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Soft wearable flexible bioelectronics integrated with an ankle-
foot exoskeleton for estimation of metabolic costs and physical
effort
Jihoon Kim1, Prakyath Kantharaju2, Hoon Yi1, Michael Jacobson2, Hyungkeun Jeong2, Hojoong Kim1, Jinwoo Lee1,3, Jared Matthews1,
Nathan Zavanelli1, Hyeonseok Kim 1, Heejin Jeong 2,4, Myunghee Kim2✉ and Woon-Hong Yeo 1,5,6✉

Activities and physical effort have been commonly estimated using a metabolic rate through indirect calorimetry to capture breath
information. The physical effort represents the work hardness used to optimize wearable robotic systems. Thus, personalization and
rapid optimization of the effort are critical. Although respirometry is the gold standard for estimating metabolic costs, this method
requires a heavy, bulky, and rigid system, limiting the system’s field deployability. Here, this paper reports a soft, flexible
bioelectronic system that integrates a wearable ankle-foot exoskeleton, used to estimate metabolic costs and physical effort,
demonstrating the potential for real-time wearable robot adjustments based on biofeedback. Data from a set of activities, including
walking, running, and squatting with the biopatch and exoskeleton, determines the relationship between metabolic costs and heart
rate variability root mean square of successive differences (HRV-RMSSD) (R=−0.758). Collectively, the exoskeleton-integrated
wearable system shows potential to develop a field-deployable exoskeleton platform that can measure wireless real-time
physiological signals.
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INTRODUCTION
The US Bureau of Labor Statistics (USBLS) in 2011 reported more
than 310,000 cases of musculoskeletal disorders (MSD) in the work
environment, despite the decrease in the number, incidence rate,
and median days away from work of injuries and illnesses
involving MSDs over the years since 2011, it only marks a decrease
of 1.5% per year with more than 277,000 musculoskeletal
disorders reported on the work environment in 2018. USBLS
highlights laborers and freight, stock, and material movers are the
most vulnerable class to have musculoskeletal injuries where
overexertion from repetitive action involving squatting and lifting
creates fatigue in workers causing MSDs1. Recent developments of
wearable robots show great potential2,3 in assisting industry
workers, and many wearable robots target walking, squatting4,
and running5–7 by reducing required physical efforts8 to reduce
industrial risks and support post-injury rehabilitation9,10. Because
user interaction with a wearable robot is always diverse in actual
use, it ultimately requires an efficient biofeedback system to
adjust the wearable robot for each user’s need, called personalized
assistance. However, earlier developments show limitations in this
personalization using human-in-the-loop (HIL) optimization. The
HIL optimization identifies a personalized wearable robot para-
meter by directly incorporating the user’s physiological signals to
construct more accurate and efficient human interaction mod-
els11–14. The method includes the estimation of metabolic cost
with indirect calorimetry and a respiratory mask that collects
oxygen intake and carbon dioxide outtake.

With all the efforts to estimate metabolic cost through mask
indirect calorimetry, studies that use commercially available
devices15 require the rigid mask to be well-fitted for accurate
measurement in addition to an antenna communication system
on the user’s back. These bulky systems directly counter the
purpose of the development of wearable robots supporting
workers’ repetitive motion where they take a long setup and
estimation time, are confined to lab settings, and are cumbersome
to wear with a large form factor and heavyweight. In addition,
mask-based indirect calorimetry is slow to determine a physiolo-
gical response16,17, while taking a long time (>3min) than
electrocardiogram (ECG) processing18. It makes the wearable
robot challenging to compute user response rapidly in a potential
field-deployable system. A different approach has been made to
optimize human parameters by estimating cognitive effort with
HRV-RMSSD driven by ECG. An attempt to measure work intensity
with an HR strap is reported19. However, commercial HR detection
devices are intrinsically uncomfortable to wear and prevent the
user’s natural motion range introducing more motion artifacts due
to their rigid form and lack of conformal contact with the skin20.
Further, the inherent manufacturing complexity of epidermal
electronics, specifically electrode fabrication21,22, has been a
critical factor in preventing mass manufacture. Thus, an easily
customizable low-cost electrode fabrication has been introduced
utilizing a high-resolution micromachining tool.
This paper presents a portable soft flexible biopatch with ankle-

foot-orthosis (AFO) as an alternative to the needs of metabolic
cost estimation, discovering the relationship between metabolic
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rate from indirect respiratory calorimetry and HRV-RMSSD from
the biopatch measuring high-quality HR, ECG, and motion. This
system replaces the indirect calorimetry with a low profile, small
form factor, and lightweight soft flexible biopatch (SFB), providing
better comfort and movement advantages. The feasibility of SFB is
validated by comparing it with commercial mask indirect
calorimetry while wearing AFO during a set of squatting, running,
and walking experiments. The ECG quality is validated with a
signal-to-noise ratio (SNR) and HR comparison with a commercial
HR chest strap. Further, the physical durability and stability of SFB
are computationally calculated and experimentally proved. A
manufacturing method to manufacture flexible and stretchable
electrodes via a femtosecond laser processor is described with
dimensional details. The fabrication process shows its superiority
of manufacturability and ease of prototyping in contrast to
conventional cleanroom processed flexible devices.

RESULTS AND DISCUSSION
Overview of an integrated wearable system for estimation of
metabolic costs and physical effort
To monitor the ECG and determine HRV-RMSSD during squatting
and compare with metabolic cost, this study configures an SFB
and a wearable AFO. Figure 1a introduces the overall configura-
tion of the integrated wearable system, where the SFB is attached
to the subject’s sternum to reduce any chest muscle motion
artifact that can cause misinterpretation of bio-signals during
squatting. The location of SFB in the sternum provides a larger
motion range with less motion artifacts and greater compatibility
with other potential electronics that measure other bio-signals
along with AFO. The flexibility of SFB is illustrated in Fig. 1b, where
the electrode has conformal contact with the sternum skin
surface. Figure 1c displays a schematic illustration of multilayered
circuit architecture including 1) soldered flexible printed circuit
board (fPCB) and power supply, 2) battery assembly with magnetic
charging port and switch, and 3) micro-manufactured laser
patterned gold bipolar and a reference electrode on a flexible
and stretchable substrate (9907T, 3M). Figure 1d illustrates the
wireless transmission of ECG, angular velocity, and 3-axis
acceleration data through a Bluetooth-low-energy-enabled circuit
to the android phone during squatting (left) and a brief flow chart
for analyzing the quantitative data. The live squatting demonstra-
tion of wireless data transmission from the biosensor can be found
in Supplementary Video 1. This video shows good connectivity
and reduced motion artifacts during each action. In this study, four
male and two female subjects (aged between 20 to 30 years) use
the AFO exoskeleton and participate in squatting and walking-
running. ECG, HR, and metabolic costs are measured and analyzed
during each session. HRV-RMSSD is calculated from filtered HR,
and the metabolic cost is driven by indirect respiratory
calorimetry. The normalized metabolic cost and normalized HRV-
RMSSD results in a Pearson R correlation of −0.758 with a p-value
of 1.2e−7 (Fig. 1e), a strong negative correlation between
calorimetry and HRV.

Design and characterization of an SFB
Electrode fabrication methods in this study utilize high precision
micro-laser machine (Femtosecond Laser Micro-Machining Sys-
tem, OPTEC), which enables time-efficient electrode manufactur-
ing of large batches with minimized cleanroom use and rapid
prototyping without photolithography. To fabricate electrodes,
polydimethylsiloxane (PDMS) is spun-coated in glass slides,
followed by chromium and gold deposition of 10 nm and
200 nm, respectively. The gold-deposited slide is then patterned
with a micro-machining system. Figure 2 shows the dimensional
details and physical characteristics of electrodes and interconnec-
tors. The bipolar electrode system for SFB is made of three

identical electrodes having patterns with 8.5 cm long and 7.5 cm
center-to-center distance from positive to negative to provide
good ECG signal quality. Supplementary Fig. 1 describes the circuit
board assembly (top) and electrode fabrication (bottom) details.
Each electrode pattern is guided to an appropriate location via
serpentine interconnects for easier construction of the SFB. The
electrode pattern width of 150 µm (Fig. 2a) and the total thickness
of 8 µm (Fig. 2b) from the profilometer (VK-X3000 3D Profilometer,
Keyence) provide enough flexibility and stretchability to maintain
conformal contact with the skin. The details of profilometric data
are represented in Supplementary Fig. 2 with a top-down optical
photo of a single laser-patterned electrode (left) and a profilo-
metric illustration of the electrode with color-matching height
variance (right). The stretchability of electrodes and interconnects
are computationally calculated in finite element analysis (FEA;
Abaqus, Dassault Systèmes) with 30% uniaxial elongation to
estimate its durability under skin stretch during squatting (Fig. 2c,
d). Both electrode and interconnect FEA result under 4%
maximum von Mises stress with 30% uniaxial elongation, sufficient
stress for gold-deposited layers to endure. For experimental
validation, electrodes and interconnects are mounted on a soft
substrate (9907T, 3M) and are loaded on cyclic uniaxial stretching.
The resistance between the two furthest points is measured where
settings are shown in Fig. 2e, f for an electrode and interconnec-
tor, respectively. Figure 2g reports details of resistance change per
load cycle. Despite a slight shift of resistance over time, the
resistance change within a single cycle is less than 0.05 Ω which is
less than 0.1% of change. The electrode test shows little to no
difference with an increase in the strain, which portrays the
durability of SFB against skin elongation during squatting. The
resistance change against uniaxial cyclic loading is minimal less
than 2 Ω. Similarly, the interconnector (Fig. 2h) shows little to no
change with an increase in the strain, which portrays the durability
of SFB against skin elongation during squatting. Zoomed-in
optical image is taken before cyclic loading and after to confirm
little to no delamination via microscope, shown in Supplementary
Fig. 3. An epidermal electronics should withhold 30% of strain due
to the nature of skin elongation limitation23. Supplementary Fig. 4
presents an SFB’s stress-strain curve until the fracture point; the
SFB shows an electric response up to 50% elongation before
turning into a plastic response and finally fracturing at 123% of
extension. The slope of this stress-strain curve reports Young’s
modulus of 500 kPa showing SFB’s capability of maintaining
conformal contact on the subject’s chest under skin elongation.
Patterned electrodes are transferred to a stretchable substrate
with water-soluble tape to fabricate the device. The mainboard is
stacked on top of the power board and connected with copper
wires for corresponding power line pads. The battery assembly is
put aside from the fPCB stack but placed in a position where the
high-frequency antenna is not affected by the conductance of the
battery system. The powered board system is then put on a
biocompatible soft stretchable layer (EcoflexTM Gel, Smooth-On) to
reduce stress on skin attachment, followed by placement on top
of the substrate. The analog inputs are connected to the
corresponding electrode pattern with asymmetric conductive
films (ACFs) using fast-drying silver paint (Leitsilber Conductive
Silver, Ted Pella). The silver paint with ACFs is cured at 60 °C for 1 h
to secure the electric connection fully. The attached ACFs are
routed directly to corresponding electrode pads through the gap
created from a small cut. Lastly, a soft elastomer (EcoflexTM 30,
Smooth-On) encapsulates the device to protect the circuit
electronically and mechanically. An additional device stretchability
test with different stretching speeds has been conducted, shown
in Supplementary Fig. 5, with a detailed view of the ACF
connection and stretchability test. Two different stretching speeds
are used to elongate the SFB at 5 mm s−1. Similarly, the stretching
test result of 2.5 mm s−1 is shown. For both cases, the whole
device has shown minimal resistance change of less than 1%
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overall, and the final cycle proves its ability to return the original
value after 30% elongation. The breathability of the fabric used in
the design of SFB has been compared with other potential fabrics
and materials shown in Supplementary Fig. 6. Supplementary Fig.
6a, b illustrates the experimental setup of the breathability test
calculating the moisture vapor transmission rate (MVTR) by
measuring water evaporation weight through each material for
72 h. The MVTR result shown in Supplementary Fig. 6c indicates
that the 3M 9907T has superior breathability compared to other
elastomers, such as PDMS, Ecoflex, and micropore layers. More-
over, the chosen 9907T’s peeling forces in various humid
conditions are tested to fully secure the SFB from delamination,
where the sample device has been attached to the arm with a
force transducer pulling directly upward (Supplementary Fig. 7).
The fabric maintained up to 1N of peeling force with 1.0 mL of
water drop on the arm, which proves enough attachability to
withhold its position against delamination24. The detailed peeling
energy calculation is reported in Supplementary Fig. 7 with
peeling energy of 70 J m−2 on dry skin and degradation to
40 J m−2 with water drop.

Overview of a robotic ankle-foot system and metabolic cost
estimation
This study uses two degrees of freedom ankle-foot orthosis end-
effector with an active plantarflexion utilizing a tethered emulator
system for the squatting assistance (Fig. 3). Off-board actuator
transmits mechanical power via two Bowden cable tethers
attached to the orthosis. Ankle range of motion is −80° to 50°
in plantarflexion and −20° to 20° in inversion-eversion, with
respect to the neutral standing position. Plantarflexion occurs
when both toes rotate in the same direction. The squatting
trajectory is designed to assist the subject both while ascending
(moving up) and descending (moving down) (Fig. 3a). During
these phases, the assistance or desired torque is proportional to
the ankle angle, where the proportional constant is changed
based on the condition. This controller was previously tested and
has also been used to personalize the assistance using human-in-
the-loop optimization (Fig. 3b)4,11. Figure 3c illustrates the whole
system of SFB and AFO with indirect mask calorimetry (K5,
Cosmed). The AFO and SFB are attached to participants’ sternum
after cleaning with isopropyl alcohol and proper drying. The

Fig. 1 Overview of a soft flexible bioelectronic system (SFB) integrated with an ankle-foot-orthosis (AFO) exoskeleton to estimate
metabolic costs and physical effort. a Photo of a subject wearing an SFB and an AFO. b A series of photos of the skin-mounted SFB showing
conformal lamination and soft contact to the skin. Scale bar: 1 cm. c Rendering image of an exploded view of the SFB with integrated
components. Scale bar: 1 cm. d Photo of a subject who is squatting (left) and a list of wireless wearable sensors in the SFB with measurable
physiological data. e Plot showing the relationship between normalized HRV-RMSSD from the SFB and normalized metabolic cost from a
calorimetric respiratory mask.
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powered SFB is connected to a nearby android device to record
raw ECG and motion signals. In addition, respiratory measures are
recorded to determine the metabolic cost of squatting. The
indirect respiratory calorimetry measures oxygen intake and
carbon dioxide outtake to calculate the estimated metabolic
cost25 from Eq. (1).

EstimatedMetabolic Cost ¼ 16:58
60

´ VolumeO2 þ
4:51
60

´ VolumeCO2

(1)

The estimated metabolic costs are divided by the subject’s body
weight and then normalized to compare with HRV-RMSSD. The AFO

emulator is worn on the subject’s dominant limb during squatting.
The participants are required to maintain a standing position for the
baseline condition. They are asked to squat under six conditions in
random order, including no power AFO condition and no assist
condition by AFO. After squatting sessions, the participants are asked
to remove AFO and perform walking and running. The orders of
walking and running are randomized for every subject. In contrast to
squatting, resting times for walking and running are 3min and rest.

Experimental design and validation of an SFB integrated with
a wearable system
Details of the squatting protocol of a single session are illustrated
in Fig. 4a (left) with individual squatting timing. For both

Fig. 2 Design and characterization of an SFB. a Illustration showing the dimension of an array of stretchable electrodes and interconnectors.
Scale bar: 1 cm (main), 2 mm (inset-left), and 1mm (inset-right). b 3D profilometer image of the stretchable electrode in (a). Computation
modeling results showing the electrode’s stretchability (c) and the interconnector’s stretchability (d) under 30% tensile strain. e, f Experimental
validation of the stretchability of an electrode (e) and interconnector (f) during cyclic loading with 30% strain. Scale bar: 1 cm.
g Measurements of electrical resistance of the electrode during cyclic loading (100 cycles; left) and 30% strain (right). h Measurements of
electrical resistance of the interconnector during cyclic loading (100 cycles; left) and 30% strain (right).
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squatting and walking-running, records of raw ECG data via SFB
are filtered with a bandpass filter. The implementation of this
algorithm mentioned in the method section on a representative
dataset collected by the SFB is provided in Supplementary Fig. 8.
The filtered ECG and peak data are filtered again with a dynamic
threshold line to eliminate incorrect ECG R peaks26. HR is graphed
with finalized ECG peaks and then averaged to show a smooth
curve. ECG signal quality is a major factor in determining the
feasibility of the SFB. In response, SFB provides overall SNR higher
than 25 dB and clear distinguishable ECG R peaks for all activities,
including standing, squatting, walking, and running (Fig. 4b).
Total captures of a single squatting session and walking-running
session are shown in Fig. 4c, and 30 s capture (top) with
normalized ECG peaks during squatting and running gives clear
HR and provides respiration rate (RR) for other potential
calculations. Smoothed HR graphs (middle) show an increase in
HR during squatting and walking-running, where running shows
the highest average HR, followed by squatting and walking.
Supplementary Videos 2 and 3 show examples of walking and
running, respectively, with the soft, flexible biopatch on the
subject’s sternum. They illustrate mechanical stability during
actions, reduced noise from conformal contact, and good ECG
signal quality. The y-axis acceleration motion data from the IMU
sensor (bottom) are distinguished with different colors for each
action and are used to classify motion through machine learning.
More 30 s ECG peak data and average HR outcomes during
squatting from other subjects are represented in Supplementary
Fig. 9 to show device compatibility from subject to subject. Before
calculating the HRV-RMSSD, the ECG quality is compared against
one of the commercially available ECG straps (Polar H10, Polar
Electro). The red graph portrays the HR curve from SFB and black
dots from the commercial ECG strap (Supplementary Fig. 10). At
the beginning of squatting, the HR from SFB and Polar H10 shows
a more significant difference due to the smoothing of a sudden
HR change in the algorithm but soon converges as HR increases
and reaches a steady state. The comparison results R2= 0.961 for
n= 447 with a p-value of 0.002, and 90% of HR difference data
are scattered in one standard deviation range between −2.27 and
1.72 bpm.

HR detection algorithm
The ECG signal is filtered with a first-order Butterworth bandpass
filter with cutoff frequencies of 0.5 and 60 Hz. A moving average
filter is then applied by convolving the signal with a sequence of
length 0.15Fs and magnitude (0.15Fs)−1. An RMS envelope is
employed to reject periods of high noise. To detect a QRS
complex, the highest local peaks spaced at least 200 milliseconds
apart are identified as fiducials. These fiducials are compared to a
threshold defined in Eq. (2):

Threshold ¼ NoiseLevelþ 0:25ðSignalLevel� NoiseLevelÞ (2)

where NoiseLevel and SignalLevel are estimates of the noise and
signal level, respectively27. These parameters are dynamically
updated after each fiducial is classified such that if the peak is
above the threshold shown in Eq. (3), if not, in Eq. (4).

SignalLevel ¼ 0:125 Peakþ 0:875 SignalLevel (3)

NoiseLevel ¼ 0:125 Peakþ 0:875 SignalLevel (4)

Suppose no QRS is detected within 166% of the average R
peak interval for the previous nine beats. In that case, the
maximal fiducial within this period is added as a QRS complex if it
exceeds half the threshold value. Finally, fiducials within 360
milliseconds of a QRS that exceed the threshold are rejected if
the slope is less than half the average of the previous 9 QRS
complexes, which indicates that it is likely a T wave with
abnormally high amplitude. The HRV is typically measured for
longer than 15 min for accuracy, but in this study, HRV-RMSSD is
used for a short-term interval of 30 s28. The average RMSSD
calculated from the 30 s intervals from the last 2 min of each
squatting condition is compared with the steady-state metabolic
cost. A single value is calculated to compare HRV-RMSSD with
estimated metabolic cost to represent energy expenditure.
Because metabolic cost is the real-time varying quantity and
estimated metabolic cost increases for the first half of squatting
then convergences into a single value, the converged filtered
metabolic cost value in the last 2 min of the squatting session is
used to compare with normalized HRV-RMSSD. For the cleaning
and calculating HRV-RMSSD values, neurokit229 library is used for
python after ECG filtering. The representative subject’s ECG, HR,

Fig. 3 Overview of a robotic AFO system and experimental setup. a Comparison between the actual torque (blue) and desired torque (orange)
according to ankle angle. The angle-torque relationship compares the torque trajectory commanded to the low-level controller and the
corresponding torque observed at the exosuit. b Illustration of the experiment setup, where the subject wears the AFO exosuit on the right foot, the
SFB measuring ECG, and the mask-based calorimetry device on the face. c Detailed system architecture for the mid-level and low-level controller.
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RR, and HRV-RMSSD data from the single session are shown in
Supplementary Fig. 11, including standing, squatting, walking,
and running with a gradient of 0–4.

HRV analysis and motion classification via machine learning
The designed model shows 91% test accuracy and 97% training
accuracy (training and loss curve in Supplementary Fig. 12). In

Fig. 4 Experimental setup and performance validation of an SFB integrated with a wearable system. a Timestamp and illustration of
squatting and walking-running experimental protocols. The color saturation on the right side indicates elevation changes. b Representative
ECG data showing 3 s of peak shapes and SNR during standing, squatting, walking, and running with an AFO. No significant degradation and
motion artifacts in the signal qualities are observed during standing and running. c Filtered and normalized ECG data during 30 s of squatting
and walking-running session (top), moving average of HR for squatting and walking-running conditions (middle), and vertical axis
acceleration during activities, including standing, squatting, walking, and running (bottom).
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addition, the classification report shows overall accuracy of 88%
(Fig. 5a), with the lowest accuracy of 74% from running and 82%
from elevated walking. Standing and squatting both present
accuracy of 99%. The details of the convolution process are
summarized in Fig. 5b. The high accuracy of classification between
walking, running, standing, and squatting shows that the model
can successfully identify the dynamically distinct conditions. The
reduction in the gradient condition’s accuracy showed that the
model is not confident in differentiating between gradients. This
can be due to the three-axis accelerometer, and future studies can
explore the usage of a gyroscope in a combination of an
accelerometer and a Madgwick filter30 to estimate the Euler angle
and use the information as part of motion classification. The raw
metabolic cost is also measured and filtered with a fourth-order
bandpass filter27,31, as shown in Fig. 5c. Each subject’s metabolic
cost for every squatting condition is compared against the HRV
values. Further, perceived effort (PE), a clinical term to determine
the hardness of action described with numbers between 6 and 20,
is used for each subject to record the user’s perceived physical
effort feedback (Borg rate perceived effort scale)32. The user’s
perceived efforts are subjective and vary substantially from
subject to subject. This could be a reason for a moderate
correlation. Yet, the quantified perceived effort by each subject

and its relationship to HRV-RMSSD indicates the overall partici-
pants’ ability to recognize the step loading from the AFO. The
Pearson R correlation between normalized metabolic cost and
normalized PE shows R=−0.689 with a p-value of 6.6e−6 and an
acceptable negative correlation (Fig. 5d). Table 1 compares recent
exosuit studies to estimate metabolic costs and physical effort.
This summary shows the limitation of current studies using
respirometer and HRV studies due to their form factor and
application, and there yet has not been an attempt to relate HRV-
RMSSD and metabolic cost.
In conclusion, this work reports a wearable bioelectronic system

that integrates a soft biopatch, an ankle-foot exoskeleton, and a
machine-learning algorithm to estimate metabolic costs and
physical effort. The miniaturized, all-in-one wearable biopatch
can measure highly accurate metabolic rates to replace the
existing bulky, heavy, and cumbersome tools. The soft biopatch
can detect motion hardness, cognitive effort, and physical effort as
metabolic costs and energy expenditure in exosuit studies. In
addition, the skin-conformal device offers intimate contact with
the skin for a high-quality recording of ECG and HRV-RMSSD.
Unlike the conventional mask-based calorimetry, the wearable
system, including the SFB and AFO, provides a high SNR (>25 dB)
on different activities (walking, running, and squatting) and high

Fig. 5 Data classification via machine learning and estimation of metabolic costs and physical effort. a A confusion matrix showing data
from the IMU sensor classifying six different motions (running, elevated running, walking, elevated walking, standing, and squatting) with an
overall accuracy of 88%. b Flow chart representing a spatial CNN model with five layers of convolutions with filters of decreasing the
dimension size and two layers of average pooling. c Metabolic rate from oxygen intake and carbon dioxide exhale measured with the
calorimetric respiratory mask. Raw data are filtered with a bandpass filter, and steady-state values are used to compare with normalized HRV-
RMSSD. d Normalized physical effort (PE) compared with normalized HRV-RMSSD where PE represents the quantitative description of
hardness for each trial by subjects measured using the Borg perceived exertion scale (6–20). The measured Pearson R correlation is −0.689
(p-value: 6.6e−6).
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Pearson R correlation (−0.758, p-value: 1.2e−7)33 to steady-state
metabolic costs. Future studies will focus on a large-group
rehabilitation exosuit study targeting real-time optimization of
human parameters. Also, the portable biopatch will add additional
functions to measure muscle activities, temperature, and stress
levels, providing an insight into real-time human-in-the-loop
optimization.

METHODS
Preparation of a soft flexible biopatch
This study develops an SFB with multiple electronic components,
wireless flexible circuits, and stretchable electrodes. The fPCB,
designed in this work, provides mechanical flexibility and low
Young’s modulus for offering conformal contact with the skin. The
fPCB is composed of 2 boards: the mainboard and the power
supply board. The mainboard is a 25mm× 14mm size double
copper layer with a 12.7 µm polyimide separation and immersion
gold surface finish. The power supply board is an
18mm× 10.2 mm double copper layer with the same separation
and surface finish resulting in an overall thickness of 0.5 mm. The
fPCBs are purposefully separated into two boards to reduce
system’s rigidity by providing more freedom to bend and less
volume by stacking the main board on top of the power supply
board (Supplementary Fig. 13). The main board consists of 4
discrete sections: ECG analog to digital converter, microprocessor,
IMU motion sensor, and Bluetooth Antenna (Supplementary Fig.
13a). The analog-to-digital converter (ADS1292, Texas Instruments)
receives raw voltage from bipolar electrodes from the skin. Then it
transfers the signal into a digital signal along with the IMU sensor
(IMU20948, InvenSense). The transferred digital signals are
processed in a microprocessor (NRF 52832, Nordic) and trans-
mitted through a high-frequency (~2.4 GHz) low-power Bluetooth
antenna. The power board receives 3.7 V input from a battery
(3.7 V, 40 mAh, 1.13 g). Then it transforms into two different power
lines via a 1.8 V regulator (S1318A18, ABLIC) and a 3.3 V regulator

(S1318A33, ABLIC) to power the mainboard. More lists of
functional microchips used in making the fPCB mainboard and
power supply board can be found in Supplementary Table 1.

Mechanical reliability
Because human skin has various curvatures, the physical proper-
ties of SFB, especially the flexibility of the fPCB requires it to
exceed at least 15° to have conformal contact with the sternum.
To test the flexibility, the fPCB is tested with a cyclic bending test
(Supplementary Fig. 14). A fully soldered mainboard is mounted
on a custom-built motorized test stand (Supplementary Fig. 14a),
and resistance between the two furthest ground pads is measured
during cyclic bending of 15° to −15° for 100 cycles. Overall, there
is no shifting of resistance or sudden failure; a consistent
fluctuation range between 0.35 Ω and 0.38 Ω shows the sufficient
quality of fPCB to be used on human skin (Supplementary
Fig. 14b).

Battery lifetime
The battery in the SFB (3.7 V, 40 mAh, 1.13 g) can easily be charged
with a magnetic charging port and designated charger. The
charger has a USB type-A for its wide compatibility, and a physical
switch controls the power status of the SFB. A fully charged
battery can be used for over 9 h of continuous operation without
disconnection and only requires about 30min of charging
(Supplementary Fig. 15).

Human subject study
A set of squatting, walking, and running studies are conducted
with fabricated SFB, AFO, and mask indirect calorimetry. This
human pilot study includes six participants; Their age, height (cm),
weight (kg), and gender - 29/177/87.54/male, 21/185/77.1/male,
26/185/91/male, 30/173/68/male, 23/157/57/female, and 27/167/
57/female. The study followed the approved IRB protocol from the

Table 1. Comparison of recent exosuit studies for estimation of metabolic costs and physical effort.

Reference Metabolic
cost
estimation

HRV-
RMSSD
calculation

Biosensor
form factor

Metabolic cost to
HRV-RMSSD
correlation

Signal-to-
noise
ratio (dB)

Device Activity Application

This work ✓ ✓ Soft, low-
profile
biopatch

−0.758 32.19 (ECG) In-lab assembled ECG
device + Commercial
calorimetry

Walking,
running,
squatting

Squatting
exoskeleton

38 - ✓ Lead II
wired ECG

N/A Not
specified

Commercial Walking Robot-
assisted gait
training

39 - ✓ Lead II
wired ECG

N/A Not
specified

Commercial Passive leg
movement

Passive
lower limb

40 - ✓ Portable lead
II wired ECG

N/A Not
specified

Commercial Walking, mild
training

Robotic
locomotor

5 ✓ - - N/A N/A Commercial Walking Walking
exoskeleton

41 ✓ - - N/A N/A Commercial Walking Lower limb
exoskeleton

42 ✓ - - N/A N/A Commercial Walking,
running

Hip flexion
assistant

43 ✓ - - N/A N/A Commercial Assisted
walking

Oscillator

12 ✓ - - N/A N/A Commercial Walking Hip
assistance
exoskeleton

44 ✓ - - N/A N/A Commercial Loaded
walking

Walking
exoskeleton
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University of Illinois-Chicago (#2020-0563). All participants agreed
and signed the consent form to allow the experiment procedure.
In this experiment, each squatting phase is done for 4 min with
the subject squatting for 2 s (1 s descending and 1 s ascending)
and standing for 6 s before and after squatting, followed by
walking and running with different magnitudes of elevation
(Supplementary Video 4). After each condition, the subjects are
asked to rest for 12min with a ratio of 1:3 to squatting time34. The
AFO emulator is worn on the subject’s dominant limb during
squatting. All squatting session is controlled by a metronome and
timer display on a screen. These devices act as audio and visual
cues for the squat and rest. The subjects are asked to perform a
full squat or the deepest squat possible with a distance between
ankles approximately shoulder-width apart35,36. The squat posture
and leg position are determined prior to the start of the study
based on the subject’s capability and biomechanical range and are
fixed for the complete study. During the study, each squat is
observed, and additional verbal instructions are given if there is
any deviation or inconsistency during the squat with leg width or
squat depth to achieve the predefined squat posture and leg
position.

Classification method
The 3-axis acceleration data of six subjects are processed and
segmented into splits of 0.5 s. These segmented data are hand
labeled for six conditions (running, elevated running, walking,
elevated walking, standing, and squatting). The labeled data are
then split in 80:20 for train and testing, respectively. The set is
then loaded to pytorch37 dataloader module, and training data
order is randomized for each training epoch. To perform activity
classification, three convolutional layers are selected as the
training of model, followed by the max-pooling layer and
dropout layer. Three more convolution layers then follow these
layers. Finally, a fully connected layer with 6 output is used. For
each layer, the output is activated using reLU activation expect
for the final layer, the activation is soft-max. The convolution
layer has one stride, and the training is performed in the batch of
50 with cross entropy loss and adam optimizer with a learning
rate of 0.001. The model and training are built using pytorch
library, and each iteration training time is 15 s (wall clock time)
using GPU (Geforce RTX 2060 super, NVIDIA). During the training
process, the training and test loss and accuracy for each epoch
are recorded. The model with the best test accuracy is used to
report results.

Robotic AFO setup
The setup for the squatting assistance uses an AFO emulator,
composed of high and low-level controllers and actuators. The
high-level controller generated desired torque using an impe-
dance curve shown in Fig. 3a. There are ascending and
descending parameters where two parameters control the torque
profile. The ankle angle and applied torque were measured using
a load cell and the rotary magnetic encoder. Using the desired
torque, the low-level controller conducted a torque control and
commanded control input, desired velocity, to the servo actuator
(Humotech®). The power and signal were transmitted through
wires to the AFO end-effector.

DATA AVAILABILITY
The data that support the findings of this study are available in the Supplementary
Information of this article.
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