shows the process flow used to achieve
a high gesture recognition accuracy: the forearm skeleton muscles
are interfaced with the on-skin multichannel EMG sensors under
neurological activation to generate EMG signals. The signals are
detected by the data acquisition system and wirelessly transmitted
using onboard Bluetooth technology, and the raw sEMG datasets
collected over time are transformed into an image-like representa-
tion as an input to the neural network model for the high-accuracy
gesture-recognition system.

Stretchable filamentary serpentine-based electrodes
Conductive material electrodes are pivotal to detect not only
sEMG signals but also all types of electrophysiological signals. The
sEMG signals measured using these electrode pairs by electro-
myograph ensure a qualitative measure of muscle activity
essential for analysis and/or detection of disorders and in HMI.
Mostly, single-electrode pairs of commercially available Ag/AgCl
electrodes have been considered, but they are constrained to
specific conditions or studies and diagnoses because the
information collected is insufficient to analyze with the aim of
measurement owing to the localized sampling of specific muscle
activity. However, data acquisition from regional muscle activation
increases the quantity and reliability of sEMG signals. This can be
realized using single-lead gel electrodes arranged individually but
would be inconvenient for daily use. Moreover, they suffer from
dehydration over time, which causes the material to lose its
conductivity, thereby increasing the skin–electrode impedance.
This sometimes causes skin irritation and scars on the skin during
prolonged usage. In addition, metals are highly conductive
materials with high charge carriers and surface electric flux
densities, which offer a high signal-to-noise ratio (SNR). An array of
EMG sensors can be constructed from a thin metal layer deposited

Fig. 1 Concept image of the stretchable array sEMG sensor with GNN for static and dynamic gestures recognition system. a Schematic
illustrating the human arm wearing the wireless acquisition device integrated with the stretchable array EMG sensor for real-time monitoring
of EMG signals. b The wearable array sensor at pristine (0%) and stretched (100%) conditions (scale bar 4 cm). Process flow of gesture
recognition starting from the recording of sEMG signals to gesture recognition with an AI-based graph attention network: c Cross-section
view of the posterior forearm showing various muscles and the sensor covering a large portion of the muscles at the outermost layer of skin,
along with the real image of PCB (front and back, scale bar 2 cm). The sEMG signals are supplied to the AI programming for gesture
recognition accuracy.
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on a supporting film; however, they lack stretchability and
permeability to sweat to conformably adhere to the skin for a
long time. Long-term wear requires sweat to pass through the
sensor system to avoid false changes in the skin–electrode
interface owing to the accumulation of sweat droplets. Therefore,
a sensor system that mimics the physical structure of the skin is
essential to realize a robust and reliable sEMG acquisition system.
Structurally stretchable layouts with intrinsically rigid metal films
are promising candidates for fabricating skin-like stretchable
sensors. However, sensors are mostly fabricated by conventional
microfabrication techniques involving patterning, etching, and
developing procedures, which are expensive and time-consuming.
In contrast, the subtractive laser processing technique has
attracted significant interest owing to its enabling features such
as facile and ultrafast processing, low cost, user-programmability,
and roll-to-roll processability27,28. A schematic illustration of the
stretchable array EMG sensor design with Cu as an electrode
material is shown in Fig. 2a. The sensor has 2 × 10 electrodes, of

which eight pairs (aligned vertically to the neutral axis of the
sensor design) were used as bipolar electrodes (measuring
electrodes) to record the sEMG signals, and the remaining four
electrodes were used as reference (ground electrodes) to reduce
the background noise. The details of the sensor fabrication are
provided in the Methods section. The schematics of the array
sensor fabrication and dimensions are shown in Supplementary
Fig. 1. Each electrode was a hexagonal polyimide (PI)-supported
thin metal layout with a Kirigami-based serpentine routing
geometry, referred to as a Kirigami-serpentine-metal (KSM)
electrode. KSM electrodes with different fill factors and serpentine
widths are shown in Supplementary Fig. 2a, b. The first three
designs have an increased fill factor with the same serpentine
width (Supplementary Fig. 2a) whereas the next three designs
have the same fill factor with decreasing serpentine width
(Supplementary Fig. 2b). The skin–electrode impedance and sEMG
signals for all the designs were measured to select the design for
the array sensor. The performance of the EMG signals depends on

Fig. 2 Large-area sEMG sensor array for continuous real-time monitoring of various static and dynamic forearm gestures. a Schematic
illustration of stretchable array EMG sensor of eight bipolar channel electrodes and two reference electrodes highlighted with botted boxes
and text (scale bar 1 cm). b Block diagram shows the sEMG data acquisition and wireless monitoring on the computer. c Sensor locations (A, B)
on the illustrated forearm and their corresponding positions (1–4) represented on a cross-sectional view of the posterior forearm, and d hand
gestures include rest, static gestures, and dynamic gestures for gesture recognition accuracy with graph attention network.
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the impedance of the skin–electrode contact area, the larger the
contact area, the lower the impedance, and thus the higher the
amplitude of the signal. Designs 1 and 2 have less fill factor (less
contact area to the skin) than the remaining, which means high
impedance can be expected. As expected, the impedances of
designs 1 and 2 showed high values over the range of frequencies
compared to the remaining designs (Supplementary Fig. 3). Since
designs 3–6 have the same fill factor, the same impedance is
generally expected. However, designs 4, 5, and 6 have increasing
perimeters because of a greater number of layers with hinges
connecting each layer; the longer the perimeter more is the trace
subjected to laser cutting. The fabricated serpentine width is
generally less compared to the designs because of the laser
ablation effect, which removes excess material surrounding either
side of the cutting trace. Therefore, electrodes fabricated from
designs 4, 5, and 6 or 3, showed impedances with a slightly
increasing trend. The same applies to the EMG signals measured
with these electrodes. Because of higher impedances for
electrodes of designs 1 and 2, a lower SNR was obtained
compared to the SNR for electrodes of designs 4, 5, and 6 or 3
(Supplementary Fig. 4 and Table 1). The SNR calculation was
described in the Supplementary Information following Supple-
mentary Figure 4. Moreover, the fabrication time for preparing the
electrode of design 4 is much quicker than the remaining 5 and 6.
Therefore, design 4 is considered for fabricating the stretchable
array-type sensor.
Note that other conductive electrode materials such as

thermally deposited gold, screen-printed silver, spin-coated
PEDOT:PSS, and laser-induced carbon, may also be applied using
laser processing technology with further improvements in their
electrical conductivity and environmental stability (Supplementary
Fig. 5). However, Ti/Cu was selected due to their high conductivity
(in the order of 107 S/m), stability in environments, and cheaper.
The wireless portable acquisition device was integrated into an
8-channel stretchable array sEMG sensor using an anisotropic
conductive film (ACF) bonding technique and interfaces with the
KSM bipolar electrode array to record and wirelessly transmit the

encoded EMG signals via Bluetooth to the network interface chip
installed on a host computer. The block diagram representing the
connectivity of the channel KSM electrodes with the microcon-
troller unit (MCU) and Bluetooth is shown in Fig. 2b. The real
image (front and back) of the PCB along with its highlighted and
labeled components are shown in Supplementary Fig. 6a. A
flowchart of the operation of the PCB is presented in Supplemen-
tary Fig. 6b. The photographs of the array sensor device wrapped
over the forearm are shown in Supplementary Fig. 7. The
specifications of the analog front end and microcontroller are
presented in the Supplementary Table 2. The analog front-end
circuits consist of a low-powered CMOS instrumentation amplifier
(INA331), which provides low-noise amplification of differential
signals, a Notch filter, and amplifiers (OPA313). A microcontroller
(STM32WB35) with ARM Cortex-M4 is used for digital signal
processing. The digitalized data of sEMG signals information is
sent wirelessly to a base station connected to a computer/laptop
via Bluetooth LE 5.2. A 3.7 V Lithium battery was used to power
the device for streaming the data.
The gesture recognition accuracy of EMG signals corresponding

to different gestures varies depending on the location and
positioning of the array sensor. Deviations in the sensor positioning
over multiple acquisition sessions result in accuracy degradation.
This variation is mainly attributed to muscle-to-muscle crosstalk and
therefore requires a deterministic sensor position for any desired
aim of the operation. An optimized sensor position is pivotal in
realizing a high degree of freedom in gesture recognition. Four main
positions at locations A and B, for the array sensor, were considered,
in which positions 1–3 at location A were displaced by rotation
concerning position 1, and position 4 at location B was shifted from
position 2 towards the wrist (Fig. 2c). The array sensor electrodes
covering the forearm muscles, for positions 1–4, such as the
extensors of the wrist (extensor carpi radialis and ulnaris), flexors of
the wrist (flexor carpi radialis, ulnaris and palmaris longus), and
flexors of fingers (flexor digitorum profundus/superficialis, and flexor
pollicis longus), are schematically illustrated as a cross-sectional view
in Fig. 2c. The muscles responsible for various static and dynamic

Table 1. Comparison of this work with other wearable sEMG systems.

Amma
et al. (2015)

Liu
et al. (2017)

Moin
et al. (2018)

Pancholi and
Joshi (2019)

Benatti
et al. (2019)

Cerone
et al. (2019)

Jan M.
Rabaey (2021)

This work

Wearable form factor Χ Ο Ο Ο Χ Ο Ο Ο
Electrodes type Flexible FPCB Individual

surface
patches

Flexible FPCB Ag-AgCl
electrode band

Individual
Ag-AgCl

Flexible FPCB Flexible
screen-
printed

Flexible and
Stretchable
electrode

Electrodes per array 192 4 64 8 8 32 64 8

Wireless streaming Χ Ο Χ Ο Ο Ο Ο
In-sensor classification Χ Ο Χ Ο Ο Χ Ο Χ
In-sensor model
training

Χ Χ Χ Ο Ο Χ Ο Χ

In-sensor
adaptive update

Χ Χ Χ Χ Χ Χ Ο Χ

Number of classes 27 10 5 6 11 - 21 18

Classifier Gaussian
Mixture model

ANN HD algorithm LDA HD
algorithm

Χ HD algorithm Graph attention
neural
network model

Dynamic data analysis Χ Χ Χ Χ Χ Χ Χ o

Extract temporal data
and spatial data
separately

Χ Χ Χ Χ Χ Χ o o

consider the
relationship between
sensors of an array

Χ Χ Χ Χ Χ Χ Χ o
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gesture movements such as wrist flexion, extension, ulnar and radial
deviation, finger flexion, and forearm supination, and pronation, are
shown in the tabular form (Supplementary Table 3). The hand
gesture poses used in this study to evaluate gesture recognition
accuracy using the AI-based GNN are shown in Fig. 2d. We used a
total of 18 gestures, which included resting (1), static (13), and
dynamic gestures (4).

Preprocessing
The best-suited sensor position among positions 1–4 on the skin
was evaluated based on gesture recognition accuracy using a
robust AI-based graph neural network model. The AI model is
designed to classify hand gestures based on given raw sEMG
signals for a certain time. For a given time, raw sEMG signals are
modified into the input shape of the AI model using a continuous
wavelet transform (CWT)29. This represents the time-frequency
space as a matrix in which variations in magnitude can be readily
accessed as a heat map reveal the enabling features (Fig. 3a). The
CWT calculates the inner product of the raw input and wavelet
functions with varying scales and locations.
The CWT provides an image-like representation that can be

learned by a neural network model and has been applied to many
gesture-recognition systems30–32. Representative wavelet func-
tions include the Morlet, Meyer, and Mexican Hat functions.
Varying the scale and location of the wavelet functions has the
advantage of analyzing both time and frequency resolutions. In
addition, applying the CWT has a denoising effect (signal-
smoothing effect) because the CWT repeats the process of
calculating the correlation between the original signal and the
wavelet functions by passing the raw sEMG signal while adjusting
the scale and shift of the wavelet. From the CWT, 32 scales were
selected for the input signal. After the determination of the scales,
the input was transformed into a 3-D shape that contains 32 times
more information than the raw sEMG signals. The final shape after
CWT is 32(scale) × 8(channel) × 100(time). As per previous studies,
the maximum delay in real-time control systems should remain
below 300ms. A time duration of 250ms is considered for input,
and our signal frequency of 400 Hz collects 100 data over 250 ms.
The amount of time the model considers as a single input is
determined based on the frequency of the sensor and the time of
real-time control.

Gesture classification with Graph Neural Network
A sliding-window technique is applied to augment the data. Our
data overlap and are used for the next input data sample. The
gesture recognition model also uses signals from different time
windows for the same gesture. The multichannel sensor array
measures the signals for 5 s for action; however, for real
recognition, it is desirable to predict gestures with a signal only
250ms long. Therefore, effectively using the short-time signal of
the preceding time window is important. Therefore, the input data
should contain as many chunks as possible for the model to learn
the decision boundaries of our gestures. The sliding-window
technique has the advantage of capturing the continuity of time
by overlapping the data between the inputs.
The processed input signals, 32(scale) × 8(channel) × 100(time),

are further processed by spline interpolation-based downsampling
at a factor of 0.25. The resultant input signals become reduced in
size by a factor of 0.25 compared to the original scale and time.
Downsampling is applied with max-pooling31, which selects the
maximum value from four(scale) × four(time) candidate values.
Reducing the size of the input signals reduces the computational
cost of our model. Furthermore, during the long-term monitoring
of multichannel signals data, diverse noise occurs like baseline drift
and motion artifact. Baseline drift is a long-term noise due to the
change in the baseline point over time. Motion artifact occurs
when there are changes in the relative position of electrodes. After

processing the CWT, the last column of our scale and time is
dropped to remove the baseline drift and motion artifact31. Finally,
the input shape becomes 7(scale) × 8(channel) × 24(time).
A model recognizing both the temporal and spatial relation was

considered for this work. The spatiotemporal model adopt to
decompose input data into spatial and temporal views is related
to the inherent characteristics of sEMG signal data. A recent
study31 constituted a convolution layer with a slow-fusion
technique to simultaneously obtain both temporal and spatial
information. Additionally, sEMG signals are processed using LSTM
(Long Short-Term Memory), which has strengths in time series
data processing, to capture the temporal information. Recently, in
the field of EEG, which is brain-related signal data, there is a study
that applies GNN by expressing the relationships between signals
into graphs.
Our model extracts temporal and spatial information separately

by designing two different neural network blocks and composing
them. Figure 3b shows the graph of the attention spatiotemporal
model. The model consists of three temporal blocks and a spatial
block with a fixed sequence, temporal-spatial-temporal-temporal.
The temporal block extracts temporal information by passing

data along its time axis. The block is formulated with a
convolutional layer and a gated linear unit (GLU) layer33. As the
input’s shape is 3D, which is similar to normal image data, the
original convolutional layer is adopted to extract temporal
information. The original convolutional layer was used with a
kernel size of 7(scale) × 24(time) and 7 (kernels). The same number
of kernels as the input channel was chosen to avoid changing the
dimension after the convolution. All scales are aggregated over a
small time with kernels to obtain temporal information from our
multichannel sensor array. GLU is a skip-connection activation
function that helps improve flow gradients. The time dimension
size C started with 24 in the first temporal block. In the temporal
block, the 24-time dimension size was reduced to the 16-time
dimension through the convolutional layer. Similarly, the second
temporal block reduced the 16-time dimension to 8.
The main part of our model, the spatial block, constructs graphs

differently depending on the input to capture the relationship
between channels and aggregate the information between them
via GNN34. By observing the neighbor EMG signals, the GNN can
update the node to reflect its neighbor’s features. The sensor’s
channels (eight) are treated as nodes and their relations as the
edges. Every signal has no global relation between the sensors,
but rather only includes a local relation to each input datum.
Therefore, to obtain the local relation of every input, a self-
attention mechanism is applied to every input data sample to
identify the connectivity between sensors, and a personalized
sensor-sensor relationship graph is constructed. For details, please
refer to the graph-construction algorithm (self-attention) section
of the Methods section. The attention mechanism assigns high
weights to sensors with sEMG signals more related to each other
and gives low weights when their signals are not related. The
relativity among the sensors is calculated using cosine similarity.
A brief comparison of recent works on relevant baseline is

shown in Supplementary Table 4. A total of 6 existing methods are
compared by considering (1) which signal types are processed, (2)
which AI models are developed, (3) whether the dataset is
constituted with static or dynamic gestures, and (4) whether the
models can learn adaptive spatial relations with different input
signals. MResLSTM35 process the signal data with the LSTM
approach. LSTM-based sEMG classifier models focus more on the
temporal relations of each sensor channel than the relations
between different channel sensors. For example, MResLSTM36

classifies dynamic motion gestures by using the LSTM model. On
the other hand, GNN is a neural network that is used to widely
identify the spatial relationships between channels that can be
expressed in a graph structure. GNN aggregates the information
from the target node’s neighbors and updates its representation.
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GNN-based baselines are usually applied to similar domains like
EEG and Biosignals. GNNs are adapted to these domains to
overcome the limitation of the CNN-based approach, widely
applied to classify signal-based data. The limitations of CNNs are
that it identifies local (adjacent) spatial patterns due to the small
size of the kernels. However, it is more crucial to identify complex

relations between non-adjacent sensors. Similarly, GNN-based
approach in sEMG domain can be effectively applied by setting
the appropriate neighbor relationship. The self-attention allows
our model to adaptively construct the graph data, which sets the
appropriate relationships among sensors. The gesture type is a
column indicating which type of gesture (dynamic or static) is

Fig. 3 An illustration of preprocessing multichannel sensor array and graph attention neural networks. a The sensor array is first
transformed into a matrix shape (100 × 8). CWT is then applied by selecting 32 scales for every sensor (100 × 32 × 8). Finally, the matrix size is
reduced with max pooling and baseline drift for computational efficiency (24 × 7 × 8). b A diagram of graph attention neural networks we
used. The preprocessed input data (24 × 8 × 7) get through three temporal blocks and a spatial block followed by three fully connected layers.
The temporal block consists of one convolutional neural network layer and a gated linear unit. The first CNN layer translates input dimensions
24 to 16, and the Gated linear unit decided whether the CNN layer’s output is usable. Spatial blocks filter the output of the temporal block to
catch the signal’s physical location. Fully connected layers allow the final output to be classified as 18 gestures.
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used in the dataset. Since many gestures in the real-world are
dynamic, it is important to identify both static and dynamic
gestures. Static gestures are gestures with fixed motion when
signals are extracted. Dynamic gestures are non-fixed movement
gestures like rotating the wrist clockwise. To be more specific,
sEMG signals of dynamic gestures are measured while the subject
repeats the motion gestures several times. Our model is designed
to recognize both types of gestures. Adaptive adjacency learning
is a column to determine whether the model learns differently
depending on its distinct input signal data. Supplementary Table 4
shows that our model can train and learn differently by
constructing the graph adaptively unlike other baselines.
After passing through all temporal and spatial blocks, the

resulting representation vector is used to classify the gestures (Fig.
3b). The representation vector is flattened and passed through a
fully connected layer to classify gestures. Three fully connected
layers are used with dimensions of 500, 2000, and 18 (the number
of gestures). Finally, the softmax activation function is used as the
last function. The cross-entropy loss function is used to optimize
the classification model.
To find the best position for the array sensor on the skin

corresponding to 18 gestures, the abovementioned four positions
were considered; position 2 exhibited the highest accuracy of
97.76 ± 0.03% (Fig. 4a). The sensor electrode positions aligned well
with the different types of muscles, which could be the reason for
the high accuracy for position 2. Although the gesture recognition
accuracy among three individual participants on two days was
almost the same, which shows that position 2 was the appropriate
position to distinguish each of the gestures regardless of the
sensor position on other participants (Fig. 4b). The raw sEMG
signals corresponding to the static and dynamic gestures
recorded from eight bipolar channels with four referenced
electrodes at position 2 are shown in Fig. 4c. The gesture
recognition accuracy with the AI-based graph neural network of
18 gestures for sensor position 2 is shown in the form of a
confusion matrix (Fig. 4d). In addition, experiments to check that
our model is not overfitted to the training data were examined.
The training dataset’s accuracy and loss with the validation
dataset’s accuracy and loss were compared. The training,
validation, and test dataset is split with the 8:1:1 ratio for every
subject’s data. Furthermore, early stopping is employed for
training. Early stopping terminates the training phase according
to the validation loss to prevent over-fitting. The difference
between training and validation is small, indicating that our model
is not overfitted to the training data (Supplementary Fig. 8). The
individual gestures were free from crosstalk with an error of <
0.06% among all possible combinations. The SNR of the
commercial gel and KS electrodes are presented in Supplementary
Fig. 9. In fact, the qualitative measures among gel and KS
electrodes are valid only if the measurement of EMG signals from
these electrodes were performed simultaneously. The electrodes
placement for the simultaneous recording of EMG signals is shown
in Supplementary Fig. 9a. It was confirmed that both electrode
pairs exhibited the same SNR of ~23 (Supplementary Fig. 9b). In
addition, the area and fill factor are two main geometrical
parameters of the sensing electrode, which determine the quality
of the signal; the larger the area and the higher the fill factor, the
higher the amplitude. Despite the area and fill factor of KSM-based
electrodes (design 4) being less than 20% and 40% of the gel
electrodes, respectively, the KSM electrodes exhibited nearly the
same SNR with minimal noise level background.

Mechanics of KS-based stretchable array sensor
The mechanical behavior of the stretchable array sensor device is
also important to understand the structural limit of the design by
simultaneously examining both electrical and mechanical varia-
tions under externally applied tensile loadings. Before

understanding the mechanics of the array device, it is important
to examine the mechanics of different designs shown in
Supplementary Fig. 2. The photographs showing the electrodes
of designs 1–6 at 0% and their respective tensile strains are shown
in Supplementary Fig. 10a–e. The corresponding relative changes
in resistance to the applied tensile strains are shown in
Supplementary Fig. 10f. Under applied strains, the electrodes
with less serpentine width and less number of hinges or layers
(designs 1, 2, and 4) stretched more compared to the remaining
designs. This is because hinges constrain the stretchability of the
structure; the more the number of hinges, the lesser the
stretchability of the structure. The applied strain values corre-
spond to the initial rise in ΔR/R0 values, for all the electrodes,
indicating the development of principal strains in the metal layer.
Although electrodes of designs 1, 2, and 4 showed nearly the
same stretchability, design 4 is selected over designs for exhibiting
better EMG signals and skin–electrode impedances. Design 4 as an
array type is constructed for analyzing its mechanical compliances
under applied strains. For mechanical characterization, the array
device required a different design circuitry from that of the sensor
design circuitry, as it required a closed-loop electrical circuitry to
the supplied voltages to measure the resistance changes under
applied tensile strains. To evaluate the resilience of the sensor
design, the bipolar electrodes of channel 2/6 were selected
because high stresses can be concentrated in the middle of the
structure compared to the other channel electrodes at the end, as
shown in Supplementary Fig. 11a. The engineering stress-versus-
strain curves with the simultaneous electrical behavior of the array
sensor device attached to the patch are presented in Supple-
mentary Fig. 11b. The attributes of the patches are discussed in
this section. Mechanical and electrical measurements were
performed simultaneously using a tensile testing machine
(ESM303, Mark 10 Corp.) and an electrical probe station (4200
SCS, Keithley Instruments Ltd.). With an increase in the applied
strain, the load increased steadily up to 25% strain, during which
time the straight and arc wire segments underwent combined
shearing and bending. A further increase in applied strain above
25% resulted in a continuous increase in tensile load, representing
an elastic region of overall structural stretchability, and a fracture
point was reached at ~45% strain, above which a subsequent
breakdown of the mechanical design occurred. Simultaneously,
the relative change in the resistance of channel 3 was negligible
until a strain of ~36% to a load of ~1 N. This signifies that the
applied strain values were far behind the maximum principal
strain value in the metal layer (~0.3% for copper) and
subsequently increased drastically with a further increase in
internal metal strains below the fracture strain of 10% for copper.
Thus, the applied strain caused the metal to break at the
mechanical breakdown threshold, as shown in Supplementary Fig.
11a. Furthermore, the results of experiments conducted for the
sensor with the patch were similar to those of the sensor without
the patch (Supplementary Fig. 11b). Cyclic fatigue tests were
performed to evaluate the mechanical structural durability of the
array sensor under continuous cyclic loading conditions. The
relative change in resistance to cyclic loading from the initial 0%
strain to the final 30% strain over 3500 cycles is shown in
Supplementary Fig. 11c. The electrical resistance was quite stable,
and started to increase slightly after 2000 cycles, which may have
been due to the repeated variations in stresses in the metal layer.
From these analyses, it is clear that the mechanical structure of the
sensor device was able to endure 30% strain without undergoing
any electrical failure, a value nearly equivalent to human upper-
skin stretchability37, which enabled a robust skin-like sensor
platform.
The patch for wearable sensors/electronics, owing to its softness

and stickiness, plays an important role in attaching the device
conformably to the skin to facilitate a stable interface between the
device and the skin for steady monitoring. Moreover, the
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Fig. 4 Evaluation of on-skin sensor position accuracy by graph attention network using 18 gestures. a Gesture recognition accuracy
corresponds to four positions of the sensor attached to the skin. b Gesture recognition accuracy among three participants wearing sensors at
position 2 of day 1 and day 2. c 8-channel raw sEMG signals of participant 1 for sensor position 2 under 18 gestures. d Explicit representation
of gesture recognition accuracy for sensor position 2 in the form of the Confusion matrix.
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stretchable patch provided mechanical stability to the array device
structure during attachment to and detachment from the skin.
Patch holes were fabricated using a CO2 laser (VLS 3.5, Universal
Laser System, USA) to enable skin-like WVP. The characterization
of WVP was carried out as per a previous report27. The modulus of
elasticity, adhesion, and WVP of a 0.8 mm thick patch of holes
were 172 kPa, ~56 kPa (measured in peeling mode), and
~10 gm−2h−1 (Supplementary Fig. 12a–c). The adhesion of the
patch was sufficient to hold the sensor on the skin; high adhesion
may cause damage to the skin during peel-off. Moreover, the WVP
of the patch lies in the range of skin WVP (8-20 gm−2h−1)38–40. The
skin-like stretchable patch was free from rashes, redness and
pressure marks even after continuous wear for four days
(Supplementary Fig. 13).

Accuracy comparison with the relevant baselines
The accuracy comparison experiments were performed to show the
superiority of our model. The recent baselines that most align with
our contributions were compared, applying GNN to the spatio-
temporal models and classifying dynamic gestures. STCN26 is the
spatiotemporal model, which uses GNN to capture spatial relations
and a CNN-based approach to acquire temporal information. It also
parameterizes the edge weights for GNN but unifies them for each
subject. On the other hand, our model parameterizes the edge
weights for every input signal through self-attention-based graph
construction. MResLSTM36 is the model, which checks the ability to
distinguish dynamic gestures. MResLSTM uses the Conv-LSTM
model to capture the Spatiotemporal information. Since GNN
usually uses fewer parameters, the processing time is also faster
than the Conv-LSTM model. The total accuracies of the 3 models
are shown in the Supplementary Table 5. From the table, our model
has promising performance in classifying both dynamic and static
gestures. Learning graphs input-wise with self-attention shows
better performance than STCN, which learns graphs for each
subject. The accuracy of each gesture is shown in the Supplemen-
tary Table 6. From the figure, our model is robust in every gesture
compared to the other baselines.

Long-term usability and reusability of KS-based stretchable
sensor array
The stretchable sensor array device worn around the forearm is
shown in Supplementary Video 1. To confirm long-term usability,
sEMG signals were recorded every 24 h without detaching the
sensor for 72 h. A static gesture, the front wrist fold, was
considered to evaluate the long-term usability of the system. It
was observed that the raw sEMG signals of all channels barely
changed for a period of 72 h, as shown in Fig. 5a, which depicts
the long-term stability of the array sensor. For validation, the long-
term usability of the array sensor was compared with that of
commercial gel electrodes. The variations in amplitude and SNR
over time for channels 1, 2, and 3 of the KS-sensor array and
commercial gel electrode are plotted as VRMS versus time in Fig.
5b. Maintaining a high amplitude with a higher SNR is particularly
important for long-term usage. From Fig. 5b, it may be observed
that the amplitude and SNR of the sEMG signals of the array-based
sensor were relatively stable, maintaining an average SNR of
18.42 dB. However, the signals of bipolar commercial gel
electrodes varied from 16.61 dB to 7.39 dB over 72 h owing to
dehydration of the gel, which causes resistance to increase along
with an increase in skin–electrode impedance.
In addition, the gesture recognition accuracy of 18-gestures

after every 24 h for up to 72 h was evaluated using an AI-based
GNN model. Average accuracy of 96.61%, 95.91%, 95.35%, and
94.82% was observed for the initial, 24 h, 48 h, and 72 h,
respectively (Fig. 5c). This once again signifies the stability of the
sensor in maintaining a high gesture recognition accuracy without
any significant reduction. An explicit representation of the

recognition accuracy for the 18 gestures in the form of a
confusion matrix is shown in Figs. 5d and 5e. The results show
that all gestures were accurately distinguished without any false or
cross-recognition with other gestures.
Similarly, the reusability test was qualitatively evaluated based

on the sEMG signals measured using the array sensor. The position
and gesture were the same as those in the case of long-term
usability. The qualitative measurement of sEMG signals before and
after 25 repeated detaching and attaching procedures is shown in
Supplementary Fig. 14a,b. The reusability test evaluated for the
wrist-fold front gesture by plotting gesture recognition accuracy
against the reusability count GNN algorithm is shown in
Supplementary Fig. 14c. The corresponding SNR of channels 1,
2, 5, and 6 for the reusability count are shown in Supplementary
Fig. 14d. The explicit representation of the 18-gestures recognition
accuracy, before and after the reusability of the sensor 25 times, in
the form of a confusion matrix, is shown in Supplementary Fig.
14e, f. The results are similar to those for long-term usability and
demonstrate the robustness of the sensor in delivering stable EMG
signals under repeated detaching and attaching cycles.
The long-term usability and reusability tests of the sensor were

performed to show its robustness to alignment spurious noise.
These two tests have different characteristics from experiments in
a general offline setting. Both experiments verify the robustness of
our method from the noise generated by wearing the sensor for a
long time and the noise from different alignments by wearing the
sensor again. The AI model’s self-attention technique helped to
maintain high accuracy. To be more specific, data-adaptive graph
construction by self-attention leads to the robustness of
alignment noise and long-term noise.
A comparison of our work with reported sEMG sensor systems is

presented in Table 141–47. Compared to other reports of EMG sensor
arrays with gesture recognition algorithms, a self-attention-based
GNN to capture the relationship between input-aware multichannel
sensors was utilized in the present work. The self-attention
technique is applied to construct a multichannel sensor array into
a graph data structure. This enabled us to find the relationship
between the sensors and build an input graph adaptively. Under
the long-term and reusability tests, our AI model is robust in finding
the relationship between the sensors adaptively.
In summary, a large-area, stretchable, bipolar sEMG sensor

electrode array integrated with a Bluetooth onboard real-time
acquisition device for wireless monitoring of sEMG signals is
presented. A system with an AI-based GNN trained to recognize 18
gestures including static and dynamic gestures with an average
accuracy of ~97% is reported. The sensor system utilizes a
structurally stretchable electrode array supported by a stretchable,
sticky, and breathable patch to record stable EMG signals for long-
term usability. The developed AI model performed better at
predicting gestures through sEMG signal learning by leveraging
both temporal and spatial layers. For the spatial layer, a self-
attention-based graph neural network was applied to effectively
capture the relations between sensors. Generating relations for
each input enhances the robustness to external physical
disturbances and improves performance. The sEMG array sensor,
mechanically supported by a stretchable patch, delivered long-
lasting sensor performance while maintaining nearly the same
gesture recognition accuracy under long-term usability and
repeated reusability. Owing to the rapid and accurate recognition
of gestures, the system can enable applications with efficient
control, ranging from prosthetic hands to virtual reality. It may
even be applicable to sign language, where the visual mode of
communication can be carried through hand gestures or signals
between signers, which is often used by people with hearing
impairments and deaf people.
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METHODS
KS-electrodes sensor array fabrication
Commercially available PI sheets with a thickness of 25 µm were
used as flexible films to prepare a stretchable multichannel EMG
sensor array. The PI film was thoroughly cleaned in acetone, IPA,
and deionized water using an ultrasonicator for 10 min. Ti (10 nm)

and Cu (100 nm) were deposited on the PI film via e-beam
evaporation. The patterning of Ti/Cu was achieved by IR nano-
pulsed laser (IN Laser, Korea) of 1064 nm wavelength using the
laser ablation technique28. A laser power of 2.8 mW, repetition rate
of 20 kHz, and speed of 2300mm/s are the optimized laser
parameter values for ablating the Ti/Cu in the desired pattern. For
the encapsulation of extended Cu interconnects region, the KS-

Fig. 5 Evaluation of long-term usability of the on-skin stretchable array sensor by recording the sEMG signals and graph attention
network using 18 gestures. a Raw sEMG signals recorded consecutively four times every 24 h, for position 2 of the wrist-fold back gesture.
b The extracted SNR for channels 1–3 and conventional gel electrodes; gel electrodes suffer from dehydration in contrast to stable thin metal
film-based KS stretchable electrodes. c Gesture recognition accuracy execution for every 24 h. Explicit representation of gesture recognition
accuracy of sensor position 2 in the form of the confusion matrix executed d initially, and e after 72 h.

H. Lee et al.

10

npj Flexible Electronics (2023)    20 Published in partnership with Nanjing Tech University



sensor electrodes were covered with thermal tape followed by
spraying Nexcare liquid bandage (3 M, USA). The thermal tape was
detached after sufficient drying of the liquid bandages. The Ti/Cu
patterned PI film was attached to a glass plate using thermal
release tape to hold the sensor during the cutting process. To
provide mechanical stretchability, the film was cut by UV laser
(INNO6, Korea) using a laser power of 5.2 A. Placing the laser-cut
film stack on the hot plate at 180 oC for 5 min allows the laser-cut
stretchable sensor array to easily peel-off from the thermal release
tape. The stretchable electrode array was attached to a supporting
soft skin-like stretchable patch (TNL) with a diameter of 180 µm
and a density of 100 pores/cm2. The pores were made using a CO2

laser (VLS 3.5, Universal Laser System, USA) with an average power
of 35 W and a speed of 889mm/s. The patch allowed sweat to
pass through the pores, enabling water vapor permeability. The
size of the array sensor was 165 × 44mm, and that of the
stretchable patch was 185 × 65mm.

On-skin impedance and sEMG measurements
Before the impedance and sEMG measurements, the skin was
cleaned using an alcohol swap to remove unnecessary dust
particles that could affect the signal quality. Skin–electrode
impedances measured over a range of frequencies were carried
out by multichannel electrochemical analyzer impedance spectro-
scopy (Ivium Technology, Netherlands). The electrodes placement
is like the electrodes placed for measuring EMG signals (shown in
Supplementary Fig. 9). The KS-based sensor array was roughly
aligned and attached to a certain location on the upper forearm
(Fig. 4b). The sEMG signals of the sensor array were mainly
measured with a customized PCB acquisition device, which was
specially designed for recording eight channels of bipolar
electrodes, including a Bluetooth communication system and a
3.7 V battery. The signal was measured four times for 5 s to classify
18 hand gestures using an AI model and for 5 s (1 s of rest, 3 s of
gesture, and 1 s of rest) to visually check the sEMG signal.
Separately, for comparison between commercial Ag/AgCl electro-
des and a KS-based sensor, the sEMG signals were simultaneously
measured with a commercially available MP36 system (BIOPAC,
USA) using an EMG signal filter of 30–250 Hz and 60 Hz of a notch
filter.

Gesture recognition experiments
Participants were asked to perform 18 wrist gestures, including
rest (1), static (wrist (8), finger (5)), and dynamic gestures (4).
During the static gesture measurement, the gesture was main-
tained steadily for a certain period, whereas for the dynamic
gesture measurement, the gesture moved constantly over time.
Three participants were involved in the experiment, and one male
participant performed four experiments. The first experiment was
designed to find the best location for the array-based sensor to be
worn on the upper forearm and achieve the most informative
sEMG signals from 18 hand gestures. Four positions of the array
sensor were tested based on the most relevant muscles associated
with the 18 hand gestures. The second experiment was performed
to determine the differences in the degree of gesture recognition
among the participants. All participants were asked to undergo
sEMG signal measurement of 18 gestures at the same sensor
position and re-measure the same signals on different days. For
Experiment 3, the male participant was asked to wear the array
sensor for 72 h without any delamination in between for a long-
term usability test. The sEMG signals of 18 gestures were first
measured to set the baseline for accuracy and repeated every 24 h
for 72 h. In Experiment 4, the array sensor was repeatedly
laminated and delaminated at the same forearm position to
obtain the accuracy of the sEMG signals of 18 gestures to
qualitatively evaluate the reusability test.

Graph-construction algorithm using self-attention
The construction of an input graph has a significant effect on the
performance of GNN models. Therefore, it is necessary to
construct graphs with different shapes depending on the
incoming sensor signals. Previously, a self-attention mechanism48

was proposed to determine the relative importance of each input
segment. Here, the self-attention method is adapted to construct
the graph and is defined as

A ¼ softmax XWT
QXWK

� �
(1)

where WQ;WK 2 Rdfeat�dhid , which are the learnable parameters
with the same dimension size dfeat (input feature dimension) *
dhid (hidden dimension). X 2 Rjnodej�dfeat is the feature matrix of
our multichannel sensor array. jnodej is the total number of
nodes. dfeat is the dimension of hidden nodes in the previous
temporal layer. A 2 Rjnodej�jnodej is a matrix which Aij shows the
relationship weight of sensors i and j. This equation is a part of the
self-attention equation. The matrix A is a weight matrix and each
weight is calculated by considering every channel signals.
Therefore, when applying the GNN, this matrix is then used as
the adjacency matrix. Therefore, our model can adaptively obtain
a different adjacency matrix for each input data by updating WQ
and WK during the training. Since the adjacency matrix is
adaptively constructed with the given input, the model with the
constructed adjacency matrix is robust to long-term noise and can
enhance the quality of identifying dynamic gestures. The intensity
of the adjacency matrix is shown on Supplementary Video 2.

Data processing
The dataset was recorded from three individual healthy subjects
(two males and one female, healthy, age 20–29). The dataset
comprised both the static and dynamic gestures. During the
experiment, subjects were asked to wear the device without
removing it until the last measurement. Each dataset collected
every 3 h is referred to as a ‘round’ comprising 4 repetitions and
each repetition includes 5 s of raw signal data for every 18
gestures (including ‘rest’). To learn diverse temporal patterns that
can be used to recognize short or long hand gestures, the window
size of a round (the amount of a single time-chunk of our input)
was chosen as 250ms. One-hundred samples were collected
during 250ms with a frequency of 400 Hz. The first 100 samples
were obtained using a sliding window as the input unit of the
deep neural network model. The data were sliced with a 95%
overlap of 237.5 ms (95 samples) to obtain five new samples for
the next input unit. Therefore, our input shape became 7
(scale) × 8 (channel) × 25 (time) because 100 (time) samples were
also downsampled. Finally, the last column of our time scale was
dropped to convert the scale into even numbers for the
convenience of processing. The Mexican hat wavelet function
was used to characterize the raw sEMG signal while transforming
it with the CWT. sEMG signals of 144,000 (5 s × 18 gestures × 4
repetitions × 400 Hz) for each channel were acquired for each
round. Eight thousand sEMG signals were collected for each
gesture. Experiments were conducted four times per repetition for
each round. The sEMG signals of 38,000 (144,000/4) were
transformed into ~8300 ((38,000/4) × 7/8) inputs to the model.
The signals are reduced owing to the downsampling and reduced
column of the scale.

Ethical consideration
The experiments involving human subjects were performed with
the full consent of the volunteers. All participants provided written
informed consent. To get preliminary data as a pilot study,
Institutional Review Board of the affiliated university approved the
study (IRB no. SKKU-2022-12-003).
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