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All-weather, natural silent speech recognition via
machine-learning-assisted tattoo-like electronics
Youhua Wang 1,2,5, Tianyi Tang 3,5, Yin Xu 3,5, Yunzhao Bai1,2, Lang Yin 1,2, Guang Li 4, Hongmiao Zhang 3✉,
Huicong Liu 3✉ and YongAn Huang 1,2✉

The internal availability of silent speech serves as a translator for people with aphasia and keeps human–machine/human
interactions working under various disturbances. This paper develops a silent speech strategy to achieve all-weather, natural
interactions. The strategy requires few usage specialized skills like sign language but accurately transfers high-capacity information
in complicated and changeable daily environments. In the strategy, the tattoo-like electronics imperceptibly attached on facial skin
record high-quality bio-data of various silent speech, and the machine-learning algorithm deployed on the cloud recognizes
accurately the silent speech and reduces the weight of the wireless acquisition module. A series of experiments show that the silent
speech recognition system (SSRS) can enduringly comply with large deformation (~45%) of faces by virtue of the electricity-
preferred tattoo-like electrodes and recognize up to 110 words covering daily vocabularies with a high average accuracy of 92.64%
simply by use of small-sample machine learning. We successfully apply the SSRS to 1-day routine life, including daily greeting,
running, dining, manipulating industrial robots in deafening noise, and expressing in darkness, which shows great promotion in
real-world applications.
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INTRODUCTION
Silent speech can offer people with aphasia an alternative
communication way. More importantly, compared to voice interac-
tions or visual interactions, human–machine interactions using silent
speech are versatile enough to work in all-weather surroundings,
such as obscured, dynamic, quiet, dark, and noisy. Speaking is owned
from babyhood, thus silent speech requires less specialized learning
and carries more information than most silent alternatives (from
typing to sign language to Morse code). Human brains manipulate
the voices by neural signals, and therefore it is effective to learn
about human intentions by recognition of surface electromyographic
(sEMG) signals on faces. Natural silent speech in daily and working
life hinges on high-fidelity sEMG acquisition, accuracy classification,
and imperceptible wearable devices.
sEMG signals are ubiquitously distributed on skins and have

significant spatiotemporal variability1. The diversity of sEMG even
occurs in the same actions1. Such complexity of sEMG motivates
researchers to develop various classifiers, such as supporting vector
machine (SVM)2, deep learning3,4, and machine learning5,6, to
construct the mapping relations between facial sEMG and silent
speech. Silent speech recognition based on EMG can be traced back
to the mid-1980s. Sugie7 of Japan and Morse8 of the United States
published their research almost at the same time. Sugie used three-
channel electrodes to classify five Japanese vowels, while Morse
successfully separated two English words with 97% accuracy. In the
past two decades, the number of classified words has been
increasing. In 2003, Jorgensen et al. recognized six independent
words with 92% accuracy9. In 2008, Lee further expanded the
number of words to 60, using the hidden Markov model to achieve
87.07% accuracy10. In 2018, Meltzner et al. recognized >1200
phrases generated from a 2200-word vocabulary with high accuracy

of 91.1%11. In 2020, Wang et al. used the bidirectional long short-
term memory to recognize ten words, and the accuracy reached
90%12. Although the silent speech recognition of sEMG has made
great progress in recent years, most of these works use non-flexible
electrodes and sampling equipment with a high sampling rate and
precision, they are only verified in the laboratory environment,
and their long-term performance is not evaluated. Machine learning
and deep learning are commonly used in previous research. Deep
learning needs to collect a large number of training data with labels,
which is very tired and monotonous for people. Compared with
deep learning, machine learning has better performance in the case
of small sample size and multi-classification. The processing speed is
faster, which is more suitable for real-time recognition. Furthermore,
it is a trend to reduce the complexity of both the acquisition side
and application side by deploying algorithms on the cloud, which is
of great importance for wearable devices13–15.
Human faces have complex features, such as geometrically

nondevelopable surfaces, softness, dynamical behaviors, and large
deformation (~45%)16. However, current inherently planar and
rigid electrodes, including wet gels (Ag/AgCl electrodes)17,
invasive silicon needle electrodes18, and bulk metal electrodes19,
cannot comply with skin textures, forming unstable gaps between
skin and electrodes and correspondingly reducing signal-to-noise
ratio. A commercial solution is to employ large-area and strong-
adhesion materials (foams, nonwovens, etc.) to wrap electrodes;
however, the auxiliary materials severely constrain the movements
of muscles and cause uncomfortable experience. Users cannot
normally express intentions when a mass of conventional
electrodes is attached on faces. The emergence of lightweight,
bendable, stretchable tattoo-like electronics shifts the paradigm of
the conventional wearable field and show great prospect in
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clinical diagnosis, personal healthcare monitoring, and
human–machine interaction1,20–25. The mechanical performance
of tattoo-like electronics similar to human skin renders the devices
seamlessly conformal with the morphology of skin. The softness
and conformability of tattoo-like electronics not only extend the
effective contact area of skin–device interfaces, facilitating the
accurate transmission of bio-signals from human bodies to
external devices, but also achieve imperceptible wearing. Cur-
rently, few researchers except us apply the tattoo-like electrodes
to the acquisition of silent speech sEMG signals1,26. However, our
previous works take a simple try of recording several words, which
evidently cannot be extensively implemented in practice.
The proposed strategy in this paper fuses tattoo-like electrodes,

wireless data acquisition (DAQ) modulus, and machine-learning
algorithm into one all-weather silent speech recognition system
(SSRS). The tattoo-like electrodes made up of ultrathin filamentary
serpentines keep laminated on facial skins even under long-term,
large deformation. The wireless DAQ modulus is a reusable
wearable device, serving as real-time bio-data transmission from
tattoo-like electrodes to machine learning. The machine-learning
algorithm, suitable for multi-label classification of small samples, is
deployed on the cloud and used for the accuracy recognition of
110 daily words. To show the applicability of SSRS, we apply SSRS
to various scenarios close to daily life.

RESULTS AND DISCUSSION
Design of the SSRS
Figure 1 illustrates the schematics of the all-weather, natural SSRS,
which not only helps people naturally communicate in their daily
lives but also benefits the users by silently interacting in all-
weather conditions. Compared with sign language, with our SSRS
system, users do not need a professional training. As shown in Fig.
1a, the SSRS includes four parts: four-channel tattoo-like electro-
nics, a wireless DAQ module, a server-based machine-learning
algorithm, and a terminal display of silent speech recognition.
Without the use of large sEMG acquisition devices, the user only
needs to wear the tattoo-like electronics properly assisted with an
ear-mounted wireless DAQ module to capture, process, and
transmit the four-channel sEMG signals. The users’ real-time sEMG
signals are transmitted to a cloud server with powerful computing
power and are online classified through the model trained by the
machine-learning algorithm. By a Bluetooth connection, a mobile
terminal is used to display the recognized speech information and
play the audio. The advantages for all-whether, natural use of the
SSRS come from the user’s long-time wearing, portable device,
stable, and high-rate recognition in a variety of scenarios, such as
greeting, exercise, repast, work, and dark scenes. Besides, our SSRS
uses natural speech, lowering the training cost, and therefore is
user-friendly for beginners.
Different speaking is generated through the coordination among

facial and neck muscles such that the placements of electrodes are
of critical importance. Four pairs of tattoo-like electrodes are
selectively attached on the muscles with significant sEMG signals as
one silently speaks, including levator anguli oris (LAO), depressor
anguli oris (DAO), buccinators (BUC), and anterior belly of digastric
(ABD), to elevate the accuracy of silent speech recognition. Each
channel includes one reference electrode and one working
electrode. To guarantee high-fidelity delivery of sEMG through
skin–electrode interfaces, the tattoo-like epidermal electrodes are
designed to be only 1.2 μm thick and integrated within a skin-like
3M Tegaderm patch (Young’s module ~7 KPa, 47 μm), which are
able to perfectly conform with topologies of skins. The electrodes
are further patterned to be filamentary serpentines to improve
elastic stretchability. Specifically, the width, the ribbon-width-to-arc-
radius ratio, and the arc angle of filamentary serpentines are
500 μm, 0.32, and 20°, respectively. According to the mechanics

theory of serpentine ribbons27, the design can simply reach 4%
elastic stretchability, much less than the deformation of facial skins.
We introduce a so-called “electricity-preferred” method to enable
the tattoo-like electrodes adequate to tough stretch, which will be
described in “Wearable characterizations of tattoo-like electrodes.”
The overall size of one electrode is about 18mm× 32mm. The
tattoo-like electrodes are prepared by the low-cost but high-
efficiency “Cut and Paste” methods24,28 and the processes are
described in the “Methods” section.
Figure 1b shows the picture of a user wearing the tattoo-like

electronics and an ear-mounted wireless DAQ module29. As shown
in Supplementary Fig. 1, the method of low-temperature alloy
welding effectively increases the strength of the connection,
which ensures all-weather use without damage. The specific
operation of connection is described in “Methods.” The block
diagram in Fig. 1c summarizes the system architecture and overall
wireless operation procedures30. The wireless DAQ module has
four signal collection channels and each channel is connected
with a working electrode and a reference electrode of tattoo-like
electronics. The sEMG signal from each channel is processed by an
instrumentation amplifier and an analog filter. Then a micro
control unit and a Bluetooth transmission unit are employed to
convert and transmit the four-channel signals, simultaneously. The
DAQ module amplifies the high-fidelity sEMG signals by 1000
times and then extracts the effective signals, which carry speech
information through 10–500 Hz band-pass filtering31. A 10-bit
analog-to-digital converter of the micro control unit operating at a
sampling frequency of 500 Hz digitizes the signals collected from
each channel. Under the tests of the recognition rate under
different sampling frequencies in Supplementary Table 1, the low
sampling frequency of 500 Hz can not only meet the requirements
of a high recognition rate but also reduce the processing time and
power consumption of the SSRS. The Bluetooth transmission unit
uses the fifth-generation Bluetooth protocol, which allows
continuous data transmission at a rate of up to 256 kb/s32,33.
With the help of a Bluetooth receiver, the mobile terminal receives
the recognition information and performs a proper interaction in
daily applications. The recognition of silent speech is achieved by
training facial sEMG signals with the linear discriminant analysis
(LDA) algorithm, which will be described in “sEMG-based silent
speech recognition by machine learning.” Figure 1d shows the
confusion matrix of recognition results of the proposed frequently
used 110 words in daily life, which are divided into 13 categories.
The high recognition rate of 92.64% of the SSRS can fully meet the
users’ daily communication requirements.

Wearable characterizations of tattoo-like electrodes
The mechanical mismatch of the skin–electrode interface constrains
the natural deformation of human skins, thus causing an
uncomfortable wearing experience. Figure 2a and Supplementary
Fig. 2 compares the mechanical constrain of tattoo-like electrodes
and commercial gel electrodes to human skins under large
deformation. It is obvious that, no matter how a human face
deforms extremely, including opening mouth, inflating cheeks, and
twitching mouth toward left/right, the ultrathin tattoo-like electro-
des comply with deformed skins while the gel electrodes constrain
the deforming movements of skins. The strong driving forces
between skin–gel electrode interfaces not only decrease the
wearability but also delaminate the interfaces. Figure 2b displays
the conformability of tattoo-like electrodes on skin textures at
different scales. It is evident that tattoo-like electrodes are able to
perfectly match both coarse and fine skin textures. The overlapped
curves in Supplementary Fig. 3 evidently indicate that, due to the
excellent conformability of tattoo-like electrodes, the skin–electrode
interface has robust electrical performance even after suffering
large deformation. Figure 2c exhibits the micro-optical photographs
of stretchability of skin–electrode interfaces. Soft silicone rubbers
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(Young’s modulus is ~0.35MPa, close to that of human skin) were
used to mimic human skin, and the mimic skin laminated with an
ultrathin tattoo-like electrode was stretched by 30%, equal to the
elastic limit of human skin. The comparison results in Fig. 2c show
that the skin–electrode interface is still intact after tensed. Motion
artifact has a critical impact on the signal-to-noise ratio. The robust
conformability on complex skin textures in Fig. 2b and under large
deformation in Fig. 2c has the ability to suppress the motion artifact
of various silent voices.
Though researches have shown that the elastic limit of human

skin is about 30%25,34,35 and that tensing limit without pain is
about 20%36,37, the tension ability of human faces reaches up to
45%16. Figure 2d, e present the strain contours of ultrathin tattoo-
like electronics axially extended with 45% applied strain in
horizontal and vertical directions. The maximum principal strains
are, respectively, 4.1% (horizontal direction) and 1.8% (vertical
direction), both beyond the yield limit of nano-film gold (0.3%)37.
However, for physiological electrodes, we pay more attention to
electrical conductivity. Figure 2f plots the change of electrical
resistivity of nano-film gold in the 100 nm Au/10 nm Cr/1.1 μm
polyethylene terephthalate (PET) composite with respect to
applied strain under the uniaxial tension (the inserted schematics
in Fig. 2f). The change of electrical resistivity is simply about 5%
when tensed to 2% while it sharply rises to ~30% when tensed to
4%. Supplementary Fig. 4 clearly shows that the parts beyond 2%

in Fig. 2d are at inner crests of serpentine structures. The parts
<2% and those beyond 2% can be equivalent to parallel circuits,
seen in the schematics in Fig. S4. According to the electrical
resistance change rule in a parallel circuit, the parts beyond 4%
cannot bring remarkable influence on the whole resistance of the
ultrathin tattoo-like electronics. Therefore, it is still claimed that
the ultrathin tattoo-like electrodes are effective structures. Such
thought, giving priority to the electrical performance, enables the
structural design and fabrication of electrodes simple, which is
called the “electricity-preferred” method.
The practical applications of silent speech demand long-term

wearing performance, and the background noises and the
skin–electrode contact impedance directly determine whether
the deserved silent speech are collected or not, therefore we
tested both electrical parameters of ultrathin tattoo-like electrodes
during a 10-h wearing period. Commercial gel electrodes (3 M)
were used as the gold standard to study the long-term electrical
performances. Two pairs of ultrathin tattoo-like electrodes and gel
electrodes were closely attached on the subject’s forearm and the
distance between two tattoo-like electrodes, or gel electrodes,
were set to 7 cm. The subject was required to begin to run for half
an hour at the eighth hour. The results are illustrated in Fig. 2g.
The gel electrodes have robust noise and impedance during the
whole measurement while the noise and impedance of tattoo-like
electrodes gradually degrade. The background noise and the

Fig. 1 Design of silent speech recognition system. a Schematic illustration of an all-weather, natural SSRS, including four-channel tattoo-like
electronics, the wireless DAQ module, the server-based machine-learning algorithm, and the terminal display of recognition, with adaptability
in various scenarios. The identifiable drawing is fully consented by the written consent. b The photograph of a participant wearing the SSRS.
The identifiable photograph is fully consented by the written consent. c Functional block diagram of the wireless DAQ module. d Confusion
matrix of recognition results of the frequently used 110 words. The words are from 13 categories.
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impedance highly depend on the skin–electrode interface and
skin properties38. The chloride ions contained in gel electrodes
freely permeate through the stratum corneum, significantly
suppressing noise and impedance. After running, both electrical
parameters of tattoo-like electrodes sharply go down and the
noise is even weaker than that of gel electrodes. It is mainly
because, during the test, the Tegaderm film prevents the
evaporation of sweat, and the sweat goes through the stratum
corneum and finally accumulates at the skin–electrode interface,
dramatically reducing the noise and impedance. Now that the

long-term wear can affect the background noise, it is reasonable
to consider the effect of daily usages on sEMG. Thus, we study the
effect of complicated daily activities on signal features and
classification accuracy. Tattoo-like electrodes and gel electrodes
were, respectively, attached on the left and right faces. The subject
was required to dine at the 2.3th hour, 5th hour, and 9.5th hour
and run for 20 min at the 9th hour. Additionally, the room
temperature gradually rises to 30.1 from 20 °C in 6 h and then
declines to 19.8 °C in 4.5 h, shown in the upper panel in Fig. 2h.
The middle panel in Fig. 2h plots the log detector (LOG) of the first

Fig. 2 Characterizations of tattoo-like electrodes. a The wearability of tattoo-like electrodes and gel electrodes when attached on the
subject’s face. The identifiable photographs are fully consented by the written consents. b The tattoo-like electrodes conform with skin
textures at different scales. The scale bars on the left and right panel are 6 and 2.5 mm, respectively. c The skin–electrode interface before and
after being stretched by 30%. The scale bar is 150 μm. d, e The strain distributions of tattoo-like electrodes under horizontal and vertical
tensing with 45%. f The resistivity changes of gold ribbons with respect to strain. g The long-term measurement to investigate the change of
background noise and impedance. The standard deviation (SD) characterizes the strength of background noises. h Long-term measurement
of log detector (LOG) and classification accuracy (CA).
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channel with respect to wearing time. The results show that the
signal feature captured by tattoo-like electrodes are immune to
room temperature change, running, and dining during the long-
term test while that of gel electrodes keep fluctuating. The bottom
panel in Fig. 2h shows that silently saying “Hello, nice to meet you”
at different times can achieve the high classification accuracy of
90% and the average classification accuracy is 95%. In conclusion,
the long-term experiments in Fig. 2g, h offer the silent speech the
probability in extensive applications.

sEMG-based silent speech recognition by machine learning
To keep the normal communications going smoothly, a collection
of 110 words and phrases in American Sign Language (ASL)
covering the words frequently used in daily life is selected for
recognition (Supplementary Table 2)39. The collection is divided
into 13 categories, including time, place, emotion, health, etc.
According to the previous researches, eight muscles were selected
(Supplementary Fig. 5)9,10,26,40. However, the more channels are
used, the more power consumption of the wireless DAQ modulus
the transmitted data demand, thus it is necessary to pick out the
optimal combination. The classification accuracy of different

channel combinations from one muscle to eight muscles was
calculated. The results in Supplementary Fig. 6 clearly show that the
mean classification accuracy gradually increases and approaches
92.1% along with the growth of channels. The number of channels
is finally selected as four. Furthermore, the combination with the
highest classification accuracy among the four channels is selected
(Supplementary Fig. 7), specifically, LAO, DAO, BUC, and ABD.
The high-quality sEMG for the recognition is immediately recorded

by the flexible tattoo-like electronics and transmitted through the
wireless DAQ module to the cloud server in real time once
participants perform silent speech tasks. The proposed recognition
procedure shown in Fig. 3a is deployed on the cloud server and
comprises the active segment interception, the training phase (left
panel in Fig. 3a), and online prediction (right panel in Fig. 3a).
The active segment interception plays an essential role in

distinguishing between the silent speech-related sEMG and non-
silent speech-related sEMG (swallowing, blinking, etc.). According
to our experience and the previous research41, the sEMG absolute
amplitude threshold and the number threshold of facial muscles
activated by the silent speech are set to 50 μV and 2, respectively.
The active segment interception extracts the sEMG of 800 ms

Fig. 3 Flow chart and the evaluation of silent speech recognition system. a Recognition flow chart of training phase (left) and online
prediction (right). The identifiable photographs are fully consented by the written consents. b Confusion matrix of recognition results of 110
ASL words. c Prediction performance of different classifiers LDA, SVM, and NBM. d Accuracy rate from multiple channels to a single channel.

Y. Wang et al.

5

Published in partnership with Nanjing Tech University npj Flexible Electronics (2021)    20 



before and 1200ms after the moment when the sEMG signals
achieve beyond both thresholds above.
Due to the significant discrimination of the ultrathin devices

and the welding spots in terms of thickness (1.2 and about
300 μm, respectively), there is a huge difference in bending
stiffness, which may easily cause motion artifacts. The baseline
wandering of signals is unavoidable though the violent shaking of
connection between tattoo-like electronics and wires is sup-
pressed by the adhesive Tegaderm. To remove the baseline
wandering, a 4-level wavelet packet with a soft threshold is used
to decompose the extracted signals and reconstruct signals with
the node coefficients from the 2nd to 16th node in the 4th layer42.
Fifteen relative wavelet packet energy43 as frequency-domain
features are extracted from 15 nodes, respectively. Then the
denoised signals are treated by full-wave rectification and ten
time-domain features are extracted from the rectified signals. The
definitions of all features are listed in Supplementary Table 344–47.
Considering that there are four channels, a silent speech word
corresponds to a feature vector composed of 100 features. In the
training phase, the silent speech users are required to speak 110
words and repeat 10 times each word. With an additional vector of
101 labels, the dimensions of the feature matrix reach up to
1100 × 101. The feature matrix is input into an LDA model for
training and tenfold cross-validation is used to evaluate the
training effectiveness. To speed up the recognition, one vs rest is
selected as the multiple pattern recognition. In the online
prediction, a vector of 100 features is input into the well-trained
LDA model to predict the silent speech users’ intentions.
For offline recognition, the average classification accuracy of LDA

reaches up to 92.64% in the case of 110 words (Fig. 3b).
Supplementary Fig. 8 shows the classification accuracy of each
word. SVM and naive Bayesian model (NBM) are the other two
machine-learning methods used extensively and compared with
LDA in four aspects: classification accuracy, F1-score, training speed,
and prediction speed. Only a small amount of data to be collected is
of great importance for users to avoid monotony and fatigue. The
recognition of 110 words with 10 samples is the typical few-shot
classification. The comparison results in Fig. 3c clearly show that LDA
is superior to SVM and NBM in whatever aspect of performances. In
conclusion, LDA with high classification accuracy and high prediction
speed renders silent speech users to naturally communicate.
Considering the contamination from eye blinking to the facial

sEMG, the influence of electrooculogram (EOG) on SSRS is discussed.
Only channel 1 (LAO) closest to the eye is affected by the EOG. The
maximum amplitude of EOG is 30 μV, which is less than
the threshold of the muscle activity detection (50 μV). Although
the muscle activity segment detection will not misjudge the EOG
signal as the silent speech-related signal, sometimes speaking and
blinking happen at the same time. When such situation occurs, the
EOG signal can be eliminated by preprocessing. When preproces-
sing the raw signal, the first node in the fourth layer decomposed by
wavelet packet is not involved in reconstructing the signal. This
means that the original signal is filtered by a 15 Hz high-pass filter
(the frequency range of EOG is 0–12 Hz48). After preprocessing, the
maximum amplitude of EOG is <12 μV (Supplementary Fig. 9).
The effect of EOG signal on SSRS can be ignored.
Considering possible extreme conditions during the long-term

usage, such as wire disconnecting or electrode damaging, SSRS
may lose some sEMG channels. All the possible scenarios from four
channels (normal state) to only one channel are tested to examine
the robustness of LDA (Fig. 3d). When three channels are in good
condition, the average classification accuracy can reach >85%.
When two channels work, the average classification accuracy can
reach >70%. Even when merely one channel remains intact, the
average classification accuracy can reach 42.27%, which is much
higher than the random recognition (0.91%) of one word. There-
fore, our SSRS has promising applications in extreme conditions.

All-weather demonstration of the SSRS
Figure 4a exhibits five typical scenarios that a user often
experiences in daily life, including greeting, exercise, repast,
working in a noisy environment, and communicating in darkness.
The model training and signal recognition of the SSRS are based
on cloud servers with powerful computing capabilities, which
allow users to only need a mobile phone with basic communica-
tion functions. The popularization of the fifth-generation commu-
nication technology has great potential to further reduce the
delay of SSRS and bring users a more natural interactive
experience. With the help of SSRS, users can not only commu-
nicate point to point but also express their intentions point to net.
Some excellent capabilities and advantages of the SSRS are
demonstrated in detail as below.
Figure 4bi demonstrates a typical greeting scene in which the

user needs to communicate with people in his/her life. Figure 4bii
shows the real-time sEMG signals collected from the four channels
of the SSRS, as long as the user silently pronounces the words
“Hello,” “Morning,” “Thanks,” “Goodbye,” and so on. The character-
istics of different words can be easily identified from different
channels in real time. It is proved that the sEMG of facial muscles
carries enough speech information. As shown in Supplementary
Video 1, the subject is able to communicate naturally with his friend
in silent speech with the help of SSRS. The confusion matrix in Fig.
4biii indicates that the recognition rate of eight words in the
greeting scene is 95%. The SSRS is able to meet the user’s natural
communication in three aspects. First, the wearable flexible printed
circuit and the wireless connection of the SSRS provide more
convenience, which greatly extends the activity range of the users.
Second, the ultrathin tattoo-like electronics can collect high-fidelity
facial sEMG and can be worn all day long. Finally, the LDA algorithm
achieves a high recognition rate of 92.64% in 110 classifications.
This is more than enough for the user to naturally communicate in
daily life without any sign-language training.
The proposed ultrathin and super-conformal tattoo-like electro-

nics ensure the stability of acquisition of the sEMG signal, even if the
user experiences strenuous exercise activities. Figure 4ci demon-
strates a typical exercise scene. The comparative experiments on
background noise and recognition rate at different running speeds
were carried out. We selected five common words (“Home,” “Work,”
“School,” “Store,” “Church”), and tested the recognition rates in four
motion states, i.e., resting (0m/s), walking (1m/s), jogging (3m/s),
and running (5m/s). Each word was repeated ten times by subject.
In Fig. 4cii, the recognition rate at resting, walking, and jogging state
maintain as high as ≥96% and at running state it is up to 86%. The
average recognition rate at four states is 96% in Fig. 4ciii, which
proves the excellent stability of SSRS. Supplementary Video 2 shows
the exercise scene where SSRS can still recognize words correctly
when the subject is jogging. It is also verified that the SSRS does not
get affected by the user’s body shaking and hence has great
potential to replace touch control to operate smart devices.
In addition, to maintain a high recognition rate in dynamic

conditions, the all-weather SSRS has good tolerance to mouth
deformation and muscle fatigue. Figure 4di displays the scene of a
user repasting in a restaurant with the help of SSRS (in
Supplementary Video 3). According to the statistics, users chew
about 400–600 times during a meal. Therefore, the subject was
asked to repeat mouth movement actions 0–200 times, and four
kinds of mouth deformations each time were performed, as seen
in Fig. 4dii. The recognition rate of five words related to food, such
as “Pizza,” “Milk,” “Hamburger,” “Hotdog,” “Egg,” remains consis-
tently as high as ≥96%, as shown in Fig. 4diii, and the total
recognition rate of five different repeat times is 98%.
Compared with Automatic Speech Recognition (ASR), the SSRS

has a good capability of tolerating sound especially in noisy or
quiet-required environments, such as workplaces and public
places. Figure 4ei shows a noisy industry environment, which
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the user may experience at work. The comparative experiments on
the performance of SSRS (left) and ASR (right) in a noisy
environment were carried out in Supplementary Video 4. As four
words related to colors are tested in Fig. 4eii, the noise of
ASR decreases with the increase of ambient decibels, while the
noise of sEMG remains unchanged (the details seen in the red

dashed box). Figure 4eiii depicts the comparison of the recogni-
tion rate of SSRS and ASR under different decibels of ambient
noise. When the ambient noise reaches 80 dB, the recognition rate
of ASR is dropped down to only 20%, while the recognition rate of
SSRS remains as 100%, as shown in Supplementary Fig. 10. It can
be seen from the above comparison that SSRS has great potential

Fig. 4 All-weather demonstration of the SSRS. a Five typical scenarios experienced in daily life. b Wearable and natural communication: (i)
The scene of greeting. (ii) Four-channel sEMG of four representative words. (iii) The recognition rates of eight words in the greeting scene.
c All-weather use in dynamic condition: (i) The scene of exercise. (ii) The recognition rates and background noises of five words related to
locations under four different running speeds. (iii) The recognition rates of five words related to locations in four different exercise states.
d All-weather use in the large deformation condition: (i) The scene of the repast. (ii) The recognition rates of five words related to food under
different repeat times, each time contains four kinds of mouth deformation. (iii) The recognition rates of five words related to food.
e Adaptability in the noisy environment. (i) The scene of the noisy working environment. (ii) The signals of ASR and sEMG. (iii) The comparison
of the recognition rates of two recognition methods under four different ambient noises. f Adaptability in the dark environment. i–iii The
comparison of recognition effect of Silent Speech Recognition (left) and American Sign Language (right) in the darkened environment. The
identifiable photographs in b–f are fully consented by the written consents.
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to be an effective interface of human–machine interaction. People
can easily control the equipment through SSRS in the noisy
working environment (Supplementary Fig. 11).
One alternative to overcome darkness is by means of smart

gloves. In the past few years, some smart gloves have been able to
effectively recognize sign language. In 2019, Sundaram et al.
proposed a scalable tactile glove, which realized the classification
of 8 gestures, and the recognition rate was 89.4%49. In 2020, Zhou
et al. demonstrated a recognition rate of up to 98.63% by using
machine-learning-assisted stretchable sensor arrays to analyze 660
acquired sign language hand gestures50. However, sensor-based
gesture recognition is different from SSRS. It takes a lot of time to
master sign language, which becomes an obstacle to assisting
pronunciation. Compared with the sign language, the all-weather
SRSS can be used naturally without any technical threshold or any
influence of brightness. Figure 4f compares the recognition effects
of SSRS (left) and ASL (right) in a gradually darkening environ-
ment. The subject expresses “Happy,” “Sad,” “Sorry,” “Angry,” and
“Love” through SSRS and ASL, respectively. As the light becomes
darker, the ASL cannot be identified anymore as seen in
Supplementary Video 5, while the SSRS still works well. Therefore,
the SSRS would be a better choice than ASL for users in the future.
We have successfully proposed a silent speech strategy by

designing an all-weather SSRS, realizing natural silent speech
recognition. The ultrathin tattoo-like electronics are able to be
conformal with various skin textures and the simple but effective
electricity-preferred design method renders filamentary serpen-
tines bear ~45% extension of facial skins. Long-term attachment
not only decreases the interface impedance but also maintains the
features of sEMG. The wireless DAQ module bridges the tattoo-like
electronics with LDA algorithm. The LDA algorithm is deployed on
the cloud to lightweight the wireless DAQ module and achieves a
high recognition rate of 110 words. The 1-day routine life
demonstrates the competence for future all-weather, natural
silent speech, including exchanging of communication in people
with aphasia, communication while keeping quiet, and
human–machine interactions free from surrounding disturbance.

METHODS
Manufacturing processes of the tattoo-like electronics
The fabrication processes started with the lamination of an ultrathin PET film
(1.1-µm thickness) on the wetted water transfer paper (Huizhou Yibite
Technology, China). The composite substrate of PET and water transfer paper
was baked in an oven (ZK-6050A, Wuhan Aopusen Test Equipment Inc., China)
at 50–60 °C for ~1 h and subsequently at 100–110 °C for ~2 h for adequate
drying. Ten-nm-thick chromium (Cr) and 100-nm-thick gold (Au) were deposited
on PET. Then the film was cut by a programmable mechanical cutter (CE6000-40,
GRAPHTEC, Japan) to a designed pattern. A tweezer was used to carefully
remove the unnecessary part of the pattern on the re-wetted water transfer
paper. Then the patterned film was flipped over using the thermally released
tape (TRT) (REVALPHA, Nitto, Japan). The TRT was deactivated on a hotplate at
~130 °C for 3min, followed by sticking to the 3M Tegaderm. Finally, the
deactivated TRT was removed to get the tattoo-like electronics.

Method of connecting electrodes and wireless DAQ module
The processed electrode was placed on the platform with the Tegaderm
layer facing up. Then we used low-temperature welding to realize the
connection between the pad and the wire. The electrode was peeled off and
folded in half along the pad and then used low-temperature alloy to weld the
wire on the pad. When the temperature dropped to room temperature, we
used another Tegaderm to fix the connection between the pad and the wire.

Design of wireless DAQ module
The wireless DAQ module used were AD8220, OPA171, Atmega328p, and
CC2540F256. AD8220 and OPA171 were used to amplify the original sEMG
signal 1000 times. Atmega328p with a 10-bit precision was used for analog-
to-digital conversion and the sampling frequency of the microprocessor was
set to 500 Hz. CC2540F256 was used to send and receive data.

Experimental process of EMG signal acquisition
The reference electrode needs to be placed on electrically neutral tissue51;
the position of the posterior mastoid closest to the acquisition device is
selected as the reference electrode placement position. Another 8 electrodes
were attached to the designated 4 muscles, with every 2 electrodes targeting
1 muscle, and the distance between the 2 electrodes was set to 2 cm. Before
applying the electrode, the target locations were cleaned with clean water.
The wireless DAQ module and the electrodes were connected by wires, and
the wireless circuit module was hung on the subject’s ear. The subject was
instructed to read each word silently ten times. During the experimental
sessions, the subject was asked to avoid swallowing, coughing, and other
facial movements unrelated to silent reading.

System environment and parameters of SSRS
The SSRS was built in Windows 10 environment. The LDA algorithm in the
machine-learning toolbox of MATLAB 2019b was used in SSRS. In real-time
recognition, the time window length was 2000ms and the sliding window
was 200ms. The sampling frequency was 500 Hz.

Ethical information for studies involving human subjects
All experiments involving human subjects were conducted in compliance
with the guidelines of Institutional Review Board and were reviewed and
approved by the Ethics Committee of Soochow University (Approval
Number: SUDA20210608A01). All participants for the studies were fully
voluntary and submitted the informed consents. The SSRS is located on the
silent speech users’ faces and thus the necessary but limited identifiable
images have to be used. All identifiable information was totally consented
by the user.
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