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Enhanced assembly of bacteriophage T7
produced in cell-free reactions under
simulated microgravity

Check for updates

François-Xavier Lehr 1,2,6, Bruno Pavletić 3,4,6, Timo Glatter1, Thomas Heimerl2, Ralf Moeller3 &
Henrike Niederholtmeyer 1,2,5

On-demand biomanufacturing has the potential to improve healthcare and self-sufficiency during
space missions. Cell-free transcription and translation reactions combined with DNA blueprints can
produce promising therapeutics like bacteriophages and virus-like particles. However, how space
conditions affect the synthesis and self-assembly of such complex multi-protein structures is
unknown. Here, we characterize the cell-free production of infectious bacteriophage T7 virions under
simulated microgravity. Rotation in a 2D-clinostat increased the number of infectious particles
compared to static controls. Quantitative analyses bymass spectrometry, immuno-dot-blot and real-
time PCR showed no significant differences in protein and DNA contents, suggesting enhanced self-
assembly of T7 phages in simulatedmicrogravity.While the effects of genuine space conditions on the
cell-free synthesis andassembly of bacteriophages remain tobe investigated, ourfindings support the
vision of a cell-free synthesis-enabled “astropharmacy”.

Long-term space missions will put astronaut health at immense risk1.
Healthcare options will be limited by payload constraints and drug stability.
Additionally, closequarters, radiation, andmicrogravity strainhumanhealth,
for example by compromising the immune system2. On-demand production
of therapeutics presents a solution to adapt medical care to the special chal-
lenges of space travel3. This vision of an “astropharmacy” could be realized by
onboarding light weight cell-free transcription-translation (TXTL) reagents
capable of rapidly synthesizing RNA and proteins fromDNAblueprints, just
as required. Relying only on isolated biochemical components that can be
freeze-dried for storage, TXTL systems combine simplicity and flexibility,
while reducing theneed fordownstreamprocessing4–6 andbiocontainment in
planetary protection efforts7. TXTL technology enables the synthesis of large,
self-assembling macromolecular complexes such as bacteriophages8,9 and
virus-like particles10. Bacteriophages, as viruses that specifically target bac-
teria, are promising tools in the fight against multi-resistant bacteria8,11,12.
Additionally, engineered virus-like particles could be used for gene therapy,
drug delivery, and other personalized therapeutic applications13.

Many biological processes as well as biomolecular self-assembly depend
on gravity. For example, in microgravity, proteins form larger crystals with
fewer defects14, and amyloidfibrils nucleate and growdifferently in simulated

microgravity15,16. Comparing virus assembly in orbiter flight studies against
ground controls, polyomavirus assembled into larger and more homo-
geneous capsomeres but did not form capsid-like structures17. It is hypo-
thesized that the altered and often improved self-assembly in the absence of
gravity is due to abolished sedimentation and changes inmolecular transport
from a convection-dominated into a diffusion-dominated regime18. In
microorganisms, microgravity leads to alterations in cellular phenotypes and
gene expression that have been observed in spaceflight samples as well as in
simulated microgravity in ground-based experiments19–21. Microbial adap-
tations to the microgravity environment include changes to metabolism,
host-interactions, cellular morphology as well as increased virulence and
antibiotic resistance22–24. While the effects of microgravity on molecular self-
assembly and the physiology of living organisms have been studied exten-
sively, our understanding of the influence of microgravity on biochemical
reactions is limited. Enzyme kinetics of isocitrate lyase were not affected by
gravity25, while the catalytic efficiency of lipoxygenase-1 was four-fold higher
in parabolic flight experiments26. CRISPR-Cas12a-mediated genetic diag-
nostic tests performed almost equally well onboard the International Space
Station as in ground controls27.Conversely,DNApolymerase in vitro became
more error-prone inmicrogravity generated by parabolic flight28. Despite the
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potential of cell-free synthesis for on-demand biomanufacturing, the influ-
ence of microgravity on TXTL systems is just beginning to be investigated.
Recently, RNA-aptamers and fluorescent proteins have been successfully
expressed in TXTL systems aboard the International Space Station29.

Here we focus on the cell-free production of the model bacteriophage
T7under simulatedmicrogravity (s-µg) to investigate the effects of s-µg on a
complex biochemical reaction involving synthesis and self-assembly pro-
cesses. 2D-clinorotation approximatesmicrogravity by rotating a sample to
prevent sedimentation and has been used to simulate microgravity in
experiments with different cell types and organisms30–33. Bacteriophage T7
infects Escherichia coli bacteria and has a 40 kb genome, encoding 56 pro-
teins. Each infectious phage particle is assembled from a total number of
roughly 500protein subunits andaDNAmolecule that is tightly packed into
the capsid34. In a synthesis reaction containing purified T7DNA and TXTL
reagents, the number of infectious phage particles produced depends on
threemajor processes: transcription, translation, and self-assembly (Fig. 1a).
By quantifying the effects of simulated microgravity on cell-free synthesis
and self-assembly of a complex multi-protein structure, our work takes an
initial step in assessing the possibility of TXTL-assisted on-demand man-
ufacturing of biologics in space.

Results and discussion
Higher countsofplaque formingunits fromsynthesis reactions in
s-µg
To accommodate TXTL reactions in the 2D-clinostat, we customized ves-
sels to support the small volumes (10–100 µL) typically used in cell-free
protein synthesis. Briefly, polytetrafluoroethylene (PTFE) tubing was

enclosed into polyvinyl chloride (PVC) tubes fitting the clinostat rotational
tray (Fig. 1b, c). We first verified synthesis and assembly of T7 bacter-
iophages were possible and reproducible in the PTFE vessels. Compared to
standard 1.5 mL microreaction tubes, we observed a slight decrease of
plaque forming units (PFU) per mL (Supplementary Fig. 1). The synthesis
yields of TXTL reactions are influenced by oxygen availability, as it plays a
crucial role in facilitating energy regeneration through oxidative
phosphorylation35. Hence, we hypothesize that the observed decline in PFU
can be attributed to the increased volume-to-air interface ratio in the
adapted vessels compared to the standard microreaction tubes with
equivalent reaction volumes36. Nevertheless, the low variability observed in
the adapted vessels enabled us to compare phage synthesis kinetics in
clinorotation and static control conditions. A TXTL mastermix containing
2 nM of T7 DNA was split into samples for timepoints for s-µg and sta-
tionary control (1-g) conditions. For each timepoint, plaque assays were
performed in duplicates. The experiment was repeated on three consecutive
days (Supplementary Fig. 2). The kinetics of phage synthesis were similar in
s-µg and 1-g conditions (Fig. 2a), and comparable to reactions in standard
gravity and reaction tubes9. After two hours, plaques were detected in both
conditions, and phage yield increased until 6 h of incubation, after which
phage yieldsplateaued.Weobserved a consistentlyhighernumberof phages
in s-µg for all productive timepoints with the highest difference in PFU after
three hours of incubation. At 3 h, on average, 3.3-times as many PFU were
counted in s-µg (Fig. 2a). Considering the low strength of the gravitational
force on biomolecular systems with low sedimentation rates, the observed
difference is notable and comparable in magnitude to the effects of
microgravity on other biochemical reactions26,28. Statistical analysis
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Fig. 1 | Experimental pipeline for testing the effect of simulated microgravity on
the synthesis and assembly of bacteriophages in transcription-translation
(TXTL) systems. a Phage DNA is mixed with the TXTL components to start the
reaction to produce bacteriophage T7. bA2D-clinostat is used to simulatemicrogravity
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Scale bar: 1 cm. dTransmission electronmicroscopy (TEM) of T7 phages from the s-µg
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are used to assay protein and DNA content in TXTL samples (Dot-blot, mass spec-
trometry, fluorescence measurements, real-time quantitative PCR) and the assembly of
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performed on all timepoints combined (unpaired t-test, p-value = 0.033)
also confirmed a significantly higher number of synthesized phages in s-µg
compared to 1-g (Supplementary Fig. 3).

We used transmission electron microscopy to confirm bacteriophage
production. Typical icosahedral capsids of bacteriophage T7 were success-
fully visualized (Fig. 1d). Notably, TEM samples with bacteriophages pro-
duced in s-µg contained a higher number of fully assembled phage capsids
compared to 1-g samples. Conversely, fewer small, incomplete assemblies
were visible in s-µg compared to 1-g (Supplementary Figs. 4 and 5).

S-µg environment likely enhances bacteriophage self-assembly
Since we measured an increased number of infectious phages in the s-µg
environment, we next asked if the s-µg conditions enhanced synthesis
reactions or phage assembly. A parallel TXTL reaction producing super-
folder green fluorescent protein (sfGFP) did not show a significant differ-
ence in fluorescence intensity after 5 or 21 h of incubation between s-µg and
1-g (Fig. 2b, unpaired t-test, p = 0.064). This suggests that the enhanced
number of phages obtained in s-µg may not be the result of enhanced
transcription or translation, but may rather be due to improved phage
assembly. To support this hypothesis, we compared the composition of
TXTL reactions from both conditions with several additional quantitative
methods.

To gain insights in the phage protein production along the kinetics, we
performed immuno-dot-blot assays targeting the major capsid protein, the
most abundant structuralT7phageprotein (Fig. 2c).Over the time course of
the experiments, we did not find an overall significant difference (unpaired

t-test, p-value = 0.672) in capsid protein signal between s-µg and 1-g con-
ditions. To extend our analysis to the entire T7 proteome, the protein
content of the 21 h endpoint samples was analyzed by mass spectrometry.
Over 1000 E. coli proteins were detected in each preparation and, as
expected, showed similar composition in all samples because our TXTL
reagents consist of an E. coli lysate (Supplementary Fig. 6a). In total, 80% of
the bacteriophage T7 proteome was detected in s-µg and 1-g, including
hypothetical (e.g. gene product 4.2), structural (e.g. major capsid protein)
and non-structural proteins (e.g. DNA polymerase) (Supplementary Fig.
6b). Using t-tests and q-values adjusted for false discovery rate, we did not
observe significant differences between s-µg and 1-g for the 45 detected
phage proteins (Fig. 2d, Supplementary Table 1). Hierarchical clustering of
the detectedT7 proteins did not lead to any visible patterns (Supplementary
Fig. 7). The proteomics results therefore support our previous findings that
s-µg did not alter protein synthesis (Fig. 2f).

The bacteriophage T7 genome has been previously shown to replicate
in TXTL reactions37. We hypothesized that the higher number of infectious
phages in s-µg could stem from differences in genome replication or DNA
degradation.Tomeasure if s-µg samples containedhigher amounts ofDNA,
we used quantitative real-time PCR (qRT-PCR) to track the bacteriophage
T7genomecopynumber over time38 (Fig. 2e). Similar to ourprotein content
comparisons, no significant difference was observed in the DNA copy
numbers between s-µg and 1-g conditions (one-way ANOVA, p-value =
0.223), indicating that the higher phage yield in s-µg was not a result of
differences in DNA content. We observed no significant changes in the
DNA concentration over time (one-way ANOVA, p-value = 0.0966),
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Fig. 2 | Quantitative analyses of T7 bacteriophage production in s-µg and 1-g
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indicating no replication in s-µg or 1-g, possibly due to our high starting
DNA concentration. Alternatively, replication and degradation of the linear
DNA template may have been balanced.

Robustness to changes in experimental parameters
While the main focus of our study was on the impact of simulated micro-
gravity on TXTL reactions, future research could explore the influence of
aerationonTXTLreactions in s-µg conditions,which couldbeperformed in
high-aspect ratio vessels (HARV)19,39,40 after their adaption to small reaction
volumes. Conversely, the adaptions wemade to the 2D-clinostat vessels are
valuable to study the impact of additional factors that could either stimulate
or inhibit the observed enhanced assembly. These factors include variations
in buffer components and temperature, as well as the lysate itself, which is
known to display a high batch-to-batch variability41. Parameters like these
have been shown to impact cell-free synthesis and phage production yields
in a static environment9,42. We tested the effects of s-µg at such varying
conditions to determine the robustness of our results. Guided by our pre-
vious data, we performed plaque assays after 3 h of TXTL synthesis, i.e.
when we expected the highest fold-change in PFU. While the variation of
experimental parameters affected the absolute PFU count, enhanced T7
bacteriophage production in s-µg remained robust to most of these varia-
tions. For example, we successfully replicated the enhanced production of
T7 bacteriophages in s-µg conditions using a new batch of TXTL reagents
under standard reaction conditions (Supplementary Fig. 8a). TXTL reac-
tions with E. coli lysate are typically performed at 29 °C for optimal protein
synthesis. However, even at 37 °C, the optimal temperature for E. coli host
growth andT7 bacteriophage infection, the PFU titer in s-µg conditionswas
2.03-times higher than in 1-g (p-value = 0.0097) (Supplementary Fig. 8b). In
addition to temperature, the concentration of crowding agent (PEG-8000 in
our TXTL reactions) is crucial for cell-free phage production, as molecular
crowding favors self-assembly9. In the batch of TXTL reagents used for the
experiments in Fig. 2, the optimal PEG-8000 concentration was 3.5% (v/v),
serving as the standard condition. In the new batch, with a lower PEG-8000
concentration of 2.5% (v/v), 4.1-times as many PFU were counted on
average (p-value = 0.003),while at 4.5% (v/v) the higher averagePFU in s-µg
was not statistically significant (Supplementary Fig. 8c), which may be due
to a lower mixing efficiency during clinorotation at increased viscosity.

Moreover, it will be interesting to studybacteriophagesbeyondT7with
higher (e.g. T4) or lower (e.g. MS2) complexities. The growing number of
cell-free biotechnological tools enabling quick manipulation of phage gene
expression43 and transient phage engineering8 could be used to further
explore phage assembly in microgravity by altering expression of structural
genes in the TXTL reaction.

Summary
In summary, our results show enhanced bacteriophage yields in simulated
microgravity by 2D-clinorotation. Our quantitative analyses of protein and
DNA contents revealed no differences between s-µg and 1-g samples. Since
proteins and DNA are the building materials for virion assembly, we con-
clude that the increase in infectiousbacteriophageparticles ismost likelydue
to enhanced self-assembly of bacteriophageT7 in simulatedmicrogravity, as
previously shown for protein crystal assembly in microgravity14. In 2D-
clinostat experiments, the gravity vector changes continuously and effec-
tively cancels out due to the rotation around a horizontal axis. We hypo-
thesize that the reduction of sedimentation in simulated microgravity
explains the improved self-assembly. According to this hypothesis, orbital
shaking experiments could alsobe expected to improvephage yields because
shaking in a horizontal plane reduces sedimentation as well, even though
neither clinorotation nor orbital shaking lead to movement of the liquid
body or the water-air interfaces in the sample vessels we used (Supple-
mentary Fig. 9a, Supplementary Movie 1). Vessel architecture and small
reaction volumes allowed us to minimize potential contributions from
moving air-water interfaces or hydrodynamicmixing that have been shown
to influence amyloidfibril assembly in larger reaction volumes16. Similarly to
2D-clinorotation, orbital shaking experiments also yielded increased PFU

counts and support our hypothesis that preventing sedimentation improves
bacteriophage production (Supplementary Fig. 9b, c). To enhance Earth-
based cell-free production of other potential therapeutics that rely on self-
assembly, it may be beneficial to prevent sedimentation by clinorotation or
shaking.

Our results indicate that microgravity conditions might improve cell-
free biomanufacturing yields, which is encouraging for the vision of an
“astropharmacy” enabled by cell-free synthesis. Looking ahead, freeze-
drying TXTL systems4,44,45 presents a promising avenue to facilitate storage
and transportation46, especially under the challenging conditions encoun-
tered during space missions. An important next step could involve testing
the impact of additional spaceflight conditions such as increased ionizing
radiation on cell-free synthesis. Together with microgravity, radiation
represents a main feature of the spaceflight environment, impacting
astronaut health and stability of biomolecules47. Efforts to understand cell-
free synthesis mechanics in spaceflight conditions will advance the bio-
manufacturing and therapeutic options available for future space
exploration.

Methods
TXTL extract preparation
TXTL systems preparation was adapted from Silverman et al.41, including
adaptions described by Falgenhauer et al.48. E. coli BL21 Rosetta 2 were
streaked overnight on an agar plate containing chloramphenicol. One col-
ony was picked and inoculated overnight in 50mL 2xYT supplemented
with chloramphenicol for growth at 37 °C. After a minimum of 15 hours,
20mL of the stationary culture was used to inoculate 400mL of 2xYT+ P
media (16 g/L tryptone, 10 g/L yeast extract, 5 g/L sodium chloride, 7 g/L
potassium phosphate dibasic, 3 g/L potassium phosphate monobasic) in a
1 L baffled flask. Cells were grown at 40 °C and 200 RPM to 3.0 ± 0.2OD600.
Centrifugebottleswerefilledup to300mLandcentrifuged for 10minutes at
4000 × g at 4 °C and supernatants were discarded. The pellets were washed
three times with 25mL buffer S30A (50mM Tris-base, 14mM Mg-gluta-
mate, 60mMK-glutamate, 2mMDTT, brought to pH 7.7with acetic acid).
The washing steps were followed by a centrifugation step at 4000 × g at 4 °C
for 10min. A fourth centrifugation step at 3000 × g at 4 °C for 10min
enabled the removal of the remaining traces of buffer. The pellets were then
resuspended in 1mL of Buffer S30A per gram of pellet and supplemented
with 0.5mg per mL of lysozyme (from chicken egg, >40,000 units per mg,
Sigma). The resuspended pellets were incubated for 10min on ice. 1mL of
the suspension was aliquoted into 1.5mL Eppendorf tubes. The pellet
suspensions were then lysed with a sonicator (QSonica Q125 with a
3.175mm diameter probe, 50% amplitude, 20 kHz, and 10 s ON/OFF
pulses). Each sample was sonicated until reaching 250 J input. Using a
100mM stock solution, 1mM of DTT was added to each crude lysate
immediately after sonication. The cell lysate was centrifuged for 10min at
4 °C and 12,000 × g. The supernatant was removed and placed into an
incubator set up at 37 °C and 200 RPM for 80min. After the run-off reac-
tion, the supernatant was centrifuged for 10min at 4 °C and 12,000 × g.
Finally, the extract was dialyzed for 3 h against buffer S30B (50mM Tris-
base, 14mMMg-glutamate, 60 mMK-glutamate, 2mMDTT, pH 8.2) in a
10k MWCO cassette (Thermofisher). Finally, the dialyzed extract was
centrifuged for 10min at 4 °C and 12,000 × g. The supernatant was ali-
quoted, snap-frozen into liquid nitrogen, and stored at −80 °C.

TXTL mastermix reaction
ThefinalTXTL reactionmixture is composedof the following reagents: 33%
v/v of E. coli extract, 10mM ammonium glutamate; 1.2 mM ATP;
0.850mM each of GTP, UTP, and CTP; 0.034mg per mL folinic acid;
0.175mg permL yeast tRNA; 2mM amino acids; 30mM3-PGA; 0.33mM
NAD; 0.27mM CoA; 1mM putrescine; 1.5 mM spermidine; 4 mM oxalic
acid; 57mM HEPES, 3.5% PEG 8000, 5 µM of Chi6 linear DNA. Mg-
glutamate and K-glutamate were optimized for phage production and set
respectively to 7mM and 170mM. T7 Phage genomic DNA (Bioron) was
set to 2 nM (1.204 × 1012 DNA molecules per mL).
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Clinostat operation and TXTL loading
The 2D-clinostat used in this study was developed and kindly provided by
the DLR Institute of Aerospace Medicine, Department of Gravitational
Biology and has been used in previous studies on the effects of microgravity
on biological systems. The clinorotation speed was 60 RPM. The TXTL
mastermix was prepared with all components except T7 Phage genomic
DNA.Themastermixwas split into20-µLaliquots, and eachwas introduced
inside its own PTFE tube (1/16“ID x 1/8“OD). The PTFE tubes were sealed
withmetal caps (Fig. 1c).TheT7Phage genomicDNAwas added just before
loading the PTFE tubes, to minimize the reaction time before the experi-
ment. Instead of T7 DNA, negative controls contained nuclease-free water,
and translation control tubes contained a plasmid expressing sfGFP under
the control of a strong constitutive promoter. For the samples analyzedwith
proteomics, the loaded volume was 50 µL. The PTFE tubes were inserted
into hollow PVC tubes fitting the clinostat rotational tray. The clinostat
containing all the tubes was held in an incubator at 29 °C. The samples of
TXTLwere taken after 1 h, 2 h, 3 h, 4 h, 6 h, and 21 h of incubation. For each
timepoint, plaque assays were performed in duplicate with serial dilutions
by plating samples immediately. Static and orbital shaking control experi-
ments were performed in the same PTFE tubing sealedwithmetal caps, and
at the same volume as 2D-clinorotation samples.

Phage infectivity assay
At each timepoint, serial decimal dilutions of the TXTL reactions were
prepared in Luria-Bertani (LB) medium. Then, 5 µL of each serial dilution
was mixed with 130 µL of E. coli DSM 613 (OD600 between 0.8 and 1) and
incubated for 3min at 37 °C.All 135 µLwere transferred into1.75mLof soft
LB medium, mixed well, and poured onto a 60mm petri dish. Each petri
dishwas left for 30min at room temperature to solidify and then transferred
to 37 °C. The plaques were counted after 3 h of incubation. After preparing
the serial dilutions for the infectivity assays, samples were frozen at−80 °C
with 25% (v/v) glycerol until used for other analysis of protein content,
replication, and assembly.

sfGFP fluorescence
sfGFP fluorescencewasmeasured after 5 and 21 h of incubation. The TXTL
reactions contained a plasmid expressing sfGFP under the control of a
strong constitutive E. coli promoter. The fluorescence intensity (excitation:
485 nm; emission: 515 nm) was measured with a plate-reader (TECAN
Infinite M200 Pro) and compared between s-µg and 1-g samples (10 µL of
the reaction sample were used).

Transmission electron microscopy
30 µL of the diluted TXTL samples from the 21 h timepoint was further
diluted to 200 µL with TBS (Tris 20 mM, NaCl 150 mM, pH 7.6). The
samples were extracted by adding 10 µL of chloroform and centrifuged
for 10 min at 13,000 × g. The upper aqueous phase was transferred to a
new tube. The bacteriophages were precipitated by adding 50 µL of PEG/
NaCl 5x buffer (PEG-8000 20%, NaCl 2.5 M). The tubes were incubated
at 4 °C overnight. The bacteriophages were pelleted by centrifugation for
10 minutes at 13,000 × g. The bulks of supernatants were removed. The
samples were centrifuged again for 10 minutes at 13,000 × g and the
supernatant was completely removed. The pellets were resuspended in
20 µL TBS. Carbon-coated copper grids (400 mesh) were hydrophilized
by glow discharging (PELCO easiGlow, Ted Pella, USA). 5 µL of the
primary antibody solution (T7 tag, PA1-32386, Thermofisher) was
applied onto the hydrophilized grids. After 2 min of incubation, the
solutions were briefly blotted and 5 µL of the samples were applied onto
the grids. Alternatively, for Supplementary Figs. 4 and 5, “antibody
coated” grids were incubated in diluted sample solution (1:40) for 1 h
under shaking. After two short washing steps in droplets of double
distilled water, samples were stained with 2% uranyl acetate. Samples
were analyzed with a JEOL JEM-2100 transmission electron microscope
using an acceleration voltage of 120 kV. Images were acquired with a
F214 FastScan CCD camera (TVIPS, Gauting).

Proteomics
Proteins contained in TXTL samples (50 µL)were reduced by adding 5mM
Tris(2-caboxyethyl)phosphine at 90 °C for 15min, followed by alkylation
(10mM iodoacetamide, 30min at 25 °C). The amount of extracted proteins
was measured using BCA protein assay (Thermo Fisher Scientific). 50 µg
total protein was then digested with 1 µg trypsin (Promega) overnight at
30 °C in the presence of 0.5% SLS. Following digestion, SLSwas precipitated
with trifluoroacetic acid (TFA, 1.5% final concentration) and peptides were
purified using Chromabond C18 microspin columns (Macherey-Nagel).
Acidified peptides were loaded on spin columns equilibrated with 400 µL
acetonitrile and then 400 µL 0.15% TFA. After peptide loading, a washing
step with 0.15% TFAwas performed, followed by elution using 400 µL 50%
acetonitrile. Eluted peptides were then dried by vacuum concentrator and
reconstituted in 0.15% TFA.

Peptide mixtures were analyzed using liquid chromatography-mass
spectrometry carried out on an Exploris 480 instrument connected to an
Ultimate 3000 RSLC nano with a Prowflow upgrade and a nanospray flex
ion source (all Thermo Scientific). Peptide separation was performed on a
reverse phase HPLC column (75 μm× 42 cm) packed in-house with C18
resin (2.4 μm, Dr. Maisch). The following separating gradient was used:
94% solvent A (0.15% formic acid) and 6% solvent B (99.85% acetonitrile,
0.15% formic acid) to 25% solvent B over 40min and to 35% B for addi-
tional 20min at aflow rate of 300mLpermin.DIA-MS acquisitionmethod
was adapted from Bekker-Jensen et al. 49. In short, Spray voltage were set to
2.0 kV, funnelRF level at 55, andheatedcapillary temperature at 275 °C. For
DIA experiments fullMS resolutionswere set to 120.000 atm/z 200 and full
MS AGC target was 300% with an IT of 50ms. Mass range was set to
350–1400. AGC target value for fragment spectra was set at 3000%. 45
windows of 15Da were used with an overlap of 1 Da. Resolution was set to
15,000 and IT to 22ms. Stepped HCD collision energy of 25, 27.5, 30%was
used. MS1 data was acquired in profile, MS2 DIA data in centroid mode.
Analysis of DIA data was performed using DIA-NN version 1.850 using
Uniprot protein databases from E. coli and bacteriophage T7. Full tryptic
digestwas allowedwith twomissed cleavage sites, andoxidizedmethionines
and carbamidomethylated cysteines.Matchbetween runs and remove likely
interferences were enabled. The neural network classifier was set to the
single-passmode, and protein inferencewas based on genes. Quantification
strategywas set to any LC (high accuracy). Cross-run normalizationwas set
to RT-dependent. Library generation was set to smart profiling. DIA-NN
exports were further statistically evaluated using a modified SafeQuant
script made compatible to process DIA-NN data.

Dot-Blot
2 µL of the diluted TXTL samples were blotted on a nitrocellulose mem-
brane and let dry for 15minutes. Themembranewas incubated for 1 hwith
blocking buffer (TBST 1×, 5%w/v non-fat drymilk) on a shaker at RT. The
membrane was rinsed 2 times with water and incubated for 1 hour on a
shaker at room temperature (RT) with the primary antibody (T7 tag, PA1-
32386, Thermofisher) diluted in the blocking buffer (1:10,000). The mem-
branewaswashed3 timeswith thewashbuffer (TBST1×) and incubated for
1 h on a shaker at RT with the secondary antibody (IRDye® 800CW Goat
anti-Rabbit IgG, LI-COR) diluted (1:20,000) in the blocking buffer. Finally,
the membrane was washed 3 times with the wash buffer and scanned for
fluorescence with an LI-COR Odyssey DLx. The calibration curve showed
that the concentration of synthesizedphages from the experimentwas in the
linear range of detection (Supplementary Fig. 10). For each experiment day
(n = 3), the time points for the s-µg and the 1-g conditions were blotted on
the same membrane along with an internal standard (bacteriophage
T7 synthesized inTXTLat 1 nMDNAconcentration).Dot blots of the three
experiment days were performed on three consecutive days and analyzed in
parallel by normalization to the internal standard.

qRT-PCR
To determine the bacteriophage T7 DNA copy number, qRT-PCR was
performed. EachTXTL samplewas diluted 100x in nuclease-free water, and
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5 µL of the diluted TXTLwas used for qRT-PCR, as described earlier for T7
phage produced in TXTL43. The assays were performed in technical
duplicates for each of the timepoints from all three experimental replicates.
The primers and the program were adapted from Peng et al.38 (Supple-
mentary Table 2, Supplementary Table 3). The kit used for the qRT-PCR
reaction was NEB Luna®Universal qPCR & qRT-PCR. As a standard, 5 µL
of T7 PhageDNA (Bioron) was used. The standardwas diluted in nuclease-
free water. Different dilutions were used: 0.2 nM (610,000,000 T7 DNA
molecules), 0.2 × 10−2 nM (6,100,000 T7 DNA molecules), 0.2 × 10−4 nM
(61,000 T7 DNA molecules), and 0.2 × 10-6 nM (610 T7 DNA molecules).
The determined DNA copy number in each sample was corrected for the
original TXTL reaction concentration and volume (100× concentrated,
20 µL) (Supplementary Fig. 11).

Data availability
The authors declare that all relevant data supporting the findings of this
study are availablewithin thepaper and its Supplementary informationfiles.
The mass spectrometry proteomics data have been deposited to the Pro-
teomeX change Consortium via the PRIDE partner repository with the
dataset identifier PXD044176. Additional data are available from the cor-
responding author upon request.
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