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A perspective on the evidence for
glymphatic obstruction in spaceflight
associated neuro-ocular syndrome and
fatigue

Check for updates

Grant Alexander Bateman 1,2 & Alexander Robert Bateman 3

Spaceflight associated neuro-ocular syndrome (SANS) alters the vision of astronauts during long-
duration spaceflights. Previously, the current authors have discussed the similarities and differences
betweenSANSand idiopathic intracranial hypertension to try to elucidate a possible pathophysiology.
Recently, a theory has been advanced that SANS may occur secondary to failure of the glymphatic
system caused by venous dilatation within the brain and optic nerves. There is recent evidence to
suggest glymphatic obstruction occurs in childhood hydrocephalus, multiple sclerosis and
syringomyelia due to venous outflow dilatation similar to that proposed in SANS. The purpose of the
current paper is to discuss the similarities and differences between the known CSF and venous
pathophysiology in SANSwith these other terrestrial diseases, to see if they can shed any further light
on the underlying cause of this microgravity-induced disease.

Spaceflight-associated neuro-ocular syndrome (SANS) refers to the
pathological effects of long-term microgravity on the eyes and orbital
physiology of astronauts. The clinical manifestations of SANS include
unilateral and bilateral optic disc edema, globe flattening, choroidal and
retinal folds, hyperoptic refractive error shifts, and focal areas of ischemic
retina1. In a previous paper, it was discussed whether SANS may be similar
to the terrestrial disease idiopathic intracranial hypertension (IIH)2. IIH is
characterized by an increased intracranial pressure (ICP) in the absence of
parenchymal brain lesions, vascular malformations, hydrocephalus or CNS
infection3. To diagnose IIH, a CSF pressure above 25 cmH2O is required4.
Similar to IIH, long-duration astronauts show evidence of globe flattening,
optic nerve protrusion (optic disc edema) and pituitary flattening5. A hall-
mark of IIH is recurrent headaches and although it has been claimed
astronauts donot complain of headaches6, there are reports of an increase in
headaches associated with microgravity, especially during the initial period
in space7. Three long-duration astronauts underwent post flight lumbar
puncture revealing pressures of 23, 28 and 29 cm H2O

5, with 2 of these
pressures being in the diagnostic range for IIH. However, there are some
significant discrepancies between IIH and SANS. Astronauts do not com-
plain of pulsatile tinnitus unlike IIH patients6. IIH presents more often with
bilateral eye changes, predominately in women, but SANS has a higher
asymmetric or unilateral presentation and is more common in men1.

Transient visual obscurations or diplopia secondary to a nonlocalising sixth
nerve palsy have never been reported in astronauts with SANS, unlike in
IIH1. The latter suggests there is likely to be more to discover about the
pathophysiology of SANS.

Recently,Wostyn et al. have hypothesised that dilatationof the cerebral
perivascular spaces (PVS) in the brains of long-duration space travellers
may result from altered hemodynamics leading to obstruction of the peri-
venous glymphatic outflow8. An increase in the size of the MRI visible
cerebral perivascular spaces is thought to reflect impaired glymphatic
exchange9. There is evidence of increased PVS size in first-time astronauts
postflight10, as well as increased PVS size in those who develop SANS11. The
glymphatic system is thought to support a continuous movement of fluid
from the subarachnoid space through the brain or spinal cord parenchyma
and back into the subarachnoid space via the perivenous space12. In the
glymphatic system, CSF enters the periarterial vascular space (which is
limited by thepiamater) via arterial pulse-induced convection. Fromhere, it
enters the interstitial space through gaps in the astrocyte end-foot processes
and via aquaporin 4water channels.Water exits the interstitial space via the
perivenous space12 (see Fig. 1A). The perivenous drainage of interstitial
solutes provides these solutes access to the sinus-associated lymphatics,
either directly since these large veins merge to form the dural sinuses, or
indirectly via the cisternal CSF compartments associated with these
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structures. In this sense, it may be appropriate to regard these two com-
ponents, perivascular pathways within the CNS parenchyma and the extra-
axial meningeal lymphatic vessels as serial elements of a wider functional
system13. The current authors have suggested that there is likely to be
obstruction of the glymphatic system, due to dilatation of the venous out-
flow. This dilatation has been shown to occur in childhood hydrocephalus,
multiple sclerosis and syringomyelia and obstruction occurs because of a
shared outflow geometry14,15 (see Fig. 1B). This is similar to the hypothesis
suggested byWostyn et al. for SANS8. The purpose of the current paper is to
compare and contrast the CSF and venous outflow findings in SANS with
these latter three terrestrial diseases to see if there is any information to be
gleaned.

PHYSIOLOGY OF SANS
As discussed above, there are similarities and differences in the manifesta-
tions of IIH and SANS. The main hypothesis regarding the cause of SANS
centres on a rise in ICP due to the cephalad fluid shifts occurring during
long-duration spaceflight1. A second hypothesis suggests there is com-
partmentalisation of the CSF within the optic nerve sheath with a locally
increased CSF pressure1. The latter would not explain the elevated CSF
pressures at lumbar puncture found in long-term space flight. It was
hypothesised that an increase in ICP in spaceflight could be due to a
combination of an elevation in jugular vein pressure from these cephalad
fluid shifts1, together with an increase in venous pressure secondary to an

increase bloodflow through the cerebral venous system, occurring due to an
elevation in the inspired CO2 levels in flight2. A well-recognised terrestrial
microgravity analogue is head-down tilt, which simulates the cephalad fluid
shifts. In a recent head-down tilt study, there was an increase in ventricular
and perivascular space volume suggesting glymphatic dysfunction but
decreased cerebral bloodflow16.Despite thefindings of decreasedbloodflow
in head-down tilt experiments, there is evidence for an increase in the
cerebral blood flow during spaceflight in the literature. We are unable to
suggest a reason for this discrepancy in the cerebral blood flow between
head-down tilt and spaceflight. However, there is a 41-56% increase in
cardiac output17,18, an 83% increase in straight sinus blood flow velocity19

and an 84% increase in the middle cerebral vein flow velocity in long-term
space flight20. More recently, chronic hemolytic anemia and a reduction in
haemoglobin concentration of about 10% have been noted in long term
spaceflight21. Whilst it has long been thought that IIH is associated with
either a normal or reduced cerebral blood flow (CBF), it has also recently
been shown that there are a subset of patients with IIH who have an
increased CBF i.e. cerebral hyperemia secondary to the anemia22.
Approximately 20% of IIH patients are anemic and this is a potent cause of
increased blood flow22. The CSF volume, venous volume and glymphatic
findings in the diseases to be discussed are summarised inTable 1. Similar to
SANS, in IIH there is dilatation of the PVSs suggesting glymphatic
dysfunction23. However, in addition to the differing clinical findings
between IIH and SANS as already discussed, there are also differences in the
pathophysiology. In IIH there is a normal brain ventricular volume but the
extra-ventricularCSF volume is significantly increased24. This compares to a
study of prolonged spaceflight, where the oppositewas found i.e. evidence of
dilated lateral ventricles and a decreased subarachnoid space at the vertex11.
The latter CSF volume changes correlated with the enlarged white matter
cerebral perivascular spaces11 and therefore with the glymphatic dysfunc-
tion. The authors of the paper speculated the reduction in vertex CSF
volume could obstruct theCSF and interstitialfluid efflux routes (arachnoid
granulations, superior sagittal sinus and bridging veins)11. However, there is
evidence of an increase in the sinus size in SANS and not a decrease25. In
spaceflight, there is an increase in ventricular size ranging from 11-25% and
this enlargement persists for up to three years postflight26.

Similarities between SANS and hydrocephalus
The dilatation of the ventricles and narrowing of the subarachnoid space
over the vertex, as found in long-duration spaceflight, are more in keeping
with communicating hydrocephalus27 than IIH. Similar to SANS, in
childhood hydrocephalus, 13% of individuals have cerebral hyperemia28.
Hydrocephalus has also been noted to reduce the glymphatic flow29 similar
to SANS. Thus, SANSmay havemore in commonwith hydrocephalus than
IIH. In childhood hydrocephalus, the bridging cortical veins are found to be
22% larger than in controls28. Dilatation of the outflow veins of the brain has
been suggested to obstruct the glympathic pathway because they share a
common outflow geometry15 (see Fig. 1B). This is similar to the hypothesis
put forward by Wostyn et al.8. However, there are also differing venous
physiological findings between SANS and hydrocephalus. In a study com-
paring the magnetic resonance venograms in astronauts both pre-flight to
2 days postflight (the flight time averaging 184 days), those with SANS

Fig. 1 | A simplified diagrammatic representation of the glymphatic system with
changes occurring in syringomyelia. Panel A is the normal physiology. SC is the
spinal cord, CSF is the surrounding cerebrospinalfluid, A is the arteriolar inflow,V is
the vein draining the spinal cord and ISS is the interstitial space. CSF enters the space
between the artery and spinal cord via the spinal cord arterial perivascular space
(lower black arrows), passes through the interstitial space and exits via the venous
perivascular space (upper black arrows). Panel B shows the changes associated with
syringomyelia. There is a dilatation of the vein compressing its perivenular space
(white arrows). There is build-up of interstitial fluid increasing the ISS pressure and
there is coalescence of small cystic spaces indicating the developing syrinx (small
circles). The back-up of interstitial fluid dilates the spinal cord arteriolar perivascular
spaces (black arrows). Reproduced from Bateman and Bateman15 under a Creative
Commons Attribution (CC BY) license.

Table 1 | Summary of findings

Idiopathic Intracranial
Hypertension

Hydrocephalus Multiple Sclerosis Syringomyelia Spaceflight Associated Neuro-
optic Syndrome

Ventricle volume Normal Enlarged Enlarged due to atrophy Dilatation of the
syrinx

Enlarged

Subarachnoid
space volume

Enlarged Reduced Unknown probably enlarged
due to atrophy

Reduction in SAS
around cord

Reduced

Sinus/ cortical
venous size

Sinus normal or reduced, cortical
veins unknown

Reduced Sinus enlarged
cortical veins

Enlarged Sinus and cor-
tical veins

Enlarged sub-
arachnoid veins

Enlarged sinus, possibly cor-
tical veins

Glymphatics Obstructed Obstructed Obstructed Obstructed Obstructed
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showed a 13.4% increase in the superior sagittal sinus volume, 17.15%
increase in right transverse/ sigmoid sinus volume and 9.4% increase in left
transverse sinus/ sigmoid volume (see Fig. 2). In the non-SANS individual’s,
the changes in volume were -2.66%, 0.77% and -1.4%, respectively25. This
difference in size between the groups is significant and is likely at the heart of
the pathophysiology of SANS. This contrasts with childhood hydro-
cephalus, where there is the opposite finding i.e. a reduction in the cross-
sectional area of the sagittal sinus of 35%, a 30% reduction in the transverse
sinuses and 41% reduction in the sigmoid sinuses compared to controls28.
An increase in theCSF outflow resistance in hydrocephaluswill increase the
CSF pressure with respect to the venous pressure30 (i.e. the transmural
pressure) accounting for the sinus compression in hydrocephalus. Thus,
SANS is associated with an increase in the size of the sinuses but hydro-
cephalus is associated with a decrease in them. However, as a counterpoint
to this finding, we note in the figure from Rosenberg et al.’s paper where
SANS sinus dilatationwas discussed25, there are hints at a possible dilatation
of the cortical veins in SANS similar to childhood hydrocephalus (see Fig.

2A, B). It can be seen that in the astronaut destined to develop SANS, the
pre-flight sagittal, transverse sinuses and cortical veins were smaller than in
the postflight image, but no change can be seen in the non-SANS individual.
The cortical veins were not discussed in this paper; however, they appear
enlarged in the postflight SANS individual. This suggests the data may
already exist to answer the question as to whether the cortical veins are
dilated in SANS or not. The cause of the dilatation of the venous sinuses in
SANS is difficult to reconcile. The authors suggested there may be venous
obstruction downstream, outside of the cranium or venous laxity in the
SANS individuals, in comparison to the non-SANS individuals, to account
for thefindingsbut alsonoted thedifficulty in explaining thedilatationgiven
that most astronauts appear to have an elevated post-flight ICP25. The CSF
pressure should always stay above thevenous sinus pressure forCSF todrain
via this route30. The free walls of the sinuses are fixed at their inner
attachments to the falxor tentoriumcerebri andalso their outer attachments
to the inner aspect of the skull31. The sinus-free walls are viscoelastic
structures and collapse inward or dilate outward with the degree of

Fig. 2 | Venous dilatation in SANS. Three-Dimensional reconstructions of the
preflight and postflight MR venograms for an astronaut with spaceflight-associated
neuro-ocular syndrome (SANS) and an astronaut without SANS. There is some
dilatation of the venous sinuses in the astronaut with SANS postflight (A, B) but

none seen in the astronaut without SANS (C, D). The arrows highlight the cortical
venous segments which are larger post-flight in the SANS affected astronaut com-
pared to pre-flight (A, B). Reproduced from Rosenberg et al.25 under a Creative
Commons Attribution (CC BY) license.
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movement, depending on the pressure across their walls (the transmural
pressure), their intrinsic wall stiffness and the wall thickness31. In hydro-
cephalus where the sinus transmural pressure is increased secondary to the
elevated resistance to CSF absorption across the sinus wall32, the cross-
sectional area of the sagittal sinus is decreased by 25%33. In idiopathic
intracranial hypotension where the CSF pressure is significantly decreased
below the normal level of 11.4mmHg to 4.4mmHg34 (and also below the
normal venous sinus pressure of 7.5 mmHg33), the area of the sinus is
increased by 22%33. Note the CSF pressure can only be below the venous
sinus pressure in idiopathic intracranial hypotension due to another CSF
outflow pathway (i.e. a leak). As already discussed, the ICP is likely to be
elevated in long-flight astronauts when evaluated post flight but the
cephalad fluid shifts have likely already reversed by then. In flight, the
jugular vein pressures are high35 but postflight, the jugular vein volumes
rapidly return to those as seen before the flight36. Thewalls of the sinuses are
passive structures and should react instantly to any change in their trans-
mural pressure. A probable increase in the transmural pressure postflight
(high ICP but normal jugular vein pressure) should reduce the size of the
sinuses and not increase them (as seen in hydrocephalus). Further, any
increase in the sinuswall compliance (reduction in stiffness) as suggested by
Rosenberg et al. would make the sinuses even smaller. To highlight this
discrepancy, in IIH the sagittal sinus transmural pressure was found to be
low-normal at 2.34mmHg in one paper37 and 2.7 mmHg in another38

(normal is 4 ± 2mmHg39) and because of this, the size of the sagittal sinus is
also normal in IIH33. The sinuses further downstream(transverse sinuses) in
IIH are often collapsed because 1) the veins appear to bemore compliant at
the distal collapse site and 2) the transmural pressure increases as one passes
along the sinuses because the sinus pressure must be reduced with distance
to maintain the blood flow, but the ICP is the same everywhere40. Dilated
sinuses do occur in intracranial hypotensionwhere the transmural pressure
is reversedasdiscussed33 but a low ICPdoesnot appear to exist in SANS.The
sinus size discrepancy indicates there is yet more to the causation of SANS
than just an elevated jugular vein or sinus pressure.

Similarities between SANS and multiple sclerosis
The ventricle size in MS is increased over time but this is due to atrophy41,
the subarachnoid space volume has not been measured but is likely also
increased due to atrophy. Unlike IIH and hydrocephalus, the sinuses are
larger in multiple sclerosis than in controls33 similar to SANS. An obvious
discrepancy with SANS is the autoimmune reaction in MS, but we are
mostly interested in the venous manifestations. Vascular modelling in MS
has shown that an increase in the pressure within the neck veins or major
sinuses is minimal but there is evidence of a slight elevation in ICP31. Thus,
similar to SANS individuals whilst back on the ground, in MS the trans-
mural pressure is normal or slightly increased but the sinuses dilate anyway.
This finding demands an engineering solution. The only way to reconcile
this is to hypothesise the sinus walls are either stiffer than normal and/or
their walls are thicker than normal31. The same explanation would be
required to explain the increased sinus size in SANS. However, no direct
measurements of the wall thickness or stiffness in MS or SANS have been
attempted. Of interest, MS shares some common CSF and hemodynamic
physiology with hydrocephalus42 suggesting the commonality of the find-
ings between SANS and hydrocephalus may be retained. We are unable to
speculate why the sinus walls would be stiffer or thicker than normal
in SANS.

There is evidence of glymphatic outflow disruption in MS43,44 and also
evidence of cortical venous outflow dilatation. In multiple sclerosis, the
superficial cortical veinswere 29% larger and the vein ofGalen 25% larger in
cross-sectional area than in the controls45. Despite the cortical vein dilata-
tion, no evidence of obstruction at the outflow to the sagittal sinus or straight
sinus was seen45. Modelling of the cortical vein dilatation found could only
bedue to an increase in transmural pressure (a reduction inwall thickness or
stiffness were not feasible). The normal internal pressure within the cortical
veins is higher than the ICP (the opposite of the sinus wall transmural
pressure direction), indicating the cortical vein pressure in MS and SANS

must be much higher than the elevated ICP for them to dilate. An impe-
dance pump model was suggested to account for the finding of increased
pressure localised to the cortical vein segments, which cannot be accounted
for by the ICP or sinus pressure45. Thus, in SANS there is likely to be
structural changes in the sinus walls, altering their impedance. Similar to
MS, an increase in sinus wall stiffness would be expected to alter the
impedance matching between the cortical veins and their outflow pathway
into the sinuses, increasing their pressure and dilating them. Venous out-
flow dilatation has been correlated with glymphatic obstruction in MS14.
However, although the above findings can explain the brain findings in
SANS, it would be expected that a global reduction in intracranial com-
pliance fromanelevation in ICPand sinuswall thickening/ stiffening should
affect both optic nerves equally. However, as described previously, the
findings in SANS are often unilateral or asymmetrical1.

Similarities between SANS and syringomyelia
Syringomyelia is the development of a tubular, fluid-filled cavity within
the parenchyma of the spinal cord46. The dilated cavity is analogous to the
ventricular dilatation as seen in SANS and leads to a reduction in the
subarachnoid space around the cord at that level47 also similar to SANS.
Syringomyelia is commonly associatedwith an intradural, extramedullary
obstruction such as the tonsillar herniation found in Chiari 1
malformation46. Thus, in syringomyelia there is isolation of the spinal
canal and reduced compliance of this isolated section (see Fig. 3A). In
Chiari 1 malformation with syrinx formation, the local cervical com-
pliance is reduced by 45% with a 44% increase in CSF pulse pressure48.
Many animal models of syringomyelia indicate probable glymphatic
malfunction15 and there is a known association between syringomyelia an
MS49. There is evidence of venous dilatation within the subarachnoid
space around the cord in MS50. In a kaolin-induced dog model of syr-
ingomyelia, microangiograms show evidence of venous engorgement
surrounding the cord51. Thus, isolation of the spinal canal and a reduced
compliance are associated with dilation of the draining veins and a
reduction of the glymphatic flow, similar to that hypothesised to occur in
SANS. The earliest manifestation of syringomyelia, before the cyst
develops, is cord edema52 (see Fig. 3A, B). Similarly, there are alterations in
water diffusivity, indicating increased free water within the white matter
throughout the brain secondary to spaceflight53. Increasing the com-
pliance of the spinal canal by posterior fossa decompression can eradicate
both the cyst and edema in syringomyelia, suggesting the compliance
change is causative (see Fig. 3C). The optic nerves have a glymphatic
clearance system similar to the brain and the spinal cord. A mouse model
showedCSF tracer uptake into the optic nerve via theperivascular spaces54

with interstitial water preferentially cleared by the perivenous spaces55. In
patients with unilateral papilledema, abnormal protein levels are observed
within the optic nerve sheath CSF pool, as compared to the global CSF
pool, in both IIHand innormal-tension glaucoma, suggesting obstruction
of the CSF flow between the intracranial and optic nerve subarachnoid
compartments56. Thus, the findings in syringomyelia suggest the likely
cause of the often unilateral eye findings in SANS i.e. localised isolation of
the affected optic nerve sheath, reduced compliance locally and glym-
phatic obstruction secondary to local venous dilatation (see Fig. 1). The
hypothesis of relative optic nerve sheath isolation in SANS has been put
forward previously. It was suggested that CSF accumulates in the optic
nerve sheath due to a one-way valve mechanism in SANS57. This could be
correct, and possibly occurs due to the dural wall thickening/ stiffening, as
already hypothesised to occur in the sagittal sinus walls in SANS. Dural
thickening of the optic nerve sheath within the optic canal would obstruct
the back-and-forth CSF flow isolating the system.

Are asthenia and “space brain fog”manifestations of
glymphtic obstruction as well?
In their perspectives on asthenia in astronauts and cosmonauts, NASA
defined the most prevalent symptoms of this disorder to be; fatigue, sleep
disturbance, somatic symptoms, difficulty concentrating, decreased
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occupational performance and irritability58. They noted, there seems to be a
very high probability that at least partial asthenia will develop in astronauts
after 6 ormoremonths in space58. Astronauts commonly experience “space
fog”, which manifests as attention lapses, short-term memory problems,
confusion when performing two tasks together and psychomotor
problems59. On the day of landing, astronauts experience a general post-
flightmalaise inmotor function and a lack of cognitive reserve, saidnot to be
due to the fatigue component alone. These changes recover to baseline by
four days after landing60. Fatigue is a component of MS symptomatology.
The symptomof fatigue is a significant lackofphysical and/ormental energy
that is perceived by the individual to interfere with their usual or desired
activity. It is a subjective feeling of physical, cognitive or psychosocial
exhaustion and tiredness, which can be perceived by the patients at rest61.
Fatigue in MS has a prevalence of up to 81%62. Fatigue in MS is often
described as “brain fog” by the patients themselves. In multiple sclerosis,
fatigue severity correlates with the number, site and size of the enlarged
cerebral perivascular spaces63. Fatigue in MS also correlates with the size of
the dilated cortical veins45. This raises a possible glymphatic cause for the
fatigue in MS and perhaps also the asthenia in astronauts. It has been
suggested the glymphatic system may be involved in mediating fatigue by
facilitating macromolecular toxin clearance from the sleeping brain64.

Sleep increases glymphatic flow, while sleep deprivation reduces
glymphatic flow65. There is a coherent pattern of oscillating electro-
physiological, hemodynamic and CSF dynamics in slow wave sleep, most
likely linked to the restorative effects of sleep66. Hyde et al. were the first to
suggest there was a link between dilated perivascular spaces in the brain and
chronic fatigue syndrome67.More recently it has beenhypothesised there is a
glymphatic disruption with toxin build-up in at least some cases of chronic
fatigue syndrome68 and post-COVID-19 syndrome69, both of which are
associated with fatigue. There is subsequent evidence of glymphatic system
dysfunction even in recovered patients with mild COVID-1970. It has been
suggested the reason fatigued individuals, such as those with chronic fatigue
syndrome, complain of non-restorative sleep is both that the refreshing part
of nonrapid eye movement sleep is altered, with a decrease in para-
sympathetic activity71 and the glymphatic clearance system is impaired72.
Indeed, in chronic fatigue syndrome/ myalgic encephalitis, there is also
anecdotal evidence of venous outflow dilatation, which could impair
glymphatic outflow73. In space missions, there is a reduction in sleep time,
reduced slow-wave sleepand changes in the architecture of the sleep74. Thus,
lack of sleep could partly explain the asthenia seen in spaceflight by reducing
the sleep-induced glymphatic flow. However, it is also likely that a combi-
nation of any sleep reduction together with venous outflow dilatation could

be acting in synergy to alter the glymphatic system in spaceflight com-
pounding the fatigue.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study are included in this pub-
lished article.
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