
ARTICLE OPEN

Epidermal piezoresistive structure with deep learning-assisted
data translation
Changrok So1,10, Jong Uk Kim2,3,10, Haiwen Luan 3,10, Sang Uk Park 1, Hyochan Kim1, Seungyong Han4, Doyoung Kim 1,
Changhwan Shin 5, Tae-il Kim 2,6, Wi Hyoung Lee7, Yoonseok Park8, Keun Heo9, Hyoung Won Baac 1✉, Jong Hwan Ko 1✉ and
Sang Min Won 1✉

Continued research on the epidermal electronic sensor aims to develop sophisticated platforms that reproduce key multimodal
responses in human skin, with the ability to sense various external stimuli, such as pressure, shear, torsion, and touch. The
development of such applications utilizes algorithmic interpretations to analyze the complex stimulus shape, magnitude, and
various moduli of the epidermis, requiring multiple complex equations for the attached sensor. In this experiment, we integrate
silicon piezoresistors with a customized deep learning data process to facilitate in the precise evaluation and assessment of various
stimuli without the need for such complexities. With the ability to surpass conventional vanilla deep regression models, the
customized regression and classification model is capable of predicting the magnitude of the external force, epidermal hardness
and object shape with an average mean absolute percentage error and accuracy of <15 and 96.9%, respectively. The technical
ability of the deep learning-aided sensor and the consequent accurate data process provide important foundations for the future
sensory electronic system.
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INTRODUCTION
Somatosensory systems, such as mechanoreceptors and noci-
ceptors located throughout the body’s surface, play critical roles
in detecting physical stimuli from the environment. Any damage
of such receptors leads to inaccurate translation of the stimuli
and thus exposes the individual to potential serious health
hazards such as hyperalgesia1,2 and post-burn pruritus3. An
emerging class of artificial tactile systems that mimic the sensing
modalities of receptors offers versatile functions for the
transduction of dynamic stimuli with widespread applications,
including artificial electronic skin4,5, haptic interface6,7, and voice
recognition8,9. Recent examples of these prominent systems
combine exploratory efforts in materials (e.g., metal, semicon-
ductor, nanomaterials, liquid metal, and carbon materials),
transduction mechanisms (e.g., capacitive, piezoelectric, and
piezoresistive), and algorithmic methods to interpret simulta-
neous forms of varying stimuli. For instance, the tactile sensors
based on two interlocked nanofibers10, micro-structured pyramid
array11, and three-dimensional piezoresistors12 have demon-
strated various abilities to extract separate force parameters (e.g.,
pressure, shear, bending, and/or strain) from combinatorial and
simultaneous stimuli. Although well configured for the sensitivity
that is often beyond that of the human skin’s sensing threshold,
a linear response within a short sensing range and complicated
algorithmic interpretations of the sensing data represent key
limitations of sensors in such platforms. Many factors including
complex stimulus shape/magnitude and various moduli of the
skin significantly affect the electrical performance of sensors,

making data interpretation abstruse. This also requires the
calibration process of each tactile sensor per usage, which is
another disadvantage.
Recent research involving methods to analyze dynamic and

varying stimuli have aimed to implement machine learning
models, such as hidden Markov13, K-nearest-neighbors14, and
deep convolutional neural networks15,16 for signal processing. The
resulting tactile systems with artificial neural networks offer
potential use in gesture recognition and voice detection, all of
which are difficult to analyze with conventional and complicated
algorithmic data processing, where the accuracy of recognition is
reduced by a nonlinear sensing response, undesired parasitic
inputs, and interfering noise. In one example, the integration of a
convolutional and a sparse neural network for the visual sensing
data improved the pattern recognition in computer vision,
particularly with images that are noisy and under- or over-
exposed to light irradiation17. Similarly, an in-sensor adaptive
learning capability classified the real-time gesture through the
hyperdimensional computation of electromyography18. However,
in these machine learning-aided tactile systems, classification of
static body positions lacks essential capabilities of cutaneous
receptors, where the system fails to differentiate not only complex
external stimuli, but also the physical conditions (e.g., modulus
and hardness) of the skin.
This report demonstrates a deep learning-aided ultrathin

(<20 µm) and flexible tactile system that uses the piezoresistive
single-crystalline silicon nanomembrane (SINM) to capture multi-
ple external stimuli and assess the physical conditions of the
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regions of interest (Fig. 1a). The resulting system provides
essential capabilities in high sensitivity and reliability, owing to
the large gauge factor of SINM, for the prediction of (1) the
magnitude of the external force, (2) the hardness of the attached
sensor’s substrate, and (3) the shape of the stimulating object, all
from the associated electrical response obtained from the sensor.
Furthermore, to ensure accurate prediction of the aforemen-
tioned characteristics when compared to the conventional
spectrogram-based model, we designed a customized deep
neural network that processes the input signal transformed by
the continuous wavelet transform (CWT) (Fig. 1b). Thus, the key
feature of this system is the acute response and analysis of the
physical external stimuli with the nonlinear and dynamic
experimental condition, which is not available from traditional
sensing systems. Our system would be potentially adaptable
across a wide range of applications that include artificial
prostheses, robotic interfaces, electronic skins, and structural
health monitoring.

RESULTS
Piezoresistive mechanosensory system
The fabrication of the artificial mechanosensory system exploits
the concept demonstrated for the flexible piezoresistive sensors,
where the boron-doped SINM on a thin polyimide substrate
(thickness of 12.5 µm) offers a large gauge factor, ranging from 20
to 10012,19,20 (Supplementary Fig. 1). The SINM in this platform is
typically in the [110] orientation, due to the sensitivity that is
roughly ten times higher than that of the [100] orientation.

A representative boron-doped SINM piezoresistor (200 µm length
and 10 µm width) in Fig. 2a, b shows effective gauge factors of
(~50 and −15), comparable to the previously reported sensor with
a doping concentration of ~5 × 1018 cm−3, for the longitudinal
tensile and horizontal compressive strain, respectively21. Here, the
Poisson effect in the latter case results in the contraction of
the substrate, thereby reducing the resistance of the SINM. As the
length of the piezoresistors was aligned to the longitudinal
stretching direction, the longitudinal response in the change of
resistance is more evident than the horizontal response risen from
the Poisson effect (Supplementary Fig. 2). The [100] oriented SINM
shows the fractional change of resistance of less than 2 % (Fig. 2b),
due to the relatively small shift of the heavy and light hole energy
band in a k-space, and the negligible redistribution of holes22,23, for
both tensile and compressive strains. The mechanical modeling
theoretically verifies the intrinsic gauge factor for the [110]
oriented piezoresistor (Fig. 2c and Supplementary Fig. 2). When
the [110] oriented piezoresistor is subject to strain from horizonal
and longitudinal stretching, the modulus mismatch between the
substrate and SINM yield strain values of εSINM=−0.31% at 1%
horizontal stretching strain and εSINM= 0.98% at 1% longitudinal
stretching strain, returning an intrinsic gauge factor of ~50 (ΔR/
R0= GF × εSINM (%), Supplementary Fig. 2b) for the SINM. Accord-
ing to the strain contours, the strain distribution in the silicon
piezoresistor becomes more uniform outside its junctions to the
gold interconnection (Supplementary Fig. 2c). The sensor in this
platform further verifies the minimal electrical hysteresis (<0.1%) as
shown in Fig. 2d, where the strain response under loading and
unloading is consistent.

Fig. 1 Conceptual schematic and block diagram of the operating piezoresistive system. a The schematic illustrates the mechanical
activation of sensory receptors in the surface of the skin and associated neuronal action potential that results in the interpretation of stimuli in
the somatosensory cortex (left). The artificial sensor with computer neural network yields the machine-aided recognition of the different
stimulator types and of the mechanical modulus to which the sensor is attached (right). b Block diagrams compare the sequence of the
stimulator recognition in the conventional (above) and the deep learning-aided (below) artificial sensing system. The latter includes a neural
computer network that enables the classification of the digitized output pattern from the flexible piezoresistive sensing module.
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The strain gauge in a Wheatstone bridge configuration is
preferable in minimizing the interfering temperature input, and
integrating the voltage follower before the data acquisition
system24,25. Here, the magnitude and sign of the voltage output
correspond to the quantity and type (i.e., compressive and tensile)
of the stimuli, respectively. However, the [110] oriented SINMs
Wheatstone bridge’s key limitation become apparent when the
device produces identical voltage outputs at different stimuli
conditions (e.g., x-axis concave and y-axis convex bending
conditions presented in Supplementary Fig. 3, left), leading to
unclear interpretations. Figure 2e shows the fabrication procedure
to overcome this limitation through the multiple transfer printing
techniques that align [100] and [110] oriented SINM in an identical
longitudinal direction (Supplementary Fig. 4). The resulting
system, where sensing elements with different gauge factors are
integrated in a Wheatstone bridge configuration (Fig. 2f, g), can
discern between bending along the y-axis and x-axis (Supple-
mentary Fig. 3, right). Moreover, the proposed bridge configura-
tion results in different voltage outputs between the longitudinal

and horizontal stretching conditions (Supplementary Fig. 5a). The
voltage gauge factor of −1.8 and 0.4 for the former and latter,
respectively, are consistent with the analytically calculated
sensitivity using the strain response of a single resistor, as
described in the method section (Fig. 2h). In the case for the [110]
oriented SINMs in a proposed Wheatstone bridge configuration,
the same gauge factor associated with the four resistors yields
minimal strain effect undergoing horizontal and longitudinal
stretching (Supplementary Fig. 5b).
The fatigue cycling test depicted in Fig. 2i is paramount in

confirming the mechanical and electrical robustness of the sensor
due to the intrinsic brittleness of the silicon material, and the
accumulation of strain during mechanical deformation. The test
result of the sensor withstanding up to 1000 bending cycles with
bending radii ranging from 16.5 to 9 mm shows negligible
changes in the output voltage (Fig. 2j and Supplementary Fig.
6). Here, the calculated strain (εcal= V (output voltage)/1.8
(longitudinal voltage GF) at each bending radius, ranging from 9
to 16.5 mm, along with the corresponding bending strain (ε, refer

Fig. 2 Behavior of the piezoresistive sensor under mechanical deformation. a Optical image of the single crystalline silicon piezoresistors in
two orientations, [110] and [100], yielding sensitivity differences. b Fractional changes in resistance as the function of longitudinal and
transverse strain variation; the slope represents the sensing behavior and gauge factor. c Computed strain distributions in a piezoresistor for
the 1% strain, applied to the flexible polyimide substrate, in the horizontal (up) and longitudinal (down) direction. d Response of the [110]
silicon piezoresistor to the application and the release of longitudinal strain. e Schematic of the fabrication of the strain gauge in a
Wheatstone bridge configuration using two [110] and two [100] silicon piezoresistors on a 12.5 µm thick polyimide substrate. f Exploded view
highlighting the key sensing element and functional layers of the strain gauge in a thin sheet geometry with total thickness of ~15 µm.
g Optical photograph of the piezoresistive sensor. The inset shows an enlarged view of the red dotted box showing the piezoresistors in a
Wheatstone bridge configuration. h Changes in output voltage from a Wheatstone bridge as the function of longitudinal and transverse strain
variation. i Optical photograph of the strain gauge during cycles of bending and stretching. j Output voltage from a Wheatstone bridge at
different stages of fatigue testing, which involve 1000 cycles of bending at a different radius, as indicated in the legends. k Computed strain
distribution of metal interconnection bent with a critical radius of 0.78 mm.
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to Eq. 5 in “Methods” section) match the results (εmax Au and
εmax Si) from the finite element analysis (FEA) modeling
(Supplementary Fig. 7a, b). The FEA indicates that the minimum
bending radius before reaching the fracture limits of silicon and
gold is less than 1mm, which is well beyond the range of
bending radius under normal operating conditions (e.g.,
16.5–9mm). When the piezoresistive structure is under bending
deformation, the maximum strain in the gold interconnects, well
below its fracture threshold, occurs at the junction between the
gold interconnect (εmax Au) and Si piezoresistor (εmax Si) as detailed
in Fig. 2k and Supplementary Fig. 7c, respectively. The mechani-
cally robust construction and electrically reliable operation comply
with previous sensors tested using a similar sensing element and
substrate12,19,20.

Deep learning-aided data regression
The output signal from the sensor (Fig. 3a) yields a non-linear
response to the magnitude of the exerted physical external stimuli
of the force gauge (Mark-10) and varies between the different
hardness of the target substrate where the sensor is attached. Due
to unpredictable outputs measured in the nonlinear response
regime, most of the conventional sensors suffer from a limited
operation range where only a simple and linear relationship can
be determined for specific parameters (e.g., magnitudes of
pressure, bending, stretching) without ambiguity (Fig. 3a). Here,
when the sensor attached to six distinct substrates of different
hardness (hardness of shore A; 4, 8, 38, 58, 64, 69) is subject to an
external normal force, the device yields a non-linear response as
depicted in Fig. 3b, where the hardest substrate (shore A 69)
produces the slope of 21 Ω/Pa from 0 to 0.1 kPa and 4 Ω/Pa from
0.1 to 1 kPa.
To address and overcome these limitations, we employed a

deep learning-aided data processing technique, where a deep
neural network serves as a nonlinear function approximator that
speculates unknown nonlinear parameters by accessing and
employing known conditions into its prediction value. In this
scenario, a simple sequence of fully connected layers (i.e., a
conventional vanilla deep regression model) is not optimal for
the training of complex relations and its tasks due to the dilution
of early-stage information and the deluge of these data as the
model deepens and widens26,27 (Supplementary Fig. 8). In order
to resolve the issue of information dilution, we developed a
customized architecture based on the stacking structure of the
DenseNet model28. Each layer in this model accepts the inputs of
the preceding layers’ feature maps while also passing on its own
feature maps to the subsequent layers as their respective inputs.
By applying this structure to a network with L layers, the number
of connections between layers increases from L to LðLþ1Þ

2 . This
result reinforces the gradient flow, thus preventing the dilution
of early-stage information. Furthermore, our model is able to
regulate the overflow of information by configuring the custom-
group dense operation to independently conduct each group of
input features, similar to group convolution29. This establishment
of an independent structure of the group dense operation
accommodates each group to focus on different patterns in the
input signal, preventing the overflow of information.
Inter-group exchange of information cannot be achieved by

simply combining two architectures as a stacking structure of
sequential group dense layers. To take advantage of both
architectures without limiting the interaction among the groups,
we designed our model as a sequence of blocks with two distinct
inputs; (1) ‘input 1’ from the feature maps of the preceding layer,
and (2) ‘input 2’ from the feature maps of all the anteceding
layers except for input 1, as shown in Fig. 3c, d. Based on this
model, an initial architecture called Block structure A is
constructed using input 2 as the input for all groups, while
dividing input 1 into separate groups. All groups in the blocks

then can process other groups’ features by sharing all the
preceding feature maps. They also extract distinct features
through individual foci on each group’s newly generated feature
maps. Therefore, by all the residing groups in the blocks
processing the features of input 1 and input 2, our model
effectively fuses both architectures of the stacking and group
dense structures.
The further modified structure (i.e., structure B), shown in

Fig. 3e, overcomes the limitations of the structure in Fig. 3d, such
as the overhead of copying and concatenating of input 2 into all
groups in the forward path. All connections from input 2 in
structure B is designed to be equivalent to those in structure A.
This symmetry can be obtained by supplying input 2 into a
general dense operation with a configured output the same size
as the output generated from input 1 in the group dense
operation, followed by adding the two outputs together. Here, we
chose the number of groups as six. With the initial channel size of
the first dense layer configured to 36, the subsequent block’s
constant, k, is incremented to be defined as 36 × (k+ 1), where k
ranges from 1 to 5.
To evaluate the prediction performance of the proposed

method, 180 sample data (30 samples × 6 substrates) were split
into the train/validation/test sets with ratios of 4:1:1. For this
evaluation, the data sets include three dependent variables:
sensor output, substrate hardness and the location of directly
applied pressure to the sensor. The prediction determines one
variable from two other given nonlinear variables. Each known
parameter functions to complement the other, where the
unknown variable is calculated and determined by the given
two variables. In a scenario where the sensor output value and
the applied pressure are known, the model can accurately
resolve the hardness of the substrate and vice versa. The mean
absolute error (MAPE) was also conducted to evaluate the
prediction accuracy for the regression problem with the test
datasets (Supplementary Table 1). Figure 3f–i shows epoch-loss
graphs and scatter plots for the predicted hardness and the
sensor output. The results shown in Fig. 3f, g indicate the
convergence of our model across the entire substrate hardness
range from shore A 4 to 69 and the varied sensor output by
stimulating the normal force from 0 to 1 kPa, respectively. By
effectively learning the relationship among the three para-
meters, we demonstrated that our model accurately predicts
the target substrate hardness and the sensor output with MAPE
13 and 4.14 (Fig. 3h, i), outperforming the vanilla dense model
with MAPE 29.6 and MAPE 20.28 (Supplementary Fig. 8c, e). We
report the results, comparing other existing algorithms in a
metric of MAPE (Supplementary Table 2).

Deep learning-aided data classification
The time–series sensor output under multi-point stimulus condi-
tions is determined by the nonlinear relationship among the
parameters (e.g., stimulus magnitude and substrate-hardness
sensor output) at each stimulus point. The classification of a
shape using the emitted signals of complex stimuli requires a
data-driven method due to the complexity of designing a logic
algorithm. By utilizing a deep learning-based classifier model, the
joint system (i.e., sensor – signal processing – deep learning) can
effectively classify objects based on the varying stimulus (Fig. 4a).
For this simulation, instead of precisely controlling the pressure as
carried out in the previously mentioned regression experiment,
this experiment was conducted by directly pressing the object
onto the skin-mimic elastic material (hardness of shore A 30) by
hand on the assumption that sensory receptors are present on the
surface of the skin.
The stimuli-based signals, obtained from the sensor, are

reconstructed as images to optimize raw-data noise filtering.
The reconstructed images of the segmented time window signals
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are applied to a CWT (spectrogram in Supplementary Fig. 9),
which displays information in both the frequency and time
domain, better suited for complex data analysis when compared
to the Fourier transformation which only returns the frequency
domain. For a raw signal datum x(t), the wavelet transformation is

defined with respect to a given mother wavelet (ψ):

Wa;bx tð Þ ¼ 1

aj j1=2
Z 1

�1
x tð Þψ t � b

a

� �
dt (1)

Fig. 3 Deep learning-aided data regression. a Illustration of the sensor deformation as the attached elastomer bends due to external stimuli.
b The relationship between the three parameters (i.e., stimulus magnitude, substrate hardness, and sensor output), where separate colors are
used for the hardness of the distinct substrates. c The overall structure of our model shows a stacked hierarchy with initial and final dense
layers, and five block operations (details shown in c). Input for block operation: ‘Input 1’ from the feature maps of the previous layer, and ‘Input
2’ from the feature maps of all the preceding layers, except ‘Input 1’. d Conventional implementation of block operation, where each group
consists of divided input 1 and whole input 2 for the group dense operation. e Customized implementation of block operation, where input 1
and input 2 are placed in group dense and general dense operation, respectively. Same size outputs from each operation are added for the
final output. f Epoch-loss graph of the training and validation sets for the prediction of substrate hardness from the given sensor output and
mechanical stimulus. g Epoch-loss graph of the training and validation sets for the prediction of sensor output from the given hardness
and mechanical stimulus. h Scatterplot of the true and prediction value of the test set for substrate hardness. i Scatterplot of the true and
prediction value of the test set for sensor output.
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where, a, b, and Wa,b are the scale factor, the translational value,
and the wavelet transformation, respectively. We obtained CWT
using the mother wavelet of the analytic Morse wavelet with the
symmetry parameter of 3 and the time-bandwidth product of 60.
For accurate classification, we designed a deep learning system

based on EfficientNet30, boasting high accuracy for the ImageNet
2012 dataset31. Auxiliary applications utilizing EfficientNet30 for
other public datasets (e.g., CIFAR 1032, CIFAR 10032, Birdsnap33,
Flowers34, Oxford-IIIT Pets35, Food-10136) produced a higher
average accuracy of 0.28%30 with a 4.730 reduction in model
parameter when compared to the original models of NASNet-A37

and Inception-v438. These results demonstrate that EfficientNet
exhibited high accuracy and flexibility with transfer learning39,
making the base model suitable for the classification task in this
study (Fig. 4b).
This joint system (sensor - CWT - EfficientNet) effectively

captured features from the time-series signal to classify objects.

The evaluation process consisted of 5 objects (earbud, cotton
swab, lip balm, stick, door lock; Supplementary Fig. 9), each with
160 gathered samples. The samples were split, where each
object’s test set consist of 35 randomly sampled images while the
remaining 125 samples are trained through k-fold cross validation.
Here, lower accuracy bias is achieved with k equal to five or ten40.
Thus, throughout the cross validation process, k was set to five
with 25 samples in each fold. The final test accuracy is evaluated
by averaging accuracy values of five models of the test set. The
evaluation results show the convergence (Fig. 4c) and accuracy
(Fig. 4d) obtains a top-1 accuracy value of 96.9%, surpassing the
94.2% accuracy obtained from the spectrogram signal-processed
images (Supplementary Fig. 9d). The figures, expressed as the
mean and standard deviation of the five-fold cross validation for
each epoch, show the validation accuracy exceeding the training
accuracy. This phenomenon can be traced to several reasons, of
which, configuration of unbalanced, easy data sets commonly

Fig. 4 Deep learning-aided data classification. a Illustration of the mechanical deformation and a corresponding change of the sensor.
Pressure applied to the stimulus point leads to the nonlinear behavior in the sensor signal. b The overall data processing sequence
summarized with three steps. (1) Cropping the 1D time-series data. (2) Conversion of the cropped signal into the 2D image by the signal
processing method of wavelet transform. (3) Transfer-learning a pre-trained CNN with the processed 2D image. c Epoch-loss graph of the five-
fold cross validation results with the mean and standard deviation for each epoch in the classification of the mechanically stimulating object.
d Epoch-accuracy graph of the five-fold cross validation results with the mean and standard deviation for each epoch of the classification.
e Confusion matrix depicting the comprehensive classification results of the test set by each cross validation trained model with the
representative raw signals.
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induces such occurrences. To address this common determinant
and exclude the possibility, cross-validation experiments were
performed. As standard deviation decreases and converges to a
certain accuracy, all dataset configurations show similar training
progress as displayed in Fig. 4c, d. These results indicate that the
higher validation accuracy was not caused by the validation set’s
properties, but rather from the use of strong augmentation and
regularization. During the training process, the model is subject to
these rigorous settings due to its complexity and high variance in
data; however, in validation, the model is no longer constrained
and shows better performance despite being unfamiliar with the
dataset. Without the application of augmentation and regulariza-
tion, we can observe that the validation accuracy does not exceed
training accuracy (Supplementary Fig. 10a), but as a result of
overfitting, the final test accuracy is reduced by 1.8%. The
augmented training samples are shown in Supplementary Fig.
10b. In order to bolster the model’s performance, augmentations
and regularization techniques are essential to the development of
an efficacious classification system.
Despite the favorable results, the current system was less than

ideal for classifying objects with crowded multiple-stimulus points.
Figure 4e shows that the proposed model achieves the recall rate
of >0.98 for all objects except for the door lock. Unlike other
objects, the combination door lock has protruding convex buttons
aligned adjacently (Supplementary Fig. 11), making the external
physical stimulus crowded on multiple points when placed on the
sensor. During this instance, the sensor is comprehensively
affected by the bending of the elastic material by multiple-
stimulus points. Therefore, rather than having all adjacent sensors
be receptive to the bending of the elastic material from each
stimulus, a single sensor measures the overall bending. Further-
more, when the combination lock is placed on the sensor, each
point of contact does not occur concomitantly with varying orders
in point of contact with the elastic material in each trial (e.g.,
A→ B→ C and B→ C→ A results in the different signal where A, B,
C indicate multiple-stimulus points). By attaching multiple sensors
to different locations, we expect the sensors adjacent to each
stimulus point be able to provide information on the correspond-
ing stimulus and overcome these limitations. Among the classified
objects, the signals emitted by the lip balm and stick have a keen
resemblance in the short time series; thus, to provide contrast, we
have visualized the long time series signals of the two objects in
Supplementary Fig. 12 along with five CWT images of each
object’s emitted signal.

DISCUSSION
The current study not only demonstrates the viability of the
epidermal sensor in classifying mechanical stimulus and substrate
modulus, but also the versatility of the deep-learning amalga-
mated system, which can be easily adapted to applications
beyond mechanical sensing. The sensing module can be modified
for the use in biochemical (e.g., sweat chemistry, blood oxygen
saturation, and diabetes), biophysiological (e.g., electrocardio-
gram, electroencephalogram, and electromyogram), and biophy-
sical (e.g., flow, temperature, and shear) sensors for monitoring
certain health or fitness conditions. The ultrathin SINM in this
study is investigated as the possible candidate material for the
development of highly sensitive and flexible sensing components.
Furthermore, the described deep learning-aided data processing
provided accurate regression and classification that can simplify
the pre-clinical and clinical studies associated with complex data
sets. Specifically, three variables (sensor output, substrate hard-
ness, pressure) with a nonlinear relationship are shown to be
predictable by the customized deep neural network, with a
significantly lower prediction error than the vanilla models. In
addition, sensors with a linear response and limited sensing range
are capable of classifying dynamic and complex stimulus shapes

as shown in this study, with an accuracy of 96.9%. Altogether, the
integration of deep learning with the flexible and sensitive sensor
provides a powerful framework for the future sensory system
where miniaturized artificial intelligence is integrated into a single
sensing module, offering alternatives to algorithmic approaches of
bio-data interpretation. The adaptability of the comprehensive
system also enables the integration of wireless protocols,
expediting the overall experiment process. The amalgamation of
deep learning with IoT paves the way for research where bio-data
can be remotely monitored and interpreted.

METHODS
Device fabrication
Supplementary Figs. 1 and 4 illustrate the schematics of fabricating a strain
gauge with [110] and [100] silicon piezoresistors, respectively. The first
process involves doping (Boron, 950 °C for 5 min) of the top silicon layer
(thickness of 200 nm) of silicon on insulator wafer (SOITEC INC.), yielding an
electrically conductive piezoresistive element. Removal of the buried oxide
layer via immersion in hydrofluoric acid releases the top silicon layer,
thereby enabling transfer printing of SINM onto the target substrate
(polyimide with thickness of 12.5 μm). Here, the SINM in two orientations,
[110] and [100], can be transferred sequentially and aligned to each other
(Supplementary Fig. 1). Afterwards, photolithography, followed by reactive
ion etching (SF6, 50 mTorr, 20 sccm, 50 Watt, 200 s), defines the silicon
piezoresistors. Electron beam evaporation (Cr/Au, 5/200 nm thick) and wet
etching creates the metal interconnection. A spin-coated top polyimide
layer (~1.5 μm thick, HD microsystem INC.) insulates the strain gauge.
Finally, electrical contact regions were defined by photolithography and
reactive ion etching (O2, 100 mTorr, 100W, 20 sccm, 15min).

Sensor characterization
To measure the piezoresistive response, electrical contact regions were
connected to a customized printed circuit board (PCB) connector via
bonding of an anisotropic conductive film (ACF) cable (Elform Inc., USA).
A universal testing machine (UTM 3343, Instron Co., USA) performed
tensile testing with the device. Jaws in UTM firmly hold both ends of a
device. While tensile strain ranging from (0 to 1.0)% was applied to the
device along the x and y-directions, a digital multimeter (NI PXI‐4071,
National Instrument, USA) monitored the electrical resistance change of
the sensor. The cycling of bending in different radii in Supplementary
Fig. 6 uses a flexural endurance tester (IPC, CK-700FET) that repeats one
cycle of bending at 0.32 Hz. The test involves buckling of the device at
different radius curvatures (radius of (9, 10.5, 12, and 16.5) mm) over
1000 cycles.

Sensing response to the bending strain
The fractional change of each resistance value (R1–R4 in Supplementary
Fig. 4c, d) in the Wheatstone bridge can be expressed as:

ΔR
R0

¼ GF ´ ε (2)

where ΔR/R0 is the fractional change of resistance, ε is the mechanical
strain, and GF is the gauge factor for each piezoresistor. Under uniaxial
longitudinal strain, the positive changes in resistance at R1 and R3
correspond to the tensile strain, whereas the negative changes in
resistance at R1 and R3 correspond to the compressive strain. The
change in the output voltage from the Wheatstone bridge can be then
expressed as:

Vout
Vin

¼ R1
R1þ R4

� R2
R2þ R3

(3)

where Vin and Vout are the input voltage and the output voltage from the
Wheatstone bridge, respectively. The pure bending test in Fig. 2i–k induces
the tensile strain,

ε ¼ h
2r

(4)

along the outer surface of the sensor, where h is the thickness of the
sensor, and r is the bending radius. The FEA result shows the bending-
induced strain on the metal electrode and silicon element at the bending
radius ranging from (5 to 0.5) mm. The bending radius around 0.8 mm is
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the critical radius which causes 1% strain on the metal electrode
(Supplementary Fig. 7).

Finite element analysis
Three-dimensional (3D) FEA in the software suite Abaqus FEA facilitated
the prediction of the mechanical deformations and strain distributions of
the SINM device. Four-node composite shell elements were used for the
multi-layer structure. For uniaxial stretching simulations, the stretching
load was prescribed at the two opposite edges of the polyimide substrate,
in the horizontal or longitudinal direction. For bending simulations, the
bending loading was prescribed at two opposite edges without confining
lateral deformation. The deformed 3D shape and strain distributions at
different locations in the SINM structure could be obtained. The strain
levels in silicon and gold were monitored to be well below their fracture
strains. In the FEA, silicon and polyimide were modeled as linear elastic
materials: Young’s modulus ESi= 130 GPa and Poisson’s ratio νSi= 0.27 for
silicon; EPI= 2.5 GPa and νPI= 0.34 for polyimide. Gold (Au) was modeled
as an idealized elastoplastic material (without hardening; von Mises yield
stress chosen as 234MPa, corresponding to a yield strain of ~0.3 %) with
EAu= 78 GPa and νAu= 0.44.

Regression and classification experiments
The first regression test in Fig. 3 involves the vertical stage with a force
gauge (Mark-10) to generate approximately consistent pressure onto the
strain gauge attached to various elastomers (Polydimethylsiloxane with
hardness value of (4, 8, 38, 58, 64, and 69) shore A). Different patterns and
output magnitudes associated with the deformation of the strain gauge are
measured via digital multimeters (NI-USB 4065). The second classification
test in Fig. 4 utilizes the strain gauges mounted on thin elastomer
(Polydimethylsiloxane, 1 mm). Arbitrary objects (earbud, cotton swab, lip
balm, stick, and door lock) placed on the strain gauge generate distinct
output patterns. The objects were directly pressed by the user’s hand, with
the assumption that mechanical activation of sensory receptors occurs on
the surface of the skin rather than in a laboratory setting.

Data processing
For the task of learning the relationship among the three parameters (i.e.,
stimulus magnitude, substrate hardness, and sensor output), the stimulus
magnitude data was extended to five data points using four scaling
functions including the original scale: loge (x+ 1); x0.8; x0.5; x0.2. After
scaling, the data was z-score normalized via the mean/standard-deviation
of the train data.
For the classification test depicted in Figure 4, a window size of 3 was

used for the CWT (Symmetry parameter (gamma)) of the signal composed
of 450 sampling points; Time-bandwidth product was 60). We also used
data preprocessing and augmentation methods in PyTorch, such as
random resized crop (various sized patches between 8 and 100%)41,
random horizontal flip, color jittering, and RandAugment (N= 2 and
M= 5)42. The data was RGB-normalized via the mean/standard-deviation
of the ImageNet2012 dataset31.

MAPE (Metric)
The mean absolute percentage error (MAPE) is a common metric in
evaluating the prediction accuracy of regression problems, which is
expressed as:

MAPE %ð Þ ¼ 100
n

Xn
t¼1

At � Ft
At

����
����: (5)

This defined formula reports the prediction accuracy as a percentage
with At and Ft as the actual and the predicted value, respectively. The value
can be interpreted as shown in Supplementary Table 1.

Model configuration
For the regression task in Fig. 3, we trained our model for 800 epochs with
a batch size of twelve. The model utilizes RMSProp optimizer with 0 for the
decay, 0 for the momentum, 0.99 for the batch norm momentum, 0.0005
for the initial learning rate, Swish activation43, and

logeðcoshðxÞÞ (6)

for the loss function of regression.

For the classification task in Fig. 4, the final 3 blocks along with the fully
connected layer of EfficientNet b730 are fine-tuned while fixing the
parameters of the remaining layers. With a configured dropout ratio of 0.5,
we train our model for 75 epochs with a batch size of eight and an image
resolution of 600. The model utilizes RMSProp optimizer with 0 for the
decay, 0 for the momentum, 0.99 for the batch norm momentum, 0.001 for
the initial learning rate, and Swish activation43. Here, Cross Entropy Loss
was used for the loss function of classification.

Training tools
A digital multimeter (NI-USB 4065) and customized LabVIEW program were
used for data collection. For the training process, we used tensor
processing libraries in the PyTorch framework (1.7.0+cu101) on Python
(3.6.9). Our platform includes Linux-4.19.112+-x86_64-with-Ubuntu-18.04-
bionic with a Tesla P100 graphics processing unit.
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