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Simplified equations for object trajectories in rotating space
habitats and space juggling
R. Adam Dipert 1✉

Rotating space habitats provide artificial gravity as a physiological countermeasure for long-term space habitation, though the lived
experience of a person in these habitats requires further investigation. Movement planning will require adaptation to the Coriolis
and centrifugal forces. The multicultural arts of juggling may offer potential psycho-physiological countermeasures for some
individuals and provide interesting insights into movement planning and arts in both microgravity and rotating habitats. Previously
developed equations of motion for thrown objects in rotating habitats have not been centered within the lived rotating
environment. Here, I show a set of simplified equations for object trajectories in rotating environments and their underlying
mathematical framework. The full set of possible trajectories for objects thrown in rotating environments is provided and a
simplified approach to the Coriolis and centrifugal force differential equation using complex algebra is demonstrated.
Experimentation reported in this article was conducted on parabolic flights and an analog weightlessness and rotating apparatus.
Near the surface of the Earth, thrown objects travel along parabolas. In rotating space environments, thrown objects will travel
along a set of mathematical curves known as roulettes, created by a fixed circle and rolling line with generator point connected to
the line. These roulette trajectories will be the everyday experience of every person living in a rotating space habitat, always.
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INTRODUCTION
It is well understood that psycho-physiological countermeasures
are necessary for long-duration space flight to ensure space
travelers’ health1–6. Rotating space habitats are capable of
providing artificial gravity with existing technology for extended
periods. Movements, object motion, and the vestibular experience
in rotating environments are influenced by the Coriolis and
centrifugal forces in meaningful ways1,7–9. These forces have a
direct influence on a person’s ability to anticipate the results of
physical interactions with objects and the environment10.
During the research reported here, while attempting to develop

a useful set of expectations for anticipating thrown object motion
in a rotating reference frame, a number of mathematical and
physiological models were used. Common mathematical
approaches to the equations of motion in rotating reference
frames use linear algebra and are oriented from an external,
inertial reference frame7. Please see the Supplementary videos for
examples. Unfortunately, approaching the equations in this
manner results in mathematics that is outside the lived experience
in a rotating habitat and involves daunting mathematics.
Thrown or dropped objects close to the surface of planets

follow parabolic trajectories due to gravity. Seven month old
children already begin to understand that there is a direction of
gravity that affects object motion11, while adults are able to take
this trajectory into account intuitively12. In rotating space habitats,
the trajectory of thrown or dropped objects will be different, but it
is not clear what mathematical structure these trajectories will
follow. While T.W. Hall noticed that the trajectory of a “dropped
ball in a rotating space habitat follows the path of an involute”7, I
sought to further explore this phenomenon and determine
whether that is the entire story.
This work began as a mission to develop a technique for

juggling in microgravity, and resulted in observations about life in
rotating space habitats gained through embodied practice.

Humanity has at least a 4000 year history of engaging in the
cultural arts of object manipulation for entertainment (juggling)13.
Even though juggling has been practiced in space on a Space
Shuttle by Donald Williams during STS-51-D mission14 and on the
ISS by Richard Garriott and Greg Chamitoff during Soyuz TMA-13/
TMA-12 missions15, those approaches were oriented from an
Earth-biased concept of juggling16.
During this investigation, the first observation was that the

maximum moment of inertia eigenvector of the human body in
the extended supine position (see Figs. 4, 5) in microgravity is
oriented along the anterior-posterior (AP) axis17,18. This means
that the most stable way a human body can rotate in microgravity
while in the extended supine position is in a “cartwheel” motion.
The second observation was that the center of masses of thrown
objects move in straight lines in microgravity. Combining these
concepts, we find that a person can rotate about the AP axis and
throw balls “down” to themselves to catch at a later time when the
body is in a different orientation.
Parabolic flights were used to explore body rotation and an

apparatus was constructed to investigate the combination of body
and object movement. After practicing and filming this, I noticed
that in the rotating frame, the balls appear not to move in lines,
but instead along curves. The curves are mentioned in many
places in literature and on the internet but no evidence of their
fundamental mathematical structure could be found7,19,20. Thus,
the study sought to investigate whether there is a single
mathematical object that describes all the trajectories of thrown
objects in a rotating space habitat.
The Results section presents the mathematical findings of this

study, followed by the results of physical experimentation with
object motion in a rotating reference frame. In the Methods
section, I describe the experimental techniques used and provide
more detailed descriptions of the development of the equations,
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as well as a comparison between complex and linear algebraic
approaches to the equations.

RESULTS
Overview
Four useful ways to approach the mathematics associated with
the trajectories of thrown objects in weightlessness observed in a
rotating reference frame were found during this investigation.
These perspectives are:

1. Exploration of the equations that describe the trajectories.
2. Visual representation of the trajectories in both inertial and

rotating reference frames.
3. Examination of the underlying mathematics of roulettes,

generated by a fixed circle and rotating line, and their
relation to the equations.

4. Demonstrating that the equations take into account the
Coriolis and centrifugal forces.

During the investigation of juggling techniques, I employed the
mathematical perspectives outlined above. The study included
significant focus on the practical aspects of utilizing these
mathematical perspectives rather than solely on their develop-
ment. At the end of this section, I also discuss the results of
experimentation with the trajectories.
The reader will also find videos in the Supplementary materials

associated with this document online. The videos are films and
animations showing the creation of the roulette, recordings and
tracking of data, and animations of rotating space habitats.

Standard equations
Let’s begin to understand and develop the equations of motion
using the most straightforward method. Any thrown object in
microgravity does not experience a force and, therefore, has a
constant velocity, which means it travels along a line. Parametric
equations of lines along each axis in a plane can be written as

XðtÞ ¼ _X t þ X0 (1)

YðtÞ ¼ _Y t þ Y0 (2)

where t is time, the subscript 0 indicates the initial position, and
the dot represents the time derivative. We can then map these
equations onto the complex plane by writing the trajectory in an
inertial reference frame.

T inertialðtÞ ¼ XðtÞ þ i YðtÞ (3)

We can now manipulate the equation with a rotation to have
the trajectories in the rotating reference frame.

TrotatingðtÞ ¼ e�iωt ´ T inertialðtÞ
¼ e�iωt XðtÞ þ i YðtÞð Þ (4)

where ω is the angular velocity of the system and i is the complex
unit. This form of the equations is useful, as it helps to establish a
clear connection between the inertial and rotating reference
frames. I will call it a standard form and referred to as the
“parameterized equation.” For the rest of this paper, all equations
will be in the rotating frame, therefore, the rotating subscript will
be dropped.
In Eq. (4), the argument is negative. This means that the rotation

applied to the linear trajectory is clockwise which is opposite of
the rotation of the reference frame. Returning to a Cartesian
coordinate system momentarily, we would naturally equate the
positive real direction to the positive x direction and the positive
imaginary direction to the positive y direction. Let it be a right-
handed coordinate system. This aligns the coordinate system
rotation vector ω with the positive z-axis.

We can consider another standard form which separates the
time-dependent and constant components of the linear part of Eq.
(4). First substitute Eqs. (1), (2) into (4), do some sorting, and we
have the following:

TðtÞ ¼ e�iωt ðat þ bÞ (5)

where a; b 2 C. This equation allows an intuitive starting point,
namely T(t= 0)= b. One may be inclined to try to interpret a as
the velocity at time zero but _Tðt ¼ 0Þ ¼ a� i bω. Nonetheless, the
initial position and velocity can easily be extracted from the
equation, and we can safely differentiate it from the other
equations by this quality, thus, let’s call it the “point-velocity
equation”.
A particularly big problem with both the parameterized (Eq. (4))

and point-velocity (Eq. (5)) equations is that they give preference
to the inertial frame by having their linear components so
explicitly expressed. For those living or working in a rotating
reference frame, one would prefer to use equations represented in
that frame. Therefore, this final equation, which we might call the
“point-point equation,” might be the most useful. When practicing
throwing balls in the apparatus described in Analog Microgravity
Environment, I found this equation to be the most consistent with
my lived experience and objectives.

TðtÞ ¼ e�iωt t
τ

eiωτ Ω2 � Ω1
� �þ Ω1

� �
(6)

where Ω1; Ω2 2 C are the starting and ending positions, respec-
tively, as observed within the rotating frame, τ is the amount of
time between the release and catch, ω is the angular velocity of the
system, and t is time. It is worth noting that Ω1 and Ω2 can easily be
represented in rectilinear (c+ di) or angular (reiψ) coordinates,
where r is the distance from the axis of rotation and ψ is the angle
from the preferred real axis orientation. When comparing Eq. (6) to
Eq. (5), it may be noted that the substitutions a= (1/τ)(eiωτΩ2−Ω1)
and b=Ω1 prove their equality. A derivation of Eq. (6) can be found
in the Derivation of Point-Point Equation section.

Observable trajectories
Some of the trajectories one may observe in both the inertial and
rotating frames are plotted in Fig. 1. The plots are given for a
number of throwing and catching positions and as well as
different lengths of time between the throw and catch.
The rotation is stable in these systems and oriented counter-

clockwise from the viewer’s perspective. The spinward direction is
the direction in which the habitat is rotating, in this case
counterclockwise. The antispinward direction is opposite the
direction of rotation, in this case clockwise. The four panels of
each figure show trajectories starting from the spinward direction
in the left column and trajectories starting from the antispinward
direction in the right column. Trajectories ending on the spinward
and antispinward directions are shown in the top and bottom
rows, respectively. Thus, the upper left panel of each figure is a
spinward to spinward throw, the top right panel of each figure is
an anti-spinward to spinward throw, etc.
Figure 1a shows a set of trajectories as seen from an inertial

reference frame. You will notice that the trajectories are straight
lines forming chords within the circle. These plots can be created
by removing the leading rotating exponential term from Eq. (6).
The same trajectories are shown again in Fig. 1b but instead are

shown in the rotating reference frame. Notice the symmetry in the
patterns, especially the similarities between the top left and
bottom right panels. Some of the most interesting curves are
found in the lower left panel. Here, we discover a full loop crossing
itself as well as a cusp (shown in dashed orange). As described in
the Roulettes section, the cusp is actually an involute, while the
curves crossing the black dot (center of circle and axis of rotation)
are Archimedean spirals.
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Roulettes
The trajectory of a ball which is “dropped” while in a rotating
space habitat follows the path of an involute, as T.W. Hall has
noted7. “An involute of a curve is the locus of a point on a piece of
taut string as the string is either unwrapped from or wrapped
around the curve”21. The involute can also be created by following
a point on a line as the line is rolled without slipping along the
outside of a circle. Figure 2a–c demonstrate this construction of an
involute.
The equation of an Archimedean spiral using linear algebra is

easily written as x= (vt+ c)cos(ωt) and y= (vt+ c)sin(ωt), thus
equation (5) clearly becomes an Archimedean spiral when a; b 2
R instead of being complex numbers. With a; b 2 C, the curve
simply must cross the axis of rotation to be an Archimedean spiral.
Interestingly, an Archimedean spiral can be created by rolling a
line without slipping around a fixed circle, and following a point
(called a “generator”) which is offset by the radius of the circle in
the direction of the circle.
The operations described above to create involutes and

Archimedean spirals by rolling lines around circles are types of
objects mathematically called “roulettes.” A roulette is created by
taking a fixed (f) and rolling (r) curves and rolling r along f without
slipping, while tracking a point p (called the “generator”) which is
attached to the rolling curve22. In the equations below, f 0ðtÞ and
r0ðtÞ are the derivatives of the fixed and rolling curves, respectively.
The generator p can have an offset from r. If we take f ; r; p 2 C, the
following formula can be used to create a roulette.

f ðtÞ þ ðp� rðtÞÞ f
0ðtÞ
r0ðtÞ (7)

Involutes are a type of roulette where f(t) is a circle, r(t) is a line,
and p is a point on r(t) and moves with r(t). Archimedean spirals
are a type of roulette where f(t) is a circle, r(t) is a line, and p is
offset from r(t) by R in the direction of the center of the circle f(t).
All the curves described by the standard equations above are

roulettes. A mapping between the point-velocity form (Eq. (5)) and

roulette equation (Eq. (7)) can be written if we assume the fixed
curve is a circle with radius R while the rolling curve is a line.

f ðtÞ ¼ R e�iωt (8)

rðtÞ ¼ t (9)

We plug these ansatz into Eq. (7) and equate to Eq. (5) to
determine the mapping.

f ðtÞ þ ðp� rðtÞÞ f 0 ðtÞr0ðtÞ ¼ Re�iωt þ ðp� tÞ �iωR e�iωtð Þ
¼ e�iωt iωRt þ Rð1� iωpÞð Þ
¼ e�iωt ðat þ bÞ

(10)

Thus, the mapping between the roulette and “point-velocity”
equations is

R ¼ a
iω

(11)

p ¼ 1
iω

� b
a

(12)

Given any curve from a standard equation, we can identify the
radius R of the fixed circle and orthogonal offset p of the
generating point. Q.E.D. Figure 2d shows a number of the curves
found in Fig. 1 using the roulette construction.
Note that in Eq. (11), R 2 C, and can be written in polar form

separating the magnitude ∣R∣, which is the radius of the fixed circle
and a phase, which uselessly rotates the circle.
Care must be taken to understand the relationship between r(t)

and p because the effect of p having real and imaginary
components is not obvious. Eq. (9) defines r(t) as a real-valued
function. If plotted alone on the imaginary plane, r(t) will only exist
on the horizontal real axis. Eq. (7) shows the relationship between
p and r(t) within the parentheses as p� rðtÞð Þ. In this format, it is
clear that an imaginary component of p will provide a vertical

Fig. 1 Trajectories of thrown objects in non-rotating and rotating environments (in weightlessness). Trajectories starting from the
spinward and anti-spinward directions are shown in the left and right columns, respectively. Trajectories ending in the spinward and anti-
spinward directions are shown in the top and bottom rows, respectively. a Trajectories in inertial (non-rotating) frame. b Trajectories in rotating

frame. Using equation (6) with jΩ1j ¼ jΩ2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 0:22

p
m, ω= 2π rad/s, and 0.2 s < τ < 0.5 s in increments of 0.1 s, and rotated by i for

reference. Each point on each plot is spaced by 17ms. In the case of Space Juggling, the left column of the plots are throws made from the left
hand. The right column are throws from the right hand. The first and second rows are throws caught with the left and right hands,
respectively.
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offset of the generator, while a real component will provide a
horizontal offset.
This component p� rðtÞð Þ of Eq. (7) is then multiplied by f 0 ðtÞ

r0ðtÞ,
where r0ðtÞ is always a constant, because r(t) is a line. Note this
means that r0ðtÞ≠ 0 for any t, so there should be no concern about
r0ðtÞ being in the denominator and possibly creating an undefined
value. Thus, we have ðp� rðtÞÞðf 0ðtÞÞ. From Eq. (8), we see that f(t)
is a circle. Multiplying its derivative f 0ðtÞ by another function
performs a rotation on that function. The result of these features is
that the imaginary and real components of p follow the line of r(t)
as it rolls around f(t), where imaginary components of p will result
in perpendicular offsets, and real components will result in values
sliding along the direction of r(t).

Coriolis and centrifugal forces
As we know, the curves which have been discussed occur not
from actual forces, but as a result of having a particular
perspective in a rotating reference frame. Perceived accelerations
can be explained by the fictitious Coriolis and centrifugal forces,
which are most often written in the form of the following
differential equation.

ma0 ¼ �2mω ´ v0 �mω ´ ðω´ r0Þ (13)

where a0, v0, r0 are the acceleration, velocity, and position,
respectively, in the rotating frame, ω is the angular velocity
vector, andm is the mass of the object. In Eq. (13), the first term on

the right side of the equal sign is the Coriolis force and the second
term is the centrifugal force.
Make note that each term has a cross product with the ω vector.

This tells us that the forces only act in the plane perpendicular to
the axis of rotation. Although in the most general cases, the
velocity vector of a thrown object may have a component parallel
to ω, we know that velocity component is always linear and
experiences no fictitious forces. For this reason, we will restrict the
conversation here to deal solely with motion in the plane
perpendicular to ω.
The cross product gives a resultant vector perpendicular to the

two vectors it is acting on. The cross product acts on the angular
velocity ω and a general vector in the plane u. Using complex
algebra, the cross product operation (ω × u) is homomorphic with
the multiplicative product iωu, where ω= ∣ω∣ and u 2 C. This
complex product gives the same result as the cross product in
the plane.
We will proceed to solve Eq. (13) using Eq. (5) as our ansatz

solution. Below are the first and second time derivatives.

T ¼ e�iωtðat þ bÞ
_T ¼ e�iωt½ð�iωÞðat þ bÞ þ a�
€T ¼ �e�iωt½2iωaþ ω2ðat þ bÞ�

(14)

All terms in Eq. (13) are multiplied by the scalar m and thus we
can remove it. Rewriting Eq. (13) in terms of T, rewriting using

Fig. 2 Roulette geometry of involute and other patterns. The technique for creating the roulette curves with a fixed circle, rolling line, and
generator point positioned on the line and the result of offsetting the generator from the line which reconstructs the general set of curves.
a Begin with a line adjacent to a circle. Note that three points on the line have been marked: a, b, and c with decreasing opacity. b Now roll the
line around the circle without slipping. Here the line is rolled counterclockwise. Note the locations of the points a, b, and c on the line as it rolls
at times 1, 2, and 3. c Tracking the trajectories of the points on the lines, the roulette curves described by Eq. (6) are found. In this case, the
generator point is located on the line, and the involute of a circle is created. d Adjusting the value of p in Eq. (7), we recover all of the
trajectories shown in Fig. 1b but in this case generated by the roulette construction. The Roulettes subsection contains important caveats.

R.A. Dipert

4

npj Microgravity (2023)    82 Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA



complex algebra, and inserting the time derivatives, we find.

€T ¼ �2ω ´ _T � ω´ ðω ´ TÞ
¼ �2ðiωÞ _T � ðiωÞðiωÞT
¼ �e�iωt½2iωaþ ω2ðat þ bÞ�

(15)

Q.E.D.
Of course, this result is no surprise. The contributions in this

paper made to solving this differential equation (Eq. (13)) are (1)
the simplicity of the solutions (by using complex algebra) and (2)
showing the solution can be generated by roulettes.

Experimental results
Using an analog environment (described in the Analog Micro-
gravity Environment section), trajectories very close to those
shown in Fig. 1b were recorded. Figure 3 shows a series of
trajectories which were recorded and then tracked. Films of these
trajectories being generated in the rotating frame can be found in
a YouTube video23 and more general videos of larger sets of
trajectories can be found through that same user account.
The left column of Fig. 3 shows the data points tracked and

connected, as well as the initial position of releasing the ball Ω1

and the final point before catching the ball Ω2.
Recordings were made at 60 frames per second giving time

resolution of 16.7ms and with video resolution of 1920 by 1080
pixels. The parameters of Eqs. (5), (6), and (7) were fit to the data.
The mean d and standard deviation σd between the location of
the data pixel and calculated fit pixel are found at the bottom of
Table 1.
To simulate weightless conditions, balls were rolled on a taut

clear vinyl surface rather than floating through free air. A camera
was placed under the surface facing up. The camera was attached
to a motor which provided rotation, generating a rotating
reference frame. Due to this set up, the balls were subject to
friction, attractive forces (as the surface distorted due to the mass
of the balls), and to a small degree the Euler force (due to the
camera rotational velocity being controlled by hand and not
always rotating at constant velocity). Even though these forces
had an impact on the trajectories of the balls in general, patterns
were selected for analysis in this paper that showed minimal
distortion from interaction with the surface. The observation that
the balls moved in fairly straight lines is quantified in the mean
displacement and standard deviations found in Table 1.

DISCUSSION
Much thought has been given to the experience of the lives of
people who will live in rotating space habitats and a number of
experiments have been conducted24–26. In previous literature, the
trajectories described in this paper have been identified in
simulation or using brute force methods7,19. While these
approaches showed the trajectories described, they were not
represented in a manner conducive to a life lived in a rotating
space habitat. This is no surprise. People had not started to
evaluate the reality of the human body in microgravity until the
development of the space age. There is no reason for them to
have conceived of the microgravity framework previously. We are
nearing the moment when rotating space habitats may become a
realistic environment for habitation, and very few people have
lived and experienced problem solving in rotating environments
for extended periods.
The words of astronaut Gerald Carr, who spent 84 days in space,

most clearly expresses the contemporary perspective on this topic.
“The humans on the rim of a rotating space station that develops
artificial gravity have to see the velocity as a linear rather than
curvilinear orbit, or it doesn’t work because of Coriolis acceleration
on the inner ear”27.

The insights described in this paper developed after spending
about 500 h practicing object manipulation in the rotating analog
environment described above. Initially, I attempted to plan the
object trajectories in an inertial reference frame, as previous
literature and mathematics would suggest one does. This caused
headaches. As soon as I started to think in terms of the roulette
curves, I had more accurate motion planning and the headaches
went away.
The overwhelming majority of papers published about object

trajectories in rotating reference frames are expressed using linear
algebra oriented within an inertial frame. One of the intentions of
this paper is to outline a simpler approach using complex algebra.
Taking derivatives and solving the differential equations has been
shown to be exceedingly manageable and the reader is invited to
investigate the appendices for further insight. Although the
equations of motion are most simply understood by the planet-
bound mind by writing the equation in the inertial frame and
rotating it, this may not be as useful when one inhabits a rotating
reference frame.
The concepts expressed in this paper are the infrastructure

needed to plan all non-accelerating (in the inertial frame)
trajectory tasks in rotating space habitats with constant angular
velocity when air resistance does not significantly influence the
movement of the object. Using this as a framework, I have
developed the art form of Space Juggling which is only the
beginning of what is to come when entertainment and sports are
sincerely brought to space28. Any circus connoisseur will easily
have insight about the vast number of ways the trajectories of the
centers of mass of objects are used in contemporary circus and
how those seeds might expand into a true space circus
experience. We can hope to live in a more richly enlivened solar
system where that level of creativity is combined with altered
gravitational environments to manipulate trajectories that are, as
of yet, only theorized.

METHODS
Ethical review board
These studies were ethically reviewed by the institutional review
board at North Carolina State University in Raleigh, NC (protocol
number 25523), and were deemed to be in accordance with
Common Rule 45 CFR 46 and the Declaration of Helsinki. The sole
subject of the video recordings is the PI (R. Adam Dipert)
demonstrating the rotation technique on a parabolic flight and in
an aerial apparatus. Written informed consent was obtained from
the subject.

Physical phenomena relevant to this work
The two primary phenomena central to this work are: (1) the body
rotating about the AP axis (similar to a “cartwheel”), and (2) balls
moving in straight lines in an inertial reference frame. The latter
can easily be found in many videos online29. The first part of this
section deals primarily with establishing the body’s rotation,
techniques employed to manifest this rotation, and observations
in a rotating reference frame.
Like all three dimensional objects, the human body has three

principal axes which are eigenvectors of the moment of inertia
tensor. When the body’s angular momentum is aligned with the
maximum axis, the most stable rotation occurs. Computation
reveals that the maximum axis of the human body in a bent-knee
position (Fig. 5a) and extended supine position (see Fig. 1b of
ref. 18) are aligned with the AP axis. Interestingly, this is the only
way a torque-free human body can rotate while always facing the
same direction.
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Parabolic flights
The rotation of the body was tested on a commercial parabolic flight
in 2018. Figure 4 shows a sequence of images taken from video
where the body is rotating stably for a half rotation in the cartwheel.
There are many videos online showing astronauts doing forward

flips and spins about the minimum principal axis, unfortunately,
none could be found showing astronauts doing the type of
cartwheel motion previously mentioned. Although, the mathema-
tical dynamics of the human body within torque-free environments
are well understood, these tests directly demonstrate the concept.

Fig. 3 Observed trajectories and roulette visualization. A variety of trajectories recorded in the rotating reference frame using the apparatus
described in the Analog Microgravity Environment section and fit using Eq. (6). See text in the Experimental Results for details. a This
trajectory can be found in the lower left panel of Fig. 1b. b Shows f(t) of roulette, fit, and extrapolation of curve from Fig. 3a. c This trajectory
can be found in the lower left panel of Fig. 1b and is close to being an involute. d Shows f(t) of roulette, fit, and extrapolation of curve from Fig.
3c. e This trajectory can be found in the upper left panel of Fig. 1b. f Shows f(t) of roulette, fit, and extrapolation of curve from Fig. 3e. Written
informed consent was provide by the subject for the use of this image.
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Analog microgravity environment
Access to parabolic flights is often very expensive and micro-
gravity parabolas are short lived, lasting 20–30 s each. Therefore, a
ground based analog apparatus was constructed to allow
affordable and longer duration access to an experimental
environment which simulated relevant physics. In the analog,
the body was suspended in a vest-harness facing down. The
harness was attached to a swivel which allowed rotation about the
AP axis (see Fig. 5b). This allowed for tens of minutes of practice
rather than tens of seconds.

Linear motion of the balls was accomplished by rolling them on
a clear vinyl sheet pulled taut with hooks and grommets, and
oriented horizontally. The balls were hollow “stage balls” made of
PVC, having diameter 62 mm, and mass 75 g. A camera was placed
under the vinyl sheet facing up to capture the image from the
front of the body. The camera was then rotated using a motor. The
trajectories discussed in the Results section were then realized.

Derivation of point-point equation
Euler’s Formula expresses a rotating unit circle in the complex
plane, eix= cos(x)+ i sin(x). Using this, we can formulate the
equation of a point rotating around the origin at a distance A.

TAðt;ω0Þ ¼ A eiω0t (16)

where i is the imaginary unit, ω0 is the rotational velocity, and t is
time. In this construction, as t increases, the point rotates
counterclockwise. In the case of a rotating habitat, Eq. (16) would
be some fixed point in the rotating reference frame, likely on the
inner surface of the ring upon which people would stand and
equipment would rest. In the case of Space Juggling, this would
likely be the orientation of the spine.
We can extend a line from TA out in each perpendicular

direction by length S by starting with a similar complex
exponential base and rotation using i and−i. For Space Juggling,
these are the locations of the hands. These locations are spinward
and anti-spinward of TA(t,ω0). (See the Observable Trajectories
section for more details about this terminology).

pSðt;ω0Þ ¼ A eiω0t þ iS eiω0t

¼ ðAþ iSÞ eiω0t
(17)

pAðt;ω0Þ ¼ ðA� iSÞ eiω0t (18)

Fig. 4 Parabolic flight video frames. Rotation about anterior-posterior axis while in extended supine position on parabolic flight. Recorded
Mar 3, 2018. Note that linear drift toward to ceiling of the plane results in the body moving up in the frame throughout the sequence.
a Beginning of maneuver. bMiddle of maneuver. c End of maneuver (90∘ rotation about AP axis). Written informed consent was provide by the
subject for the use of this image.

Table 1. Fit parameters for equations (6) to (10) found for thecurves
shown in figures 3.

Fit Values For Figures

Figure Numbers 3a and 3b 3c and 3d 3e and 3f

a 32.9− 375.8 i 113.7− 111.2 i 212.8+ 338.2 i

b 81.2+ 215.7 i −15.6+ 147.4 i −69.3− 187.2 i

Ω1 81.2+ 215.7i −15.1+ 147.4i −69.3− 187.2i

Ω2 −8.1+ 287.7 i −109.9+ 99.7i −207.6+ 16.9i

τ (s) 1.27 1.43 1.00

R 174.4+ 15.3 i 64.1+ 65.5 i −150.4+ 94.6 i

p 0.551+ 0.200 i 0.716− 0.020 i 0.489+ 0.547 i

ω (rad s−1) −2.15 −1.73 −2.25

d ± σd 0:1338Â ± 0:067 0:2127Â ± 0:1364 0:0327Â ± 0:0354

n 76 86 60

The last line gives the mean displacement and standard deviation between
the data collected and fit analysis. All terms without explicitly given units
have units of length, “pixels.” The number of pointsn used for each fit are
shown.
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A plot of these locations is shown in Fig. 6. We can simplify these
equations by substitution.

pkðt;ωÞ ¼ ðA± k iSÞ eiω0t

¼ Ωk eiω0t
(19)

where Ωk= A ± kiS. When the location is counterclockwise from
the direction of TA, the top symbol is used “+ .”When the location
is clockwise from the direction of TA, the bottom symbol is used, in
this case “− .” The subscript k allows indexing of the locations or
hands at different times or positions. For example, at time t0, the
left hand might be at position p+(t0) and at a later time p−(t0+ τ)
the right hand could be at a different position.
It may be convenient to represent Ωk in angular rather than

rectilinear coordinates and thus we may choose to use the
following form instead.

Ωk ¼ jΩj e± k iθ

pk ¼ jΩj e± k iðω0tþθÞ (20)

In the case of the rotating habitat, one may wish for the height
from the floor to be included rather than the distance from the
axis of rotation. Thus, ∣Ω∣= RH− h, where RH is the distance from
the floor to the axis of rotation and h is the height from the floor
“up” to the location of the throw or catch.
The trajectories of objects may start at time t0 and travel for

time τ. Thus they are caught at time t0+ τ. Let’s call the location
from which the throw happens p1 and the catching location p2. In
an inertial frame, the throw follows a straight line. An equation for
the slope of the line can be written as …

Bðt0; τ;ω0Þ ¼ p2ðt0 þ τÞ � p1ðt0Þ (21)

¼ Ω2 eiω0ðt0þτÞ � Ω1 eiω0t0

¼ eiω0t0 eiω0τΩ2 � Ω1ð Þ (22)

We can now write the equation of a line TL(t, τ, ω) which starts at
point p1 at time t0, travels linearly toward p2 at time t0+ τ, and has

Fig. 5 Human body model and orientation in analog apparatus. Simulation of human body in desired position for Space Juggling
technique, and position and orientation of the human body in the analog apparatus. a Model of articulated human body with moment of
inertia eigenvectors shown and oriented outward from the whole body’s center of mass. The blue and red arrows are the maximum and
minimum eigenvectors, respectively. b Microgravity analog apparatus allowing for balls to travel along straight lines while body rotates
around maximum moment of inertia axis. Written informed consent was provide by the subject for the use of this image.

Fig. 6 Geometric description of Point-Point Equation. This image
shows the geometry of the mathematics described in Derivation of
Point-Point Equation. The black point shows the location of the
central axis described in Eq. (16). The red and blue points show the
locations of the points described in Eqs (17) and (18). This graphic is
represented in the inertial reference frame.
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the slope found in Eq. (22).

TLðt; τ;ω0Þ ¼
¼ t

τ

� �
Bðt0; τ;ω0Þ þ p1ðt0; τ;ω0Þ

¼ t
τ

� �
eiω0t0 eiω0τΩ2 � Ω1ð Þ þ Ω1 eiω0t0

¼ eiω0t0 t
τ eiω0τΩ2 � Ω1ð Þ þ Ω1
� �

(23)

A subset of the trajectories described by Eq. (23) are shown in
Fig. 1a with 0.2 s < τ0 < 0.5 s in increments of 0.1 s. The trajectories
plotted have ω0t0= π/2 to allow for symmetry about the
imaginary axis.
We can find the trajectory of the balls in the rotating frame by

multiplying Eq. (23) by a time dependent complex exponential
rotating in the opposite direction to the body’s rotation. Namely,

T ¼ e�iω1t ´ TLðt0; τ;ω0Þ
¼ e�iðω1t�ω0t0Þ t

τ eiω0τ Ω2 � Ω1ð Þ þ Ω1
� � (24)

where ω1 is the angular velocity of an observer rotating about the
same axis. If the observer rotates at the same rotational velocity as
the juggler or habitat, then ω1=ω0. The trajectories can be
visualized within the circle by plotting 0 < t < τ0. Some interesting
behavior can also be found when ω0 ≠ω1, δω0/dt ≠ 0, and/or δω1/
dt ≠ 0. Each of these cases can be observed in the Space Juggler
films online30.

Trigonometric form of the point-point equation
This appendix offers the equations from Derivation of Point-Point
Equation in trigonometric form. The objective in presenting the
material in this format is to show that linear algebra is not the
most ideal algebra in which to calculate or formulate equations
which involve rotations. The incredible simplicity of using complex
algebra, as was done in the rest of this paper, should be clear by
the end of this appendix.
The equation of a point rotating around the origin at a distance

A can be written as (compare to Eq. (16)) …

f ðt;ωÞ ¼ A cosðωtÞ; sinðωtÞh i (25)

We can add the offset for the hands by addition (compare to Eq.
(19)) …

pkðt;ωÞ ¼ f ðt;ωÞ ∓ kS sinðωtÞ;�cosðωtÞh i (26)

where the top sign in∓ k refers to the left hand and bottom sign
refers to the right hand. Note the signs are inverted in comparison
to Eq. (19).
Vector of trajectory from throw to catch (compare to Eq. (22))…

Bðt0; τ0;ωÞ ¼ p2ðt0 þ τÞ � p1ðt0Þ
¼ Ah cosðωt0 þ ωτÞ ∓ 2Ssinðωt0 þ ωτÞ
�AcosðωtÞ± 1SsinðωtÞ;
Asinðωt0 þ ωτÞ± 2Scosðωt0 þ ωτÞ

�AsinðωtÞ ∓ 1ScosðωtÞi

(27)

Linear trajectories (compare to Eq. (23)) …

TLðt; t0; τ;ωÞ ¼
¼ Bðt0; τ;ωÞ t

τ0

	 

þ p1ðt0; τ;ωÞ

¼ h Acosðωt0 þ ωτÞ ∓ 2Ssinðωt0 þ ωτÞð
�Acosðωt0Þ± 1Ssinðωt0ÞÞ t

τ

� �
þAcosðωt0Þ ∓ 1Ssinðωt0Þ;
Asinðωt0 þ ωτÞ± 2Scosðωt0 þ ωτÞð
�Asinðωt0Þ ∓ 1Scosðωt0ÞÞ t

τ

� �
þAsinðωt0Þ± 1Scosðωt0Þi

(28)

As the reader may observe, this form of the equations is much
more unwieldy than that found in the exponential formulation in
equation (23).
Rotating observer trajectories (compare to Eq. (24)), using the

common rotation matrix requires taking the transpose of TL which
will be written as TT

L . This can be computed using …

T ¼ Rðt;ω1Þ ´ TT
L

¼ cosð�ω1tÞ � sinð�ω1tÞ
sinð�ω1tÞ cosð�ω1tÞ

� �
´ TT

L

¼ cosðω1tÞ sinðω1tÞ
�sinðω1tÞ cosðω1tÞ

� �
´ TT

L

(29)

It is hopefully obvious that by looking at the previous couple of
equations and comparing them to the solutions offered in
Derivation of Point-Point Equation, that complex algebra is better
suited for this type of work than linear algebra.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data analyzed in this paper is video recorded using the microgravity analog
apparatus described in the Analog Microgravity Environment section. The reader may
find the videos used to create Fig. 3, the spreadsheets used for calculation and
analysis to create Table 1, and Mathematica visualization code on The Open Science
Framework (OSF) online repository at https://osf.io/a2sb6/. Please contact the author
if you have questions about the data or techniques to repeat the experimental setup.

CODE AVAILABILITY
The code used in this study is available on the Open Science Framework (OSF)
platform at https://osf.io/a2sb6/. The code can be accessed directly from the OSF
platform.
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