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Altered quorum sensing and physiology of Staphylococcus
aureus during spaceflight detected by multi-omics data analysis
Matthew R. Hauserman1, Mariola J. Ferraro1, Ronan K. Carroll2 and Kelly C. Rice 1✉

Staphylococcus aureus colonizes the nares of approximately 30% of humans, a risk factor for opportunistic infections. To gain insight
into S. aureus virulence potential in the spaceflight environment, we analyzed RNA-Seq, cellular proteomics, and metabolomics data
from the “Biological Research in Canisters-23” (BRIC-23) GeneLab spaceflight experiment, a mission designed to measure the
response of S. aureus to growth in low earth orbit on the international space station. This experiment used Biological Research in
Canisters-Petri Dish Fixation Units (BRIC-PDFUs) to grow asynchronous ground control and spaceflight cultures of S. aureus for 48 h.
RNAIII, the effector of the Accessory Gene Regulator (Agr) quorum sensing system, was the most highly upregulated gene transcript
in spaceflight relative to ground controls. The agr operon gene transcripts were also highly upregulated during spaceflight,
followed by genes encoding phenol-soluble modulins and secreted proteases, which are positively regulated by Agr. Upregulated
spaceflight genes/proteins also had functions related to urease activity, type VII-like Ess secretion, and copper transport. We also
performed secretome analysis of BRIC-23 culture supernatants, which revealed that spaceflight samples had increased abundance
of secreted virulence factors, including Agr-regulated proteases (SspA, SspB), staphylococcal nuclease (Nuc), and EsxA (secreted by
the Ess system). These data also indicated that S. aureus metabolism is altered in spaceflight conditions relative to the ground
controls. Collectively, these data suggest that S. aureus experiences increased quorum sensing and altered expression of virulence
factors in response to the spaceflight environment that may impact its pathogenic potential.
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INTRODUCTION
Staphylococcus aureus is a pernicious pathogen capable of
infecting nearly every tissue and organ system in the human
body. Most S. aureus strains are resistant to multiple antibiotics,
and certain isolates are resistant to nearly all antibiotics used in
the clinical setting. The CDC 2019 Antibiotic Threats Report listed
methicillin-resistant S. aureus (MRSA) at a “serious” threat level,
with over 10,000 estimated deaths in 2017 alone1. S. aureus is a
frequent cause of hospital-acquired infections, and in recent years,
highly virulent and transmissible community-acquired methicillin-
resistant S. aureus (CA-MRSA) strains have emerged. Approxi-
mately 30% of humans are nasally colonized by S. aureus, which
represents a significant risk factor for invasive infections2. As a
pathogen, S. aureus expresses a vast repertoire of cell surface
adhesins, secreted toxins, and tissue-degrading enzymes that
contribute to its ability to colonize host tissue, evade the immune
system, and transition from a localized to systemic infection. The
expression of these virulence factors is coordinated by a complex
network of genetic regulators, including the Accessory Gene
Regulator (Agr) quorum-sensing system, which has been exten-
sively reviewed3–7. The agr operon is comprised of two transcripts,
RNAII and RNAIII, which are activated by the P2 and P3 promoters,
respectively8. RNAIII is an untranslated RNA species that regulates
a variety of target genes at both the transcriptional and post-
transcriptional level, making it a primary downstream effector of
the Agr system, whereas the RNAII transcript contains the agrBDCA
genes [reviewed in refs. 6,7]: AgrD, which is processed and secreted
out of the cell in a form known as the autoinducing peptide (AIP),
AgrB, the membrane protein that performs this processing and
secretion, AgrC, a sensor kinase which recognizes the AIP and

transduces the signal to AgrA, the response regulator which
activates transcription at the P2 and P3 promoters.
S. aureus also poses a potential health risk to astronauts during

long-term spaceflight missions. This bacterium was recovered
from the nasal passages of Apollo 13 and 14 astronauts at
significantly higher numbers compared to preflight samples
collected from the same astronauts9, and S. aureus was also
among the most frequently isolated bacteria from astronauts that
participated in 25 Space Shuttle missions (STS-26 to STS-50)10.
Furthermore, several studies monitoring the presence of microbes
aboard the International Space Station (ISS)11–13 as well as in the
environment of a full-duration simulation of a crewed return flight
to Mars14 identified staphylococci as being predominant. Because
of the potential threat of S. aureus to astronaut health, this
pathogen’s stress resistance and virulence potential have been
studied in both a spaceflight experiment15 and in ground-based
models15–19 of simulated microgravity. In the previous spaceflight
experiment, S. aureus virulence was reduced when assessed as a
function of the quantity of residual bacteria in the presence and
absence of Caenorhabditis elegans15. However, these studies were
conducted using a nematode feeding model, which does not
entirely reflect the complexity of S. aureus pathogenesis in
humans.
NASA previously conducted a “Biological Research in Canisters-

23” (BRIC-23) spaceflight experiment (OSDR accession# OSD-145),
designed to measure the response of both Bacillus subtilis and S.
aureus to the spaceflight environment20,21. In this experiment,
Biological Research in Canisters-Petri Dish Fixation Units (BRIC-
PDFUs)22 were used to grow asynchronous ground controls and
spaceflight samples of S. aureus strain UAMS-1, a clinical MSSA
isolate that was originally isolated from an osteomyelitis
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infection23. Herein, our analysis of the S. aureus RNA-Seq,
proteomics, and metabolomics datasets from BRIC-23 suggests
that S. aureus spaceflight samples may have altered metabolism
(increased amino acid metabolism, TCA cycle, and transport of
non-preferred carbon sources, and decreased glycolysis/fermenta-
tion and translation machinery) relative to ground-control
cultures. Furthermore, agr genes and several positively regulated
targets were the most highly upregulated transcripts in space-
flight. We also performed secretome analysis of culture super-
natants from the BRIC-23 spaceflight and ground control cultures,
in which several Agr-regulated secreted proteins were increased in
abundance in the spaceflight samples. Collectively, these data
suggest that S. aureus experiences altered metabolism, increased
quorum sensing, and altered expression of virulence factors in
response to the spaceflight environment that may impact its
pathogenic potential.

RESULTS
Experimental considerations, sample variability, and
clustering amongst FLT and GC samples
As outlined in Fig. 1a, the BRIC-23 flight (FLT) experiment and
corresponding asynchronous ground controls (GCs) were con-
ducted on S. aureus cultures grown to a single time point (48 h) at

ISS ambient ( ~ 22 °C) temperature. The total CFUs per petri dish
harvested from both flight and ground control experiments (as
reported in OSDR entry OSD-145) suggested that the FLT cultures
may have grown to higher cell densities compared to GC cultures
(Fig. 1b).
Principle components analysis (PCA) was performed on all

quantile normalized Reads Per Kilobase of transcript, per Million
mapped reads (RPKM) gene expression values from the BRIC-23 FLT
and GC RNA-Seq samples (n= 9 per experimental group) (Fig. 2a).

Fig. 1 BRIC-23 Flight Experiment Overview and Associated Data.
a Overview of BRIC-23 Flight Experiment. Full details have been
previously published in20,21. b Average total CFU harvested from FLT
and GC cultures. c Average protein concentration (measured after
concentration and removal of < 5 kDa peptides/amino acids) of
culture supernatants from FLT and GC cultures. For B and C, data
represent the average of n= 9 biological samples per growth
condition, error bars = standard deviation. P-values (two-tailed t-test)
are shown.

Fig. 2 Principal Component Analysis (PCA) of Omics Data. a RNA-
Seq (n= 9 biological samples each for FLT and GC). b Proteomics
(n= 9 FLT and n= 3 GC biological samples). c Secretomics (n= 5
biological samples each for FLT and GC). In all graphs, BRIC-23 flight
(FLT; circles) and ground control (GC; triangles) samples are
indicated. PCA analysis of RNA-Seq data was performed on
normalized RPKM values for all genes using CLC genomics
workbench, and PCA analysis of proteomics and secretomics was
performed on scaled abundances and normalized weighted spectra,
respectively, using Clustvis89.
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This analysis revealed that the samples within each experimental
group showed robust clustering, and that most of the sample
variability correlated with experimental group (FLT vs. GC) along the
PC1 axis. Cellular proteomics (Fig. 2b) and secretomics (Fig. 2c) PCA
of scaled abundances and normalized weighted spectra, respec-
tively, revealed similar trends as the RNA-Seq data. All datasets were
also subjected to differential expression/abundance analysis to
identify differences in transcript and protein relative abundances
between spaceflight and ground control samples. FLT and GC genes
that showed statistically significant differences in relative abun-
dance ( > 2-fold change) in the RNA-Seq dataset (summarized in
Supplemental Table 1) were also subjected to hierarchical clustering
analysis, which showed robust clustering amongst the biological
replicates within each experimental group (n= 9 each), indicating
consistency of the data across replicates in each group (Supple-
mental Fig. 1). For cellular proteomics, the metadata associated with
this experiment in GeneLab indicated that due to low protein yield
from some of the GC samples, replicates had to be pooled prior to
proteomics, resulting in only n= 3 GC samples and n= 9 FLT
samples. However, hierarchical clustering analysis on the FLT and
GC proteins that showed statistically significant differences in
relative abundance ( > 1.5-fold change, Supplemental Table 2)
indicated good consistency and clustering between the biological
replicates within each experimental group (Supplemental Fig. 1).
FLT and GC samples (n= 5 each) analyzed for secretomics also
displayed strong clustering among proteins with significant
differences in relative abundance ( > 1.5-fold change, Supplemental
Fig. 1 and Supplemental Table 3). Interestingly, the average
concentration of secreted proteins of FLT sample supernatants
was approximately 30% less than that of the GC culture super-
natants (Fig. 1c; measured after concentration and removal of <
5 kDa peptides/amino acids).

Overlap between RNA-Seq, proteomics, and secretomics
datasets
In total, 386 genes and proteins were identified across the RNA-
Seq, cellular proteomics, and secretomics datasets that exceeded
the respective cutoff values of 2-fold for RNA-Seq and 1.5-fold for
proteomics (Fig. 3), with 37 genes/proteins that were common to
at least two datasets (Table 1). Of the twenty genes that were
common to RNA-Seq and cellular proteomics (Table 1), nineteen
displayed increased abundance in spaceflight, including multiple
genes and proteins related to the urease pathway and Type VII
secretion, as well as two genes related to copper transport and
two subunits of L-serine dehydratase. Notably, AgrA, the main
response regulator of the agr quorum sensing system, was found
to have both increased transcript levels and increased protein
abundance in spaceflight samples. The sole protein down-
regulated in both datasets was a predicted GMP reductase,
responsible for interconversion of purine nucleotides. Eight of the
nine genes and proteins overlapping between the RNA-Seq and
secretomics datasets were primarily annotated as intracellular
proteins, involved in several different pathways. The lone
extracellular protein in this dataset, EsxA, is secreted by the Type
VII-like Ess secretion system24. Other genes and proteins of the
Ess-related secretion system (EsaA, EsaB, EssC) were also
upregulated in both the RNA-Seq and cellular proteomics datasets
(Table 1). Four genes and proteins were common to all three
datasets, and all displayed increased abundance in spaceflight in
each analysis. These consisted of the urease alpha and beta
subunits, the urease accessory protein UreG, and the secreted
EsxA protein described above (Table 1).

Overview of gene and protein functional categories identified
in multi-omics analysis
The statistically significant changes in transcripts and proteins that
fell within the fold-change cutoff criteria for each dataset ( > 2-fold

for RNA-Seq, > 1.5-fold for proteomics and secretomics) were
manually curated and functionally categorized to broadly examine
which aspects of S. aureus physiology and virulence were affected
by spaceflight conditions (Fig. 4). All datasets contained many
hypothetical or uncharacterized proteins and genes, accounting
for approximately 21% of all DE genes (RNA-Seq, Fig. 4a), 33% of
all DE cellular proteins (proteomics, Fig. 4b), and 33% of all DE
secreted proteins (secretomics, Fig. 4c). In the RNA-Seq DE
analysis, gene transcripts related to extracellular transport, urease,
and Type VII secretion were among the most commonly
upregulated, along with genes involved in capsule biosynthesis
and metabolism of a variety of substrates, including amino acids
and carbohydrates (Fig. 4a). As discussed in more detail below,
genes of the agr P2 (agrBDCA) and P3 (RNAIII) transcripts
represented the five most highly upregulated transcripts (14 to
88-fold) in FLT samples (Supplemental Table 1). Additionally,
expression of many Agr-independent virulence factors was
upregulated in spaceflight relative to the ground controls
(discussed in more detail below), as well as expression of genes
and/or proteins involved in DNA-binding, transcriptional regula-
tors, ABC transporters, urease subunits, and metal acquisition (Fig.
4). Ribosomal proteins was the most commonly downregulated
category in FLT samples amongst cellular proteins, followed by
those involved in glycolysis, ATP synthesis, and stress resistance.
Additionally, a number of small RNAs (RNA-Seq) were down-
regulated in FLT samples relative to GC samples (Fig. 4a).
Functional enrichment amongst these omics datasets was also

assessed by PaintOmics25 and STRING26 (Table 2 and Supple-
mental Table 4, respectively), which confirmed the patterns of
gene and protein functional categories observed in Fig. 4. Using
PaintOmics, an overrepresentation of significant biological fea-
tures (P < 0.05) of pathways related to arginine biosynthesis,
purine metabolism, thiamine metabolism, quorum sensing, and
phosphotransferase systems (PTS) were common to both the RNA-
Seq and proteomics datasets (Table 2). Additionally, pathways
related to ribosome function and fructose/mannose metabolism
were significantly enriched in the proteomics dataset, and two-
component system and riboflavin metabolism were significantly
enriched in the RNA-Seq dataset (Table 2). STRING analysis of

Fig. 3 Venn diagram showing the number of DE genes/proteins in
RNA-Seq, cellular proteomics, and secretomics BRIC-23 datasets.
BRIC-23 RNA-Seq data cutoffs: DE fold-change ≥ 2, P-value <
0.000016 (2-tailed t-test), and mean normalized expression value ≥
10 for both samples. BRIC-23 cellular proteomics and secretomics
data cutoffs: P-value < 0.05 (Student t-test), fold-change > 1.5.
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RNA-Seq, proteomics, and secretomics DE genes/proteins (meet-
ing statistical and fold-change cutoff criteria) revealed significant
(FDR-adjusted P < 0.05) enrichment of many of the same
functional pathways detected by PaintOmics (Supplemental Table
4). Additionally, categories related to polysaccharide biosynthesis
(RNA-Seq), sucrose/starch metabolism (RNA-Seq), heme/virulence
(RNA-Seq), nickel cation binding (RNA-Seq and proteomics), and

arginine biosynthesis (secretomics) were significantly enriched in
STRING analysis of these data.

Expression changes in Agr and virulence factors in spaceflight
Notably, expression of genes comprising the agr operon were
highly upregulated in spaceflight samples, with agrA, agrB, agrC,

Table 1. Summary of overlapping gene transcripts and proteins identified as statistically significant and meeting fold-change cutoff criteria in RNA-
Seq, proteomics, and secretomics DE analyses.

Gene ID Function RNA-Seqa Proteomicsa Secretomicsa

Type VII secretion system

SAR0279 6 kDa early secretory antigenic target ESAT-6 (EsxA) 4.61 1.61 7.50

SAR0280 Type VII secretion protein EsaA 3.01 2.03

SAR0283 Type VII secretion protein EssB 4.28 2.55

SAR0284 Type VII secretion system protein EssC 4.73 1.71

Agr-regulated

SAR2126 Response regulator transcription factor AgrA 14.30 3.96

SAR1021 Cysteine protease precursor; SspB 2.55 13.07

SAR1022 Glutamyl endopeptidase precursor; V8 Protease; SspA 3.48 6.95

SAR2716 Zinc metalloproteinase aureolysin; Aur 3.27 2.19

Copper-associated

SAR2637 Copper-exporting P-type ATPase A (CopA) 2.91 2.55

SAR2639 CopZ putative heavy-metal-associated protein 3.11 18.19

SAR0720 Copper-translocating P-type ATPase 2.19 2.55

SAR0721 Multicopper oxidase protein 1.93 4.08

Arginine and Urea Metabolism

SAR2714 Arginine deiminase 2.05 3.04

SAR2374 Urease alpha subunit 4.91 2.28 1.82

SAR2373 Urease beta subunit 5.02 2.15 4.35

SAR2375 Urease accessory protein UreE 4.66 1.91

SAR2376 Urease accessory protein UreF 4.37 2.37

SAR2377 Urease accessory protein UreG 4.37 1.85 4.37

SAR2378 Urease accessory protein UreD 4.12 2.53

Misc. cell processes

SAR2611 L-serine dehydratase, beta subunit 2.76 2.10

SAR2610 L-serine dehydratase, alpha subunit 2.19 1.63

SAR1425 2-oxoglutarate dehydrogenase E1 component 2.03 1.55

SAR1870 Methionine adenosyltransferase 1.63 1.61

SAR1851 Riboflavin biosynthesis protein RibBA; GTP cyclohydrolase II 2.02 1.73

SAR2775 2-oxoglutarate/malate translocator-like protein 2.05 1.94

SAR1984 Bacterial non-heme ferritin 2.13 1.58

SAR0278 Secreted antigen precursor; staphyloxanthin biosynthesis 3.00 2.71

SAR1347 GMP reductase (predicted) −2.07 −1.66

SAR0155 Capsular polysaccharide synthesis enzyme 2.15 −2.56

SAR2359 Putative molybdenum cofactor biosynthesis protein B −1.91 2.91

SAR1127 Hypothetical protein, similarity with fibrinogen-binding protein Efb 3.78 −2.36

SAR2506 Phosphoglycerate mutase 2.55 −1.56

SAR1797 30 S ribosomal protein S4 −2.10 1.69

Hypothetical

SAR0007 ADP-dependent (S)-NAD(P)H-hydrate dehydratase 2.46 1.80

SAR0345 Conserved hypothetical protein 1.52 2.94

SAR2028 Aminotransferase class I/II-fold pyridoxal phosphate-dependent enzyme 1.55 2.03

SAR2054 Hypothetical phage protein −1.55 −1.53

aNumbers represent the fold-Change (FLT/GC). Plus (+) and minus (-) symbols designate upregulated and downregulated, respectively, in FLT samples relative
to GC samples.
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and agrD each showing an approximately 14-fold increase in
transcript abundance, and RNAIII displaying an 88-fold increase in
transcript abundance (Supplemental Table 1). AgrA, the direct
transcriptional activator of the agr P2 and P3 operons, was also
upregulated 3.96-fold in the FLT proteomics data (Table 1),
corroborating the increased transcript abundance of agrA
observed in the RNA-Seq data. Additionally, genes and proteins
known to be upregulated by Agr were also upregulated in FLT

samples in a manner consistent with a highly active Agr system,
including increased expression of genes encoding PSM alpha
(psmα, 8.08-fold) and gamma hemolysin C (hlgC, 2.20-fold), and
increased protein abundance of SspA (6.95-fold), SspB (13.07-fold),
and ScpA (7.18-fold)27–32. The secreted metalloprotease aureolysin
(Aur), regulated by Agr via repression of Rot30, was also
upregulated by 2.2–3.5 fold in the secretomics and proteomics
datasets, respectively (Table 1). Agr has also been implicated in

Fig. 4 Distribution of S. aureus UAMS-1 gene/protein functional categories differentially expressed (DE) during spaceflight relative to
ground control. a BRIC-23 RNA-Seq data was subjected to DE analysis, with cutoffs (DE fold-change ≥ 2, P-value < 0.000016 and mean
normalized expression value ≥ 10 for both samples) applied prior to assignment of functional categories (based on S. aureus genome
annotations and/or UNIProt database). b, c BRIC-23 cellular proteomics (B) and secretomics (C) functional categories were assigned based on S.
aureus genome annotations and/or UNIProt database (P-value < 0.05, fold-change > 1.5).
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positive regulation of the capsular polysaccharide synthesis
operon capABCDE33, and expression of these genes was upregu-
lated in spaceflight (2.15–2.39-fold; Supplemental Table 1).
Abundance of the surface protein fibronectin-binding protein A
(FnbA), the expression of which is inhibited by Agr34,35, was also
significantly decreased in the spaceflight proteomics data (−1.81-
fold).
Several virulence factors not under Agr’s regulatory control

were also upregulated in spaceflight samples. The Type VII-like Ess
secretion system had six transcripts with increased abundance in
FLT samples, four of which were also identified and upregulated in
the proteomics and/or secretomics datasets. Staphylococcal
nuclease (Nuc) was also highly upregulated in secretomics
samples from spaceflight (7.72-fold). Although increased abun-
dance of other non-agr-regulated virulence factors was also
observed, such as those implicated in hemolysin production (CvfC,
1.51-fold36) and nasal colonization (SceD, 1.57-fold37), other well-
characterized S. aureus virulence factors such as hyaluronidase,
coagulase, lipase, and staphylokinase, were not identified as being
significantly altered between FLT and GC samples.

S. aureus metabolic alterations under spaceflight conditions
S. aureus is noted for its ability to thrive in a variety of
environments and adjust its metabolism accordingly, and its
virulence potential can be mediated by diverse environmental and
nutritional stimuli5,38. In addition to genes and proteins related to
the Agr quorum sensing system and its regulon, expression
patterns of metabolic genes and proteins in spaceflight suggested
that these S. aureus cultures may have experienced an altered
metabolic state compared to the ground control cultures. Both
cellular and secreted metabolites were analyzed for alterations in
spaceflight cultures, and PCA plots of metabolomics data
indicated that spaceflight samples and ground control samples
clustered separately (Supplemental Fig. 2a). These metabolomics
data also corroborated many of the changes in gene and protein
expression levels associated with S. aureus metabolic functions.
Urease expression, for example, was noted to be significantly
upregulated in spaceflight, with seven genes upregulated
between 4.12 and 5.02-fold and six proteins upregulated between
1.85 and 2.53-fold. Urea concentrations were decreased in
spaceflight supernatant samples but did not meet the statistical
cutoffs applied to the metabolomics analyses (data not shown).
Additionally, altered levels of metabolites, genes and/or proteins
related to arginine metabolism (increased ornithine, arginine/
ornithine antiporter ArcD, Arginine deiminase ArcA, arginine
kinase) were observed in FLT samples relative to GCs (Supple-
mental Tables 1–3, 5, 6).

Spaceflight S. aureus samples also exhibited several features
congruent with a transition to catabolism of non-preferred carbon
sources. These included decreased abundance of glucose in
culture supernatants (Supplemental Table 6), decreased abun-
dance of a glucose import protein (SAR1435), and functional
enrichment (Table 1) and upregulated expression of genes and/or
proteins of several sugar transporters (SAR0235, SAR0193,
SAR2244, SAR1803) (Supplemental Tables 1–3). Several members
of TCA cycle, including CitZ, OdhA/B, and SdhA/B displayed
increased protein abundance and/or gene expression in space-
flight samples. Altered levels of metabolites, genes and/or
proteins related to cysteine/serine metabolism (increased O-
acetylserine, homoserine, cysteine, ornithine carbamoyltransfer-
ase, and serine dehydratase), and methionine metabolism
(decreased methionine, increased methionine sulfoxide, increased
methionine ABC transporter) were also observed in spaceflight
samples relative to ground controls (Supplemental Tables 1–3, 5,
6). Additionally, increased expression of several metal transport
genes was observed in the spaceflight cultures (Supplemental
Table 1).

DISCUSSION
Our analysis of the S. aureus RNA-Seq, proteomics, secretomics,
and metabolomics datasets from BRIC-23 indicate that S. aureus
undergoes significant alterations in physiology and virulence
factor production in the spaceflight environment which could
alter its pathogenic potential for astronauts conducting long-term
spaceflight missions. However, these results need to be inter-
preted in the context of the experimental confines of the BRIC-23
experiment, namely that only a single time point (48 h growth)
was assessed, and that the experiment was conducted at ISS
ambient temperature ( ~ 22 °C). Ground-based pre-science verifi-
cation test (pre-SVT) growth curves previously conducted at
~25 °C (using dried starting inoculum on petri dishes and growth
medium identical to those used in the BRIC-23 flight and ground
controls) indicated that S. aureus entered early stationary phase by
48 h growth in this condition20. In comparison, SVT incubation of
BRIC-PDFUs in the the ISS Environmental Simulator (ISSES)
chamber at KSC conducted at ~22 °C, which more closely
mimicked ISS ambient temperature, showed that cultures reached
late exponential phase growth by 48 h20. Since a true growth
curve (multiple time points) was not conducted in the actual BRIC-
23 flight and ground control experiments, we cannot speculate on
any potential differences in the growth rates and/or phase of
growth between BRIC-23 FLT and GC cultures at the 48 h time
point. However, the reported total CFUs per petri dish in both
flight and ground control experiments suggest that the FLT
cultures may have grown to higher cell densities compared to GC

Table 2. Pathway enrichment analysis in BRIC-23 RNA-Seq and proteomics datasets.

Pathway namea Unique genes Proteomics P-value RNA-Seq Gene expression P-value Combined P-value (Fisher)

Arginine biosynthesis 16 0.04 0.02 0.01

Purine metabolism 44 0.05 0.03 0.01

Thiamine metabolism 9 0.00 1.00 0.02

Quorum sensing 36 0.45 0.01 0.03

Phosphotransferase system (PTS) 16 0.05 0.12 0.04

Ribosome 56 0.04 1.00 0.17

Fructose and mannose metabolism 14 0.05 0.44 0.11

Two-component system 62 0.88 0.04 0.15

Riboflavin metabolism 9 0.49 0.05 0.12

aSignificant (P < 0.05, Fisher exact test) pathway enrichments for each dataset (RNA-Seq, proteomics), as well as the combined datasets, are indicated. Pathway
enrichment analysis was performed using PaintOmics 3.
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cultures (Fig. 1b). Similar to this, experiments previously con-
ducted with Pseudomonas aeruginosa demonstrated that this
bacterium achieved increased final cell density (as measured by
flow cytometry of fixed cells) in flight cultures relative to ground
controls under the specific growth medium characteristics of low
phosphate and low oxygen availability39. Esherichia coli and
Bacillus subtilis spaceflight cultures grown at 23 °C in a fluid
processing apparatus also achieved increased stationary phase
cell densities in flight cultures relative to their corresponding
ground controls40. It is therefore not clear whether the S. aureus
BRIC-23 FLT cultures were in an identical phase of growth
compared to the GC cultures, which could impact some of the
observed differences discussed in more detail below.
Additionally, temperature is known to have a significant impact

on S. aureus gene expression, as it has recently been shown that
expression of genes encoding secreted proteases and toxins (aur,
sspA, sspB, esxA), as well as agrD, displayed increased transcript
abundance at 34 °C compared to 37 °C and 40 °C41. Therefore, the
BRIC-23 data could be considered more relevant to conditions
experienced by S. aureus outside of the host (i.e., growth and/or
persistence on fomites, which could impact S. aureus transmis-
sion). Future experiments examining multiple time points and a
more biologically relevant incubation temperature (35–37 °C)
represent logical follow-up steps to gain a complete picture of
the S. aureus physiological response to spaceflight.
A major finding of the BRIC-23 data analysis was that the S.

aureus Agr quorum sensing response, as well as increased
expression of both Agr-dependent and Agr-independent virulence
factors, was highly upregulated during this spaceflight experi-
ment. Given the challenges of medical treatment of bacterial
infections in space, increased potential for Agr quorum sensing
and production of virulence factors are concerns for astronaut
health, and worthy of additional study of this bacterium under
spaceflight conditions. Agr function has been identified as a
critical component of infection and lethality in animal models,
including rabbit and mouse models of osteomyelitis, necrotic
pneumonia, and skin infection23,42,43. Additionally, agr has been
observed to be important for human infection, with CA-MRSA skin
infections strongly affected by Agr activity27. However, naturally
occurring agr mutant strains as well as mixed cultures of wildtype
and mutant agr variants have been isolated from human
infections, indicating that Agr is not the only system responsible
for pathogenesis, and that loss of Agr function may in fact
contribute to chronic infection44,45. Autoinduction of Agr is
activated in late exponential phase and stationary phase in
response to high cell density, as higher concentrations of secreted
AIP can be recognized by AgrC, resulting in a positive feedback
loop of agr activation. Low Agr activity is characterized by cell
attachment and biofilm formation, and as cell density increases,
agr activation encourages a cellular transition to a dispersal and
pathogenesis-focused lifestyle8,31,46–48. This is accomplished
through upregulation of secreted proteases and toxins, which
help cells overcome host defenses, and downregulation of surface
adhesion factors to aid in dissemination throughout the host.
Given that higher CFUs were recovered from the BRIC-23 FLT
cultures at 48 h growth relative to the GC cultures, it is possible
that the increased cell density of FLT cultures contributed to
increased activation of Agr. Interestingly, even though increased
Agr activation was observed in FLT cultures, the average
concentration of secreted proteins in FLT sample supernatants
was approximately 30% less than the GC culture supernatants (Fig.
1c), possibly a consequence of increased expression and
abundance of secreted proteases (SspA, SspB, ScpA, Aur) which
are known to have significant effects on the stability of the S.
aureus exoproteome49–53. Interestingly, observations from pre-
vious ground-based simulated microgravity studies of S. aureus
also showed that simulated microgravity cultures excreted less
protein compared to normal gravity controls19.

Several virulence factors not under Agr’s regulatory control
were also upregulated in spaceflight samples. These included
several components of the Type VII-like Ess secretion system,
which has been implicated in protection from host antimicrobial
resistance54 as well as exhibiting a potential role in cross-strain
competition24. Therefore, increased expression of the Ess system
could potentially confer a competitive advantage to S. aureus in
colonizing and/or persisting on environmental fomites, as well as
the human body. Staphylococcal nuclease, controlled by the
SaeRS regulatory system55,56, was also highly upregulated in
secretomics samples from spaceflight. This enzyme breaks down
extracellular DNA and RNA57, contributing to biofilm dispersal58.
Nuclease also contributes to S. aureus pathogenicity by enhancing
its ability to evade killing by neutrophils, via degradation of the
DNA backbone of neutrophil extracellular traps (NETs)59. Increased
abundance of other non-agr-regulated virulence factors impli-
cated in hemolysin production (CvfC36) and nasal colonization
(SceD37) was also observed. Collectively, this data suggests that
the virulence potential of S. aureus in spaceflight could be
amplified by factors in addition to the Agr regulon.
Additionally, S. aureus appears to undergo an altered metabo-

lism during spaceflight. For example, urease subunit gene
expression and/or protein abundance was significantly upregu-
lated in spaceflight. This enzyme hydrolyzes urea to form
ammonia and carbon dioxide, and is a vital contributor to acid
stress survival in S. aureus60. Increased urease expression and
activity, in conjunction with increased acid production, has also
been demonstrated in S. aureus biofilms61. Altered levels of
metabolites, genes and/or proteins related to arginine metabolism
were also observed in spaceflight samples relative to ground
controls. Collectively, these changes could reflect an overall
increase in urea cycle activity in response to acid stress and/or
as an alternative pathway for ATP production, as the arginine
deiminase pathway produces both ammonia and ATP (via
substrate-level phosphorylation)62,63. Spaceflight S. aureus sam-
ples also exhibited several features congruent with a transition to
catabolism of non-preferred carbon sources, including decreased
abundance of extracellular glucose, increased abundance of gene
transcripts and/or proteins encoding various sugar transporters,
and increased protein abundance and/or gene expression of TCA
cycle enzymes. Derepression of the tricarboxylic acid (TCA) cycle in
S. aureus has been associated with decreased availability of carbon
sources which generally occurs during post-exponential
growth64,65. Additionally, altered levels of metabolites, genes
and/or proteins related to cysteine/serine metabolism (increased
O-acetylserine, homoserine, cysteine, ornithine carbamoyltransfer-
ase, and serine dehydratase), and methionine metabolism
(decreased methionine, increased methionine sulfoxide, increased
methionine ABC transporter) were observed in spaceflight
samples relative to ground controls (Supplemental Tables 1–3, 5,
6). These changes, in combination with increased expression of
several metal transport genes (Supplemental Table 1), suggest
that S. aureus could have altered sulfur and/or metal requirements
to support its metabolism under flight conditions.
The global regulator CodY was also identified in the cellular

proteomics analysis, with a –1.52-fold change in spaceflight
samples. CodY notably responds to changes in nutrient levels and
alters the expression of a wide range of metabolic genes, virulence
factors, and other regulators56,66–68. Some targets known to be
repressed by this regulator include capsule synthesis, Agr, and
staphylococcal nuclease, which all exhibit increased abundance in
spaceflight samples (Supplemental Tables 1–3). Therefore,
depleted nutrients in the spaceflight environment could con-
tribute to these observed alterations in S. aureus virulence factor
production and metabolism, partly through decreased CodY
activity.
In summary, data from the BRIC-23 experiment indicate that S.

aureus spaceflight cultures exhibit changes in physiology and
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virulence factor production (summarized in Fig. 5) which could
affect its ability to cause human disease during long-duration
spaceflight missions. Specifically, S. aureus spaceflight samples
may have altered metabolism (increased amino acid metabolism,
TCA cycle, and transport of non-preferred carbon sources, and
decreased glycolysis/fermentation and translation machinery)
relative to ground-control cultures. Furthermore, both Agr-
dependent and Agr-independent virulence factor expression were
upregulated in spaceflight, with the agr RNAII and RNAIII
transcripts themselves being the most highly upregulated.
However, it is important to interpret these results in the context
of the experimental confines of the BRIC-23 experiment.

METHODS
Overview of BRIC-23 experimental design
A general overview of the BRIC-23 flight (FLT) experiment is
outlined in Fig. 1, and complete details have been previously
described20,21. In brief, two BRIC-PDFUs (each containing five
60mm Petri dishes with 107 CFU of S. aureus UAMS-123 cells dried
on the bottom of each plate) were launched to the ISS on SpaceX
CRS-9 on 07/18/2016. Growth was actuated in each petri dish by
addition of 8.5ml tryptone soytone yeast extract medium
containing 10% glycerol (TSYG) on 07/22/2016, followed by growth
at ~22 °C for 48 h. BRIC-PDFUs were then placed in −80 °C stowage
until return from the ISS on 08/30/2016. Samples remained frozen
during return and were stored at −80 °C until deintegration.
Ground control (GC) experiments were performed asynchronously
with the same hardware, configuration, timing, and growth

temperature as in the BRIC-23 FL experiment. Deintegrated
samples from both FLT and GC were stored at −80 °C until
processed for RNA-Seq, proteomics, and metabolomics as
described in21. RNA-Seq, cellular proteomics, and metabolomics
raw data files and associated metadata are available through NASA
Open Science for Life in Space (OSDR) entry OSD-145: BRIC-23
GeneLab Process Verification Test: Staphylococcus aureus transcrip-
tomic, proteomic, and metabolomic data (https://doi.org/10.26030/
ga0p-2817) (https://osdr.nasa.gov/bio/repo/data/studies/OSD-145).

BRIC-23 secretomics and data analysis
Filter-sterilized and concentrated (5 kDa MW cutoff) BRIC-23
supernatants were provided by NASA’s Life Science Data Archive
(LSDA) (n= 5 each of BRIC-23 FLT and GC samples). Proteins from
a 480–610 µl volume of each sample were precipitated by adding
120–150 µL of 100% (v/v) trichloroacetic acid to each sample,
followed by incubation for 30 min at 4 °C. Samples were
centrifuged at 20,000 × g for 5 min, then the supernatant was
discarded. Protein pellets were washed with 200 µL of cold
acetone, then samples were centrifuged again as above, and the
acetone wash was repeated for a total of two washes. Protein
pellets were dried by leaving tubes open in a Class 2AII biosafety
cabinet for 5 min to allow acetone to evaporate. Next, pellets were
resuspended in 200 µL urea buffer (6 M urea, 0.4 M Tris, pH 7.8)
and stored at −20 °C. Protein concentrations were measured via
Bio-Rad Protein Assay (Bio-Rad Protein Assay Kit, Bio-Rad).
Equal amounts of protein (10.59 µg per sample) were used, and

three replicates per sample type were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

Fig. 5 Summary of S. aureus alterations in physiology and virulence factor production in the spaceflight environment. Diagram is based
on analyzed RNA-Seq, proteomics, secretomics, and metabolomics data presented in this study.
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The entire lane per sample was excised with a scalpel and diced
into 1 mm2 cubes. In-gel trypsin digestion was performed as
previously described69,70. Protein identification and quantification
were performed using a label-free quantitative shotgun mass
proteomics approach using an HPLC-Orbitrap Fusion mass
spectrometer (UF-ICBR proteomics core). Briefly, the peptide
samples were analyzed using a 250-mm Ultrahigh-Performance
Liquid Chromatography (UHPLC) system coupled to an Orbitrap
Fusion mass spectrometer (Thermo Scientific). The Thermo EASY
nano-LC system was used for liquid chromatography, employing a
20-mm C16 pre-column (Thermo Scientific) to remove impurities.
A reversed-phase C18 analytical column with a 100 Å pore
(Thermo Scientific, Acclaim PepMap 100 C18 LC Column) was
used for sample separation. The following solvents were used for
chromatography: solvent A (0.1% formic acid), solvent B (80%
acetonitrile, 0.1% formic acid) with a 2–40% solvent B acetonitrile
gradient for 105 min, followed by a 14-minute wash with 98%
solvent B, and equilibration with 2% solvent A. The LC system was
directly interfaced with the Orbitrap Fusion mass spectrometer.
The Orbitrap detector acquired MS data at 120 K resolution with a
scan range of 350–2000m/z. For MS/MS analysis, ions were
isolated by a quadrupole, prioritizing the most intense ions, and
ions for all available parallelizable times were injected. Precursor
ions were then excluded for 36 s. Fragmentation was performed
using collision-induced dissociation (CID) at a collision energy of
35% and an activation time of 10 ms.
Proteins were identified and quantified from the generated raw

data using Proteome Discoverer, as previously described69,71–78.
These data were also analyzed by Scaffold software version 4.11.0
(Proteome Software, Inc., USA) to identify secreted proteins with
statistically significant alterations in expression. Briefly, tandem
mass spectra were extracted, charge state deconvoluted, and
deisotoped using Proteome Discoverer (Thermo Fisher Scientific).
Tandem mass spectrometry (MS/MS) samples were analyzed by
using the SEQUEST algorithm (Thermo Fisher) using available
databases containing S. aureus proteins (Genbank #BX571856.1)
and contaminants. Scaffold software version 4.11.0 (Proteome
Software, Inc., USA) was used to validate MS/MS-based peptide and
protein identifications, where the required delta Cn scores were
>0.2 and XCorr scores were >1.2, 1.9, 2.3, and 2.6 for singly, doubly,
triply, and quadruply charged peptides, respectively. Protein
identifications were accepted if they were established at >95.0%
probability and contained >2 identified peptides, with a peptide
FDR of 0.2%. The protein probabilities were assigned by the Protein
Prophet algorithm. Weighted spectral counts were used for protein
quantification, and data were normalized before the fold changes
were calculated between the flight and control samples. The
P < 0.05 (Student t-test, calculated in GraphPad Prism) and a
minimum 1.5-fold change between treatment and control proteins
indicated proteins with significant changes in abundance. Secre-
tomics raw data files and associated metadata are available
through NASA OSDR entry OSD-500: BRIC-23: Secretomics (https://
doi.org/10.26030/rztr-e997) (https://osdr.nasa.gov/bio/repo/data/
studies/OSD-500).

BRIC-23 cellular proteomics analysis
Cellular proteins were identified and quantified from the
generated raw data from the BRIC-23 experiment (https://
osdr.nasa.gov/bio/repo/data/studies/OSD-145) using Proteome
Discoverer. Briefly, tandem mass spectra were extracted, charge
state deconvoluted, and deisotoped using Proteome Discoverer
(Thermo Fisher Scientific). Tandem mass spectrometry (MS/MS)
samples were analyzed by using the SEQUEST algorithm (Thermo
Fisher) using available databases containing S. aureus proteins
(Genbank #BX571856.1). All analyzed fractions were merged
before the analysis. SEQUEST search parameters were as follows:
two maximum trypsin mis-cleavages, precursor mass tolerance of

10 ppm, fragment mass tolerance of 0.6 Da; static modifications
were TMT six-plex/+229.163 Da (N-terminus, Lys) and carbamido-
methyl modification/+57.021 Da (Cys); dynamic modification was
oxidation modification/+15.995 Da (Met). Maximum dynamic
modifications per peptide were four. High XCorr Confidence
Thresholds were 1.2, 1.9, 2.3, and 2.6 for z= 1, 2, 3, and >4,
respectively. The maximum allowable delta Cn value was 0.05.
Moreover, a decoy databank search was performed to establish
FDR at a minimum of 0.05 for protein identifications, where the
validation was done using the q-value method. All the medium
and high-confidence peptides were used to identify and quantify
proteins. The reporter ions (i.e., m/z 126, 127 N, 127 C, 128 N, 131)
were identified where the most confident centroid was used and
10 ppm for reporter ion mass tolerance. The reporter ion values
were normalized to control samples (128 N). Proteins belonging to
multiple protein groups were grouped into a single accession
number, and final ratios were reported. Fold changes were
calculated between flight and ground samples, where the P-value
was calculated using the Student’s t-test (P < 0.05), indicating
proteins with significant changes in abundance (minimum 1.5-fold
change).

BRIC-23 RNA-Seq analysis
FastQ data files from n= 9 FLT and n= 9 GC samples were
downloaded from OSDR (https://osdr.nasa.gov/bio/repo/data/
studies/OSD-145) and imported into CLC Genomics Workbench
(Qiagen) for analysis. Ribosomal RNA reads were filtered out, and the
remaining reads were mapped to the S. aureus MRSA252 genome
(Genbank #BX571856.1). The UAMS-1 genome (strain used in the
BRIC-23 flight experiment) is not closed. Therefore, the updated
Genbank genome file for MRSA252, which contains annotations for
sRNAs79 and critical virulence genes such as phenol soluble
modulins (psma1-4), was used instead. A previously published
analysis pipeline was followed79,80 using the “RNA-Seq analysis”
feature of CLC Genomics Workbench version 21, with quantile
normalization of data sets81. Standard cutoffs ( ≥ 2-fold change,
mean normalized expression value ≥ 10 for both samples) were used
to curate differential gene expression (DE) data, performed as
described in82. Microsoft Excel was used for RNA-Seq DE data
reduction and statistical analysis. Student’s two-tailed t-test was
used to determine significance (P < 0.000016 with 5% FDR
Bonferroni correction).

Metabolomics Analysis
MetaboAnalyst 5.083 (https://www.metaboanalyst.ca/home.xhtml)
was used to quantify the cellular and supernatant untargeted
metabolomics data from BRIC-23 datasets (https://osdr.nasa.gov/
bio/repo/data/studies/OSD-145). All missing values were replaced
by half of the minimum positive value found within the data.
However, features with over 50% missing values were removed
from the dataset. The data were normalized by sum and subjected
to log transformation and auto-scaling, where the values were
mean-centered and divided by the standard deviation of each
variable. A P-value threshold of 0.05 (Student t-test) was used for
generating volcano plots and a fold change of 1.5.

Bioinformatics
Functional categories of genes/proteins identified by RNA-Seq,
proteomics, and secretomics as being statistically significant ( > 2-
fold change in expression for RNA-Seq, and >1.5-fold change for
proteomics and secretomics) were assigned using manual
curation based on gene annotation and/or predicted function
using the following databases: Aureowiki84, Uniprot85, PATRIC86

and Biocyc87. Hierarchical clustering and heat map generation of
statistically significant DE data was performed using 1-Pearson
correlation on rows and columns, using Morpheus default settings
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(https://software.broadinstitute.org/morpheus). Venn diagram of
overlapping and unique DE genes/proteins identified by RNA-Seq,
proteomics, and secretomics as being statistically significant with
> 2-fold change in expression for RNA-Seq and > 1.5-fold change
for proteomics and secretomics, was generated using OmicsBox
(BioBam, Valencia, Spain)88. Principal Components Analysis (PCA)
of RNA-Seq, proteomics, and secretomics data was performed
using ClustVis89. PCA plots for metabolomics data were generated
with Rscript chemometrics.R within the MetaboAnalyst program83.
RNA-Seq, cellular proteomics, and/or secretomics DE data were
analyzed using Paint-omics version 325 and STRING version 11.526

to detect enriched KEGG pathways and genes/proteins, respec-
tively. The NCBI MRSA252 genome (Genbank #BX571856.1) was
used as a reference in both analyses.

Statistical analysis
Statistical analysis specific to each -omics analysis is described in
each respective section above. Statistical analyses were performed
using Microsoft Excel, Graphpad Prism 9, Scaffold software version
4.11.0, or MetaboAnalyst 5.0, as indicated.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All BRIC-23 -omics datasets and corresponding metadata can be accessed through
NASA OSDR (for RNASeq, proteomics, and metabolomics: https://doi.org/10.26030/
ga0p-2817f; or secretomics: https://doi.org/10.26030/rztr-e997). All other data
presented in this manuscript is available as figures/tables, or supplementary
figures/tables.
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