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Microbial applications for sustainable space exploration
beyond low Earth orbit
Allison P. Koehle1,8, Stephanie L. Brumwell2,8, Emily P. Seto3, Anne M. Lynch4,5 and Camilla Urbaniak 6,7✉

With the construction of the International Space Station, humans have been continuously living and working in space for 22 years.
Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and
change compared to “normal” conditions. Some of these changes, like biofilm formation, can impact astronaut health and
spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and
sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the
next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to
ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections,
immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate
microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In
this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their
applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we
discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation
strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore
deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
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INTRODUCTION
The National Aeronautics and Space Administration (NASA) has
pledged to return humans to the Moon in the next two years and
land the first humans on Mars by 2033. The journey beyond low
Earth orbit (LEO) will expand human civilization, enable future
space settlements, provide scientific knowledge of the evolution
of our planet and the solar system, and create global partnerships
in the quest for further space exploration1,2. Under the Artemis
plan, a crewed lunar flyby is scheduled for 2024 (Artemis II),
followed by a lunar landing in 2025 (Artemis III)—the first since
the end of the Apollo era in 1972, and eventually a sustainable
lunar presence by the end of this decade3. Critical to the success
of the Artemis program will be Gateway, an orbiting platform
where astronauts will live and conduct research, while providing
support for lengthy expeditions on the lunar surface. The Artemis
program will establish a base camp at the lunar south pole that
will serve as a steppingstone for human missions to Mars.
Research and development at the lunar base will act as prototypes
for these future Mars missions, where NASA can establish best
practices for long-term human exploration in these adverse
extraterrestrial environments4.
Unlike the operation of the International Space Station (ISS),

which is regularly resupplied from Earth within hours after launch,
deep space missions will require self-sufficiency and sustainability
independent of Earth. This will involve utilization of renewable
resources, recycling of waste, power generation, and a continuous
supply of food, water, and oxygen over a prolonged/indefinite
period. The moon is the shortest distance beyond LEO with a deep
space environment offering unique research opportunities to be

conducted under the Artemis program. The lunar orbiter Gateway
will function similarly to the ISS utilizing a Power and Propulsion
Element that will use solar energy to propel and power the
spacecraft, a Habitation and Logistics Outpost that will serve as
the living quarters and research workspace, and docking ports for
spacecraft such as Orion, that will be the first of its kind to
transport astronauts to and from deep space5,6. The ISS and Earth-
orbiting satellites capitalize on solar energy as a renewable
resource for power, however in more distant outposts such as
Mars, other factors like distance from the sun, angle, and weather
(i.e., dust storms) affect the efficiency of energy provided by the
solar arrays7. Such was the case with NASA’s Insight mission,
where a recent Martian dust storm led to accumulated dust on the
solar panels preventing adequate sunlight from reaching them,
forcing the lander into battery-conserving “safe mode”8. Similar
dust coverage issues were experienced during Apollo missions
due to electrically charged lunar dust adhering to solar panels on
the lunar lander9,10. Resupply cargo, like those that are frequently
sent to the ISS, is costly, and may not be feasible for long-duration
space missions (it takes ~7 months to get to Mars). Thus, self-
sustainability in food and oxygen production on extraterrestrial
outposts, such as on the Moon and Mars, is crucial11. In addition,
communication delays between Earth and Mars can range from 5
to 20min depending on the position of the planets12. Lack of
cargo resupply missions and communication delays can be
detrimental to human health-related emergencies making it
imperative for crew members to be self-sufficient in health risk
prevention and treatment. Therefore, solutions to address limited
resources and human health risks that can be feasibly
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implemented in deep space must be established prior to the
Artemis and Mars exploration missions. This could be achieved
through the exploitation and engineering of microbes important
to human health13–16, agriculture17, food production18–20, the
ecosystem21–25, and the built environment26,27. Figure 1 provides
an overview of the various roles microbes could play in deep
space exploration.
In this review, we will examine some key considerations for

planning crewed space missions that allow for self-sufficiency and
sustainability and specifically the role that microbes can play in
achieving these goals. We will also discuss the possible
detrimental effects of microbes that could derail a mission, such
as biofouling and increased pathogenicity, and suggest mitigation
strategies to help alleviate some of these concerns.

BIOREGENERATIVE LIFE SUPPORT SYSTEMS AND THE VALUE
OF MICROBIAL INCLUSION
NASA has been sending astronauts to space for the last 60 years,
and with the advent of deep space missions to the Moon and
Mars, astronauts must be self-sufficient to provide atmospheric
conditions and necessities for human life (i.e., purified water and
nutrient-rich food)28,29. This self-sufficiency can be achieved by
implementing bioregenerative life support systems (BLSS). BLSS
generate essential resources for human survival through biological
processes, with four main purposes: higher plant cultivation, water

treatment, solid waste bioconversion, and atmosphere revitaliza-
tion. Microbes play a vital role in these biological processes by
reducing the storage and resupply of materials necessary for a life-
sustaining, regenerative environment.
Research on BLSS dates back to as early as the 1960s, by

researchers worldwide. Examples include NASA’s “BioHome,” a
650 sq ft closed system that utilized a wetland system for
wastewater recycling, and a biological system including plants
and microorganisms for reducing organic contamination from
wastewater29; the Soviet space program’s Biosphere 3 (BIOS-3),
an underground closed system of phytotrons, that consists of a
crew area and an entirely enclosed greenhouse, growing wheat
and vegetables as well as algae cultivators for air revitaliza-
tion30; the European Space Agency’s (ESA) Micro-Ecological Life
Support System Alternative (MELiSSA), which includes five
compartments where plants and microorganisms purify the
air, produce food, and recycle waste31; and Beighan University’s
Lunar Permanent Astrobase Life-support Artificial Closed
Ecosystem (Palace) 1, comprising three cabins that work
simultaneously to manage atmospheric conditions, produce
crops, breed insects, and recover solid and liquid waste32. In all
these support systems, microbes are an essential component in
the regulation, degradation and circulation of materials and
energy, ultimately enhancing the effectiveness of these life
support systems.

Fig. 1 Summary of microbial impact during long-duration space missions. Space exploration can benefit from the use of microbes in a
variety of applications including incorporation into biological life support systems (BLSS), in situ resource utilization beyond LEO, and
astronaut therapeutics. However, increased pathogenicity and biofilm formation during spaceflight could threaten astronaut health and
spacecraft integrity so mitigation strategies will be needed to prevent such hazards. Microbial applications related to health (purple),
renewable resources (green) or both (purple and green) are highlighted. Figure created with BioRender.com.
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Plant cultivation
Research and development of higher plant cultivation, a method
of growing crops with increased productivity, enhanced nutri-
tional value, higher volume utilization, and shorter production
cycle, are necessary for the development of sustainable ecosys-
tems in space. Higher plant cultivation modules within BLSS not
only provide a means for food production but also the recycling
and revitalization of air through photosynthesis, and water
recycling through transpiration and waste management33.
Because of their importance, plant modules, and the effects of
extraterrestrial conditions on plant growth have been extensively
studied34–36. For example, NASA is heavily involved in this area of
research with its Advanced Plant Habitat (APH) and Vegetable
Production System (Veggie) experiments on the ISS. Both APH and
Veggie are automated growth chambers used by researchers to
determine the effects of microgravity on plant gene expression,
protein, and metabolite levels, as well as their nutritional value37.
The Veggie system has successfully grown lettuce, Chinese
cabbage, mizuna mustard, red Russian kale, and zinnia flowers
on the ISS37 and has enhanced our understanding of plant-
microbe-environment interactions in microgravity38. Using the
Veggie system, Hummerick et al. characterized microorganisms
found on the leaves of three leafy greens: red romaine lettuce,
mizuna mustard, and green leaf lettuce, as well as the microbial
communities associated with the rhizosphere in the pillow
component39. Characterization revealed higher microbial diversity
near roots and within root substrate compared to leaves,
consistent with plants grown in terrestrial soils. Molecular and
culture-based methods revealed that the crops were pathogen-
free and safe for human consumption. The information gained
from the APH and Veggie experiments, especially as it pertains to
plant-microbe interactions, provide a foundation for future
research on higher plant cultivation in microgravity and the
expansion of these ideas for plant production on extraterrestrial
outposts.
One issue with hydroponic growth systems on Earth is microbial

contamination, most often by Fusarium oxysporum40. Certain
abiotic conditions such as high humidity, high temperature, and
reduced airflow can cause undesirably high levels of microbial
growth41,42. Veggie is a hydroponic system that has also
succumbed to these limitations. Zinnia hybrida, an annual flower-
ing plant, grown in the Veggie system on the ISS, developed foliar,
stem, and root rot disease, due to high water stress and low
airflow43. Whole genome sequencing analysis of the diseased
tissue44 and subsequent virulence assays43, identified the culprit
as F. oxysporum. This illustrates the potential difficulties of growing
crops in hydroponic systems, on Earth or in space.
An alternative to a hydroponic system is a soil-based one where

Martian and lunar regolith can be used as an alternative to
terrestrial soil. This in situ resource utilization (ISRU) of regolith
would reduce the need for costly resupply missions of terrestrial
soil. While many plants and crops have been successfully grown in
simulated Martian and lunar regolith their characteristics do differ
from what would be expected with terrestrial soil45–49. One
limiting factor of regolith is the absence of reactive nitrogen, an
essential nutrient for optimal plant growth and function50–54.
However, the introduction of nitrogen-fixing and nitrogen-cycling
bacterial species into regolith to bind nitrogen from the
atmosphere and transform it into reactive nitrogen (in the form
of NO3− and NH4+) could be used as a method to improve
regolith soil fertility55.
Increased Martian soil fertility through symbiotic relationships

has been examined with clover (Melilotus officinalis), grown in
simulated regolith that had been inoculated with the nitrogen-
fixing bacterium, Sinorhizobium meliloti56. This study found that
after three months, inoculated treatments produced greater clover
biomass compared to uninoculated treatments, 0.29 g and 0.01 g,

respectively. However, when S. meliloti inoculated clover was
grown in common terrestrial potting mix the total clover biomass
was seven-fold greater than when grown in simulated regolith56.
While plant-bacterial symbiosis could improve soil fertility and
plant growth in Martian regolith, additional experiments are
required to achieve terrestrial levels of plant biomass.
Other plant stressors, such as limited nutrients, may prevent

plants from reaching optimal biomass56. Essential nutrients, such
as potassium, calcium, magnesium, iron, manganese, nickel, and
zinc, are present in extraterrestrial soils but not at sufficient levels
for plant uptake. Zaets et al. showed that bacteria can increase the
bioavailability of these minerals in simulated regolith using
inoculants of Pseudomonas sp. IMBG163, Pseudomonas aureofa-
ciens IMBG164, Stenotrophomonas maltophilia IMBG147, Paeniba-
cillus sp. IMBG156, Klebsiella oxytoca IMBG26, and Pantoea
agglomerans IMV45. When inoculated with these bacteria,
increased bioavailability of essential nutrients in the soil and plant
tissue of Tagetes patula (i.e., French marigold) led to increased
plant growth, seed germination and survival45. Conversely, only
20–30% of plants grown in non-inoculated soils achieved seed
germination45. In addition to increasing nutrient bioavailability,
these bacteria were also able to reduce toxic levels of zinc,
chromium, nickel, iron, calcium, and sodium, by up to 50%, within
plant tissue45. By increasing nutrient availability and reducing
toxic accumulation of ions within the soil, microorganisms can be
used as a tool for conditioning Martian and lunar basalt for
effective plant growth and plant nutrient uptake.
Water is another crucial plant resource limited on both the

Moon and Mars. Previous discoveries have found evidence of
liquid water flows on Mars, coming from giant ice slabs beneath
the surface57, though extracting and recycling water from these
ice slabs is energetically impractical. In addition, Martian soil has
limited water-holding capacity due to low organic carbon content,
however, this can be improved by using bacteria that produce
polysaccharides or adhesive proteins that bind soil particles,
thereby increasing the moisture content of soil58. This microbe-soil
interaction can be exploited on Martian outposts to reduce the
need for copious amounts of water, increase soil stability, and
prevent soil desiccation. Several studies on agricultural soils show
that the application of microalgae and cyanobacteria to the soil
can improve soil fertility and health59–61. Nascimento et al.
assessed the ability of the N-fixing cyanobacteria Nostoc sp. to
act as an organic fertilizer and soil conditioner under normal and
drought conditions60. Researchers applied Nostoc sp. and urea as
liquid fertilizers to soil growing wheat (Triticum aestivum), corn
(Zea mays), and common bean (Phaseolus vulgaris). Drought
conditions were simulated by watering the plant to water holding
capacity and drying the soil for 14–16 days. Under drought
conditions, plants fertilized with Nostoc sp. reached a biomass
150% greater than plants continuously watered to water holding
capacity; while plants fertilized only with urea attained only 70%
of the biomass compared to those continuously held at water
holding capacity. Researchers also found that untreated soils
exhibited more leaf wilting from water stress compared to those
plants grown in soil treated with Nostoc sp60. This research shows
the promise that cyanobacteria can have for improving soil quality
for plant growth beyond LEO.
While Martian and lunar regolith are promising soil sources,

they contain heavy metals, such as lead, cadmium, chromium, and
arsenic, that can negatively impact plant growth and soil microbial
fitness62,63. Microbes can be used for bioremediation to convert
Martian and lunar regolith into soil capable of plant growth64–66.
Huang et al. tested the ability of E. coli and B. subtilis to remove
lead, cadmium, and chromium by cultivating samples in solutions
containing varying heavy metal concentrations and environmen-
tal conditions, including pH, temperature, and equilibration time.
Researchers found that both microbes successfully removed heavy
metals under all conditions, though under optimal conditions, E.
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coli removed 60–69% of cadmium, lead, and chromium while B.
subtilis removed 54–70% of cadmium, lead, and chromium67.
Plant-microorganism interactions can also be a source of
bioremediation by using plant growth-promoting rhizobacteria
that can simultaneously remove toxic heavy metals and improve
crop growth and yield68. Henao and Ghneim-Herrera investigated
this bioremediation method by summarizing results from over 85
research articles and found that Acinetobacter, Agrobacterium,
Arthrobacter, Bacillus, Enterobacter, Klebsiella, Mesorhizobium,
Microbacterium, Pseudomonas, Rhizobium, Rhodococcus, and Var-
iovorax all exhibited resistance to heavy metals and a high
potential for bioremediation. Specifically, Klebsiella and Entero-
bacter exhibited the highest tolerance to heavy metals in soil and
the greatest potential to mitigate plant growth inhibition under
high arsenic, cadmium, and lead concentrations68. These results
are mirrored by Yetunde Mutiat et al. 69, who assessed the removal
efficiency of heavy metals under varying pH levels by wild-type
and mutant strains of Klebisella varicola. Isolated Klebisella strains
were exposed to various concentrations of lead, cadmium, arsenic,
and nickel, resulting in removal of cadmium under all conditions
with a maximum removal efficiency of 97.9 and 99.4% at optimal
conditions of pH 7 for both wild-type and mutant strains.
Microbes can also be used to remove toxins from Martian soil

such as perchlorates, which are found in high levels in Martian soil
and cause a significant reduction in plant survival and productiv-
ity70,71. Engineered CO2-utilizing bacteria expressing perchlorate
reduction enzymes have been shown to remove harmful
perchlorates from the soil while also adding essential nutrients
into the soil, such as chloride ions, oxygen, and water for better
plant growth72–74. Sunikumar et al. tested the ability of two
perchlorate-reducing soil bacteria, Pseudomonas stutzeri and
Azospirillum brasilense, to reduce perchlorates from simulated
regolith and found that they removed up to 5mM and 10mM of
perchlorates, respectively, which corresponded to a removal
efficiency of 100%75. These results suggest that naturally occurring
or genetically engineered microbes with high perchlorate and/or
toxin-reducing efficiency should be further studied for bioreme-
diation of perchlorate and other harmful toxins from Martian and
lunar soils.
Just as microorganisms are a vital part of terrestrial plant

production systems, microorganisms will play an important role in
higher plant production and soil systems on future deep space
missions and extraterrestrial outposts. Previous research indicates
that plant production using hydroponic systems is a promising
method for plant production in microgravity34–36, but further
optimization will be required to prevent fungal contamination in
these systems43. Using soil-based plant growth systems is a
promising alternative to circumvent the limitations of hydro-
ponics, but research is limited in this area within BLSS. Therefore,
further research using soil-based plant growth systems, supple-
mented with microorganisms, may improve the effectiveness of
BLSS and self-sufficiency of astronauts on deep space missions.

Wastewater treatment
Water is the largest product consumed in bioregenerative
systems, expending nearly 20 L per person per day76. Extensive
water consumption results in large wastewater production,
including urine and flush water, atmospheric condensate, sink,
shower, laundry, and dish water. Microbes play a vital role in the
recycling of wastewater and nutrients through recycling systems
containing combinations of anaerobic digestion, distillation, and
disinfectant units.
Microbes also play a crucial role in solid waste processing

(including bodily waste), inedible plant material, and other solid
decomposable substances within bioregenerative systems. Drying
is the first step to recycling solid waste30,32,77. This step allows the
extraction of water from solid waste, the retention of organic

matter, and the removal of inorganic material78. Dried, solid waste
is then fermented in a solid waste bioreactor containing microbes
that degrade plant waste32,79,80. This method has shown solid
waste degradation rates between 41% and 87.7%79. The degraded
solid waste can either be taken out of the system or applied to a
plant system, providing a carbon and nitrogen-rich source of
residue fertilizer or soil-like substance that increases soil fertility
and overall plant health and productivity81–83.
There are many proposed systems for microbe-assisted waste

purification and recycling on spacecraft. The MELiSSA initiative
proposed a loop of compartments that thoroughly recycle gas,
liquid, and solid waste using microorganisms, where each output
of the preceding compartment provides the input for the
following compartment84. Compartment I is an anaerobic digester
that utilizes thermophilic bacteria to break down inedible plant
parts and solid and liquid waste. Clostridium thermocellum
ferments cellulosic substrate, while Clostridium thermosaccharoly-
ticum degrades starches and pectins, leaving volatile fatty acids,
minerals and NH4

+ as an output. In compartment II, photoheter-
otrophic bacteria, such as Rhodospirillum rubrum, metabolize
volatile fatty acids. The remaining minerals and NH4

+ enter
compartment III where nitrifying bacteria, such as those in the
species Nitrobacter or Nitrosomonas, nitrify NH4

+ to NO3
−, which

can be utilized in the plant compartment as a fertilizer84. Overall,
this system results in a nitrogen-rich output that can be utilized as
fertilizer in the plant compartment for improved production.
Another system proposed by Tang et al. utilizes a two-system

recycling unit for either domestic water or wastewater79. Domestic
water is purified by first running it through a two-stage membrane
bioreactor and then passing it through a nanofiltration system, to
produce hygiene water. The second system utilizes anaerobic,
mostly Bacteroidetes, and aerobic, mostly Proteobacteria, micro-
bial bioreactors to recover organic matter and N from waste-
water79. Within this system, microorganisms are also utilized to
degrade solid waste as part of the microbial fermentation facility
or Bio-toilet. The facility includes a source separation module that
separates urine from feces, a primary bioreactor where feces are
combined with other inedible plant material to be degraded by
microorganisms, and a secondary bioreactor for further degrada-
tion by microbes. This system was tested during 108-day
experiment housing four crew members at the China Astronaut
Research and Training Center. Researchers achieved 100% water
regeneration with 87.7% recycled solid waste79,80.
Although BLSS can obtain 100% water recovery, nitrogen

recovery efficiency is still lacking. One option to improve nitrogen
recovery is to utilize urease-producing microorganisms to hydro-
lyze urea, a compound found in human urine at high levels (>13 g/
L)85,86. Urease-producing microorganisms, such as Bacillus, Spor-
osarcina, Pseudomonas, and Paracoccus, used in conjunction with
membrane-biological activated carbon reactor systems by Xie
et al. showed that BLSS can obtain water recovery of 100% with N
recovery of up to 79.33%, which are comparable to efficiencies
obtained by Tang et al.79. Another urine-fueled system for waste
recycling, proposed by Maggi et al., includes a soil-based BLSS
aimed at recycling liquid wastes using a plant-microbe system87.
The growth chambers for dwarf wheat and soybean contain three
systems for water and urine injection, atmospheric circulation, and
ventilation. Once injected into the soil, a number of bacteria can
release nitrogen-based intermediates, such as NH4

+ and NO3
−

from organic nitrogen compounds for plants to uptake. Results
indicated that urine decomposition met the nutrient demands of
the plants as evidenced by successful growth of the dwarf wheat
and soybean plants with comparable biomass generation to those
grown on Earth.
Plant-microbe systems can provide other methods of waste-

water recycling. Plants are excellent water purifiers and can
release 2–10 L of water vapor from their leaves through the
process of transpiration88. Plants uptake water through their roots,
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absorb nutrients into plant tissue, and transpire water through
their stomata. Applying wastewater as a means of watering plants
would effectively turn wastewater into clean water through this
natural process. However, before plants can be exposed to
wastewater, it would need to be pre-treated to reduce organic
loading in soil and remove phytotoxic or other detrimental
compounds that would affect plant growth and metabolism89,90.
This can be achieved with microbial bioreactors through the
mechanisms described above, allowing for eco-friendly water
reclamation.

Atmosphere revitalization
It is projected that crew members on a lunar mission will inhale
about 1 kg of O2 per day and exhale approximately 1.3 kg of
CO2

91. Production of O2 and removal of CO2 during space missions
could be achieved through photosynthesis, the process by which
plants, algae and cyanobacteria convert CO2, sunlight, and water,
into O2 and energy92. Cyanobacteria are the earliest oxygenic
photosynthetic organisms on Earth and have been contributing to
Earth’s atmospheric oxygen for the last 2.5 billion years93,94. One
advantage of using cyanobacteria over plants for air revitalization
is their ability to perform photosynthesis with far less sunlight
than is required for plant growth. Under normal conditions, plants
and cyanobacteria use chlorophyll-a to convert visible (i.e. “white”)
light into energy, but some cyanobacteria can perform far-red
photosynthesis, using chlorophyll-f, a spectrally red-shifted variant
of chlorophyll-a which absorbs longer wavelengths of light95–97.
This allows those cyanobacteria to also perform photosynthesis
and harvest energy when grown in low- or filtered- light
environments95–97. This photosynthetic efficiency, coupled with
the ability to survive the harsh conditions of space98–101 make
cyanobacteria ideal components in BLSS destined for the Moon
and Mars.
Photobioreactors can be incorporated into BLSS to increase the

production of oxygen by cyanobacteria or algae for enhanced air
revitalization. ESA’s MELiSSA project is a BLSS concept focused on
the regeneration of atmospheric gases and water, waste
treatment, and food production for crewed space missions102,103.
The system comprises the listed compartments, each with a
specific organism contributing to the recycling pathway104. One of
the five compartments includes a gas-lift photobioreactor contain-
ing photosynthetic cyanobacteria, specifically Spirulina platensis,
that uses the CO2 produced by its predecessor compartment to
produce oxygen84. S. platensis was chosen for its light energy
conversion efficiency, its ability to tolerate fluctuations in pH, and
its high nutritional value (containing 55–70% protein, 15–25%
carbohydrates, 18% essential fatty acids in addition to vitamins,
minerals, and pigments105). Another species of cyanobacteria that
is being considered for air revitalization, nitrate removal and
edible biomass production in MELiSSA is Limnospira indica. In a
recent 35-day ground study, L. indica was grown in a simplified
closed-loop version of MELiSSA and the effect of urea, ammonium
(the prominent nitrogen forms present in non-nitrified urine) and
nitrate, on the oxygen production capacity of L. indica, was
measured106. It was observed that cyanobacteria fed nitrate or
urea could effectively reach the desired (set point) O2 level of
20.3% and maintain ambient O2 levels, while those fed
ammonium could only reach a maximum O2 level of 19.5%106.
This study provided preliminary evidence for the use of
ammonium-rich and urea-rich media (such as urine), for L. indica
cultivation and air revitalization. L. indica has also been grown in
photobioreactors on the ISS, as part of the Arthrospira-B space-
flight experiment, and no inhibitory effect on oxygen production
and growth was observed, as compared to ground controls107.
These studies show the promise of cyanobacteria-based BLSS

and/or photobioreactors destined for the Moon and Mars to
provide clean air for crew in spacecraft or in lunar/Mars habitats.

Additional research is needed for optimization such as identifying
additional candidate species, growing combinations of different
cyanobacteria for synergistic effects, and testing more growth
conditions to achieve enhanced biomass and increased efficiency.

BIOLOGICAL IN SITU RESOURCE UTILIZATION FOR
SUSTAINABILITY
In addition to BLSS which can increase self-sufficiency and
sustainability beyond LEO, the ability to utilize in situ resources,
will also play a role in long-term human habitats on the Moon and
Mars. For instance, electricity and power can be generated with
microbial fuel cells (MFC) coupled with in situ organic material,
and biomining can be used to extract resources for construction,
repair, and maintenance of structural components and
equipment.

Microbial fuel cells
Microbial production of energy has gained much interest in the
last decade. To keep pace with human energy consumption, many
scientists have turned towards the use of microbial fuel cells as a
sustainable method of energy production on Earth108. These
alternative methods of energy production could also be applied
for space exploration as a sustainable method to power the
spacecraft, mission controls, and various life support systems.
MFC are small, lightweight devices that convert organic matter

from renewable sources into electricity using microorganisms as
catalysts109 (Fig. 2). Microorganisms involved in this electroche-
mical activity are called exoelectrogens because of their ability to
transfer electrons exogenously to electron acceptors109. Some
examples of exoelectrogens include Pseudomonas110, Shewa-
nella111, Geobacter112, and Desulfuromonas113.
The idea behind MFC has been around for over a century, but it

is just within the past few decades that it has become a
commercialized product. MFC can produce an energy output up
to 5.61W/m2114–116, and can also be used for wastewater
recycling, toxin removal, bioremediation, and resource recov-
ery117–121. These same concepts can be utilized on future Martian
or lunar extraterrestrial outposts for energy production and within
BLSS. In 2007, de Vet and Rutgers were the first to test the
capabilities of MFC energy production under simulated and real
microgravity conditions aboard the ISS using Rhodoferax ferrir-
educens to produce electricity. Energy output averaged 0.1 mA in
1 G, 0.35 mA in simulated microgravity, and 0.02mA on the ISS.
While the differences were not statistically significant, the study
did show the potential for MFC to operate in space122. This
mechanism for energy production is not yet practical for space
travel due to the low energy output, considering a standard 40W
light bulb draws 0.36 A to operate, but can be initially utilized for
its byproducts, such as clean wastewater123.

Waste recycling as an energy source. Waste can accumulate
during space travel in the form of urine, fecal matter, and inedible
food and with the help of microbes, this waste can be repurposed
for energy production as well as for nutrient recovery and
production of potable water. Urine is an excellent feedstock for
MFC as it contains high levels of urea, organic ammonium salts,
and other organic compounds that microbes can convert into
electricity86 thus making urine MFC effective mechanisms for
energy production124–127. Some urine MFC can not only produce
energy but recover nutrients as well. Lu et al. designed a three-
chamber MFC to remove organic pollutants, recover N, phos-
phorus (P), and sulfur (S), and produce energy from urine125. The
maximum power output was 1300 mW/m2, with almost complete
removal of pollutants, including over 97% of urea, total nitrogen,
sulfate, phosphate, and chemical oxygen demand, as well as 40%
of ammonium, 15% of salts, and 91-99% of organic compounds.
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The MFC also recovered essential nutrients, including 42% of total
N, 37% of phosphate, 59% of sulfate and 33% of total salts125. This
recovery technology can be especially valuable within other
compartments of BLSS, including plant compartments, by provid-
ing nutrient-rich water free of contaminants.
In order for urine MFC to also be used as a mechanism to

convert urine to potable water, the high level of inorganic salts
present in urine (~14.2 g/L)86 need to first be removed for MFC to
function efficiently125. This can be achieved with an alternative
type of MFC, called a microbial desalination cell, which follows the
same concept as a standard MFC but with an added desalination
chamber between the anode and cathode128. Cao et al. tested this
mechanism of water desalination at concentrations comparable to
the salinity of urine at 5, 20, and 35 g/L using a mixed bacterial
culture, with the salt concentration determined by a change in
conductivity of the solution128. This microbial desalination cell
produced a maximum power output of 2 W/m2, with ~88–94% of
salt removed, depending on the initial concentration128.
Other organic components of wastewater, such as human feces,

can be a resource for electricity generation by MFC as well.
Fangzhou et al. tested the capabilities of MFC to generate
electricity from activated sludge obtained from a sewage
treatment plant for specific use within BLSS for future crewed
outposts129. Tests were performed using a standard or adjustable
two-chamber MFC, a one-chamber MFC with one or two
membrane electrode assemblies, and a fermentation pre-

treatment device. The highest maximum power output was
70.8 mW/m2 produced by the two-chamber MFC, however, the
authors concluded that for space applications, the one-chamber
configuration was better, as it produced a more stable output, at
0.3 V129. The efficiency of pollutant removal was also tested, with
about 44% removal of ammonium and 71% of organic material
with each configuration129. To further increase power generation
and toxin removal from fecal wastewater, fermentation pre-
treatment was proposed. This involved using reactors filled with
anaerobic sludge to degrade fecal macromolecules into smaller
organic molecules129. Pre-treating fecal wastewater by fermenta-
tion produced 47% more power than no pre-treatment, suggest-
ing a preference of exoelectrogens within MFC for smaller organic
molecules129. Based on these results, the authors developed an
automatic human feces wastewater MFC system containing a
fermentation pre-treatment device to simultaneously dispose of
one day’s worth of feces and generate electricity. Indeed, the
maximum power output of the system was 240 mW/m2, about 3.5-
fold higher than the standard two-chamber MFC system129.
Inedible food waste will be an inevitable part of spaceflight and

extraterrestrial outposts on the Moon and Mars that need to be
disposed of, as on Earth. This organic material can act as substrates
in MFC for energy production, Colombo et al. tested the energy
producing capabilities of MFC with various food-industry organic
wastes as inputs, including those rich in fibers, sugars, proteins,
and acid130. A one-chamber MFC was fed each type of organic
substrate, and the concentration of organic compounds was
measured periodically to obtain the rate of degradation. The
maximum power output for each organic waste substrate was
50mV for sugar, 40mV for fiber, 30mV for protein, and 10mV for
acid, with each organic compound degraded by 90%130.
While MFC will be a useful tool to create energy and recycle

organic waste beyond LEO, research and development is still
ongoing to develop more efficient systems with a larger and
sustained power output. Some of these ideas involve the use of
different materials (such as ceramics) and configurations (large vs
small, stacked vs dispersed)131. Gajda et al. tested a small (70 mm
long, 15mm diameter, 2 mm thickness) and a large (100mm long,
42mm diameter, 3 mm thickness) terracotta MFC. They found that
the smaller terracotta MFC achieved a power density output 2.9-
fold greater than the large MFC, at 20.4 W/m3 and 7.0 W/m3,
respectively. Gajda et al. also tested the performance of stacking
MFC for a small-scale multi-unit system that could be utilized on
future crewed outposts132. They compared power output of a small
module containing 28 MFC units and a larger module containing
560 MFC units. Stacked 560 units created a five-fold improvement
in power output of 245mW compared to the 28 MFC unit. Another
concept is the PeePower urinals which collect urine and feces
directly from the source, producing energy through multiple
ceramic MFC133. This leads to concentrated wastewater inputted
into the MFC rather than diluted samples, which reduces power
output. Researchers tested a 288-unit MFC on a university campus
which averaged 5–10 users per day. The PeePower urinals were
able to produce an average of 75mW which powered the LED
lights directly connected to the MFC stack for 75 h. Another 432-
unit MFC was tested during a large music festival which averaged
1000 users per day. In this setting, the PeePower urinals were able
to produce an average of 300mW which successfully powered
lighting within the urinals over a seven-day period133. While the
success of PeePower was demonstrated on Earth, it will be
important to test similar models of power generation using urine
and feces in microgravity. None the less, this research provides the
foundation for the development of similar toilet-like MFC to be
used for power generation on deep space missions.

Plant MFC. Plant compartments within BLSS can be used for
energy production in MFC as well. Healthy soils contain organic
matter from decaying plant litter as well as carbohydrate flux
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exoelectrogens, shown as a biofilm in this figure, anaerobically
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form water.
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directed out of the roots into the rhizosphere134. In theory, the
anode chamber of a MFC could be positioned within the
rhizosphere to capitalize on the symbiotic microbes present to
oxidize this continuous source of organic matter to generate an
electrical current. Such a soil MFC was tested using rice plants,
where 330 W/ha of power was produced in the presence of
actively growing plants, a seven-fold higher energy output
compared to the energy output of soil MFC not using plants135.
This technology is not limited to only soil-based systems but can
be applied to hydroponic plant systems as well, in which the
anode is situated within the water chamber surrounding plant
roots136. Research by Lee and Miller, growing Bacopa monnieri and
with the addition of Escherichia coli, obtained a power density
output of up to 1.9 W/m2 with a 34% increase in plant growth
fueled by plant essential nutrients supplied by E. coli acting within
the fuel cell136. In addition to electricity generation, soil MFC can
be used for the remediation of heavy metal contaminated
regolith64. Habibul et al. tested the ability of soil MFC to remove
chromium from soil using ryegrass. The soil MFC was fed a
solution of varying concentrations of chromium, resulting in >90%
removal efficiency by Proteobacteria and Firmicutes. In addition,
the higher the concentration of chromium, the higher the current
density output, reaching a maximum of 55mA/m2137. These
results show the promise of energy generation through plant-
system powered MFC with the added benefit of increasing plant
yield for consumption by crewmembers.

Solar power. Photosynthetic microorganisms, such as algae or
cyanobacteria, can be utilized to convert light energy into
electrical energy, termed microbial electrochemical technology72.
Biophotovoltaics is a specific type of electrochemical technology
in which phototrophic microorganisms produce electricity by
utilizing incoming light energy to split water molecules, generat-
ing electrons and protons that can be used to produce an
electrical current within an MFC. Several cyanobacteria species
have been tested for use in biophotovoltaics, such as Synecho-
cystis138,139, Nostoc140,141, Lyngbya142,143, and Leptolyngbia144,145.
Kaushik et al. tested the energy producing capabilities of
Synechococcus using a two-chamber photosynthetic MFC built
with light transparent glass146. The MFC operated through a 12-h
light/12-h dark cycle under a white light intensity of 15W/m2.
Maximum power density output of the photosynthetic MFC was
0.61W/m2146. This technology provides a feasible method of
energy production on extraterrestrial outposts, but further
research needs to be completed to increase power output and
optimize light conversion.
Research on the use of in situ resources such as wastewater,

plant systems, and solar radiation, shows potential for the use of
MFC as a mode of power generation and sustainability on
extraterrestrial outposts. Though power generation is limited from
these substrates at the moment future work may enhance their
efficiency. In addition, other sources of power, such as nuclear
power, could supplement these MFC systems to provide adequate
power generation in habitats and spacecraft beyond LEO147.

Biomining
Biomining is an environmentally friendly and affordable alter-
native to traditional physical-chemical mineral processing meth-
ods to extract metals of economic interest from rock ores or mine
waste. The process involves specific microorganisms that secrete
organic acids and metal-binding compounds that essentially
dissolve these metals, allowing them to be easily extracted from
the environment148. Biomining is commonly applied to pyritic ores
and completed by iron-oxidizing bacteria, such as Thiobacillus
ferrooxidans149, Leptospirillum ferrooxidans150, and Acidimicrobium
ferrooxidans151. With the reduced iron in the form of pyrite, the
bacteria produce iron that oxidizes metal sulfides to sulfuric acid

which further accelerates rock dissolution152–154. These species,
along with those in the Sulfobacillus and Acidianus genera, as well
as many iron-oxidizing bacteria, are used for the biomining of
copper, zinc, uranium, nickel, aluminum, and cobalt155.
The biomining process is not limited to Earth. It may serve as an

innovative method for reducing the cost of raw materials and
energy requirements beyond LEO, enhancing the sustainability of
life on extraterrestrial outposts. Martian and lunar basalt are
known to contain many valuable metals, such as iron, nickel,
copper, vanadium, and many others, that are suitable substrates
that can be biomined by microbes156,157. Biomining of these
metals from Martian and lunar surfaces could provide the
necessary materials for the in-situ construction of buildings,
electrical systems, spacecraft equipment, solar cells, and heating
and lighting systems in human habitats beyond LEO158.
Recent research on the ISS simulating biomining of essential

compounds from basalt under microgravity demonstrated the
possibility for microbial mining beyond Earth159–161. Cockell et al.
tested the rare Earth element (REE) biomining capabilities of three
microorganisms, Sphingomonas desiccabilis, Bacillus subtilis, and
Cupriavidus metallidurans, under three different levels of gravity:
microgravity, simulated Martian gravity, and terrestrial gravity, and
against a non-biological control160. Biomining reactions took place
within biomining reactors. Within each reactor, researchers placed
growth media, sterilized basalt slides with a known REE and single
strain cultures of each microorganism. Biomining capabilities were
assessed based on absolute quantities of REE in ng obtained from
6mL bulk fluid collected from the biomining reactors and
compared to the non-biological control, consisting of a sterile
basalt slide without cell inoculation160. REEs assessed include
lanthanum, cerium, praseodymium, neodymium, samarium, euro-
pium, gadolinium, terbium, dysprosium, holmium, erbium, thulium,
ytterbium, and lutetium. The concentration of each REE extracted
was proportional to the known abundance in the basaltic rock. At
all simulated gravity levels, S. desiccabilis demonstrated enhanced
biomining capabilities per gram of basalt substrate, producing
32.52 ng under microgravity, 43.09 ng under Mars gravity, and
32.26 ng under Earth’s gravity, compared to the non-biological
mining control, which produced 24.67 ng under microgravity,
21.36 ng under Mars gravity, and 13.25 ng under Earth’s gravity.
These values represent the combined mass of biomined REEs. B.
subtilis and C. metallidurans demonstrated no differences under the
simulated gravity conditions tested and underperformed compared
to the non-biological control. As part of the same flight experiment,
Cockell et al. tested the biomining capabilities for vanadium (a
critical, high-strength element used as a building material), using
the same methods and organisms as the Cockell et al. study
described above160,161. S. desiccabilis and B. subtilis increased mined
vanadium yield, achieving a two-fold increase in mined vanadium
184.92% and 283.22% under microgravity, 216.32% and 219.78%
under Mars gravity, and 208.70% and 221.59% under Earth’s
gravity, respectively, compared to the control160.
With the abundance of iron in Mars regolith (17.9% wt), iron may

be a crucial resource produced through biomining162. Iron is one of
the most-processed metals on Earth that is incorporated in most
building materials and would be heavily relied on for construction,
repair, and maintenance of buildings at extraterrestrial outposts.
Copper is another important metal that can be produced through
biomining, with nearly 20–30% of all copper produced on Earth
extracted through biomining162. For over 30 years, copper has been
an essential metal used in the construction of rocket engines163,164

and being able to extract copper and other minerals from in situ
resources on extraterrestrial outposts will allow engine mainte-
nance and repair to occur beyond LEO, reducing the cost and time
of sending replacement parts from Earth.
Other economically essential elements have been found in

asteroidal material and Martian regolith and can be extracted
through biomining165–167. These include those in the platinum
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group, including palladium and osmium, and the 17 REEs. During
the Viking Mission to Mars, palladium-silver tubing was utilized in
gas chromatography-mass spectrometry to detect organic com-
pounds, and it would be important for future research on Mars in
the search for extraterrestrial life168. In addition to machinery, REE
can be used in building and fixing methods for power generation,
specifically solar panels169. Lastly, REE are found in electronic
screens and fluorescent lights, both necessary for data collection,
communication, and the general well-being of those on extra-
terrestrial outposts170.

The biomining process. Bioreactors are necessary for biomining
reactions to occur. Terrestrial biomining processes most often
occur in open, non-sterile tank reactors that require constant
stirring to distribute oxygen and nutrients171. To implement
biomining on extraterrestrial outposts, it is essential to assess the
extent to which differing gravity levels impact microbe-mineral
interactions within these stirred-tank bioreactors. An experiment
called BioRock, aimed to do this by creating a prototype
biomining reactor for space experimentation on the ISS159. The
biomining reactor has three main components: the culture
chamber, the medium reservoir chamber, and a fixative reservoir
chamber, where a fixative is injected to halt microbial growth after
the biomining reactions take place (Fig. 3). Two biomining reactors
are placed together within two levels of containment. Pre-test
flights found the bioreactors to be successful at growing the
model microorganisms, S. desiccabilis, B. subtilis, and C. metallidur-
ans. These microorganisms were chosen as they are low-risk
pathogens with the ability to survive desiccation for space flight,
limited requirements for growth, and are present in mineral-rich
environments. Growth was determined based on optical density in
nutrient solution after three weeks. For S. desiccabilis, growth
occurred in all tested geometries of biomining reactors, ranging
from 0.308 to 0.804 OD159. BioRock has also been successfully
used to test REE and vanadium biomining capabilities of S.
desiccabilis, B. subtilis, and C. metallidurans in microgravity, Mars
gravity and Earth’s gravity160,161.
An additional method of biomining, proposed by Volger et al.,

utilizes a two-bioreactor system and aims to further enhance ISRU
on Martian outposts compared to traditional bioreactors172. The
first system is an algae bioreactor, which utilizes Chlorella vulgaris
to produce biomass for the biomining reactor and oxygen. The
algal biomass is then utilized by Shewanella oneidensis as a growth
medium in the biomining reactor. In the biomining reactor, S.
oneidensis mines iron ores from Martian regolith; the biomass-rich
material left over after extraction can then be used for plant
growth. Based on modeled algae growth and biomining
performance, the system is projected to produce 0.031 kg O2

per day and 100 kg of iron per Mars year172. This model needs to
be further tested and future experiments should include exposure
to various gravity conditions to assess the impact that this
spaceflight stressor will have on growth and performance.
The BioRock experiment and other biomining endeavors using

iron-oxidizing and alternative candidate bacteria demonstrate
potential for biomining in differing gravity levels and the potential
for biomining as a source of ISRU at future Martian and lunar
outposts. Biomining for elements known to be located within
Martian and lunar regolith, such as iron and REE, will be essential
for proper maintenance and production of devices and technol-
ogy that promote sustainability and provide a foundation by
which to launch operations for deep space exploration.

BIOENGINEERED MICROBES FOR SPACE
Microorganisms are an important, renewable resource that can be
leveraged to produce pharmaceuticals or therapeutics, biological
life support systems, and manufacturing materials for human
space exploration and colonization that could help reduce the

need for costly resupply missions beyond LEO173. Candidate
microbes can be chosen for these applications based on the
availability of genetic tools for manipulation, desired metabolic
properties, and tolerance to environmental conditions. These
microbes can be further engineered to make them more well-
suited for biotechnological applications for interplanetary travel or
extraterrestrial settlements using synthetic biology tools. Synthetic
biology involves the rational design or repurposing of living
organisms and biological systems. Using synthetic biology,
microorganisms can be engineered or built de novo with
characterized parts and tools to endow them with new or
improved functions173.

Biotherapeutics
The risk that long-duration space missions pose for crewmembers
is not yet completely understood but the extreme conditions, such
as microgravity, radiation, and confinement, coupled with
microbiome dysregulation may lead to or enhance the disruption
of bodily functions174. Researchers have studied the effect of
simulated or actual spaceflight conditions on gastrointestinal (GI)
problems175, the development of diseases such as cancer and
cardiovascular disorders176, or a predisposition to contracting
infections177–179. The use of probiotics as a countermeasure to
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Fig. 3 Schematic depiction of a biomining reactor. The biomining
reactor has three main components: the culture chamber, the media
reservoir chamber, and a fixative reservoir chamber (shown in
section 1). The culture chamber is where the biomining reactions
take place and where the microorganisms reside before the media is
injected. The media reservoir chamber contains the nutrients
required for the biomining reaction to occur and is injected into
the culture chamber to begin the biomining reaction (section 2).
Once the biomining reaction is completed, a fixative is injected to
halt microbial growth (section 3).
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combat changes in the microbiome as a result of spaceflight is
being investigated to support astronaut health on long-duration
space missions180,181. Probiotics are living organisms able to
survive in the gastric environment that provide health benefits
and maintain or improve microbiome balance when consumed.
On Earth, probiotics have been used to treat many ailments
including weight and muscle loss, inflammation, dermatitis,
immune disorders, mental health, and GI conditions (i.e., diarrhea,
irritable bowel syndrome (IBS), inflammatory bowel disease
(IBD))180,182.

Probiotic viability in space. Promising probiotic candidates for
space missions could include Bifidobacterium and Lactobacillus, to
counteract their decrease in relative abundance in the astronaut
microbiome during spaceflight183,184. While these species are
commercially used on Earth their efficacy and long-term viability
when used and stored in space has to still be verified. In 2017,
Shao et al. examined the viability of Lactobacillus acidophilus in
simulated microgravity and observed no effect on cellular
morphology or adhesion. However, some biological changes were
present compared to controls, such as increased growth rate at
early time points, acid tolerance (pH < 2.5) by ~22–32%, bile
tolerance at low concentrations, antibacterial activity, and
resistance to antibiotics (i.e., cefalexin, gentamicin, penicillin)185.
The following year, the shelf life of freeze-dried Lactobacillus casei
strain Shirota press-through capsules was tested in spaceflight
conditions aboard the ISS186. After one month of storage in
ambient conditions (i.e., temperature 20–24.5 °C, absorbed dose
rate 0.26 mGy/day) and six months after the start of the
experiment, bacteria in flight samples were sustained in sufficient
numbers that were comparable to ground controls. There were no
observed changes in probiotic viability, and the basic probiotic
properties of the bacteria including growth rate, carbohydrate
fermentation, cell-wall polysaccharide integrity, and resistance to
intracellular digestion remained intact upon thawing186. A
lengthier shelf-life analysis of freeze-dried cells for three
commercial probiotics including Bifidobacterium longum, L.
acidophilus and spores of B. subtilis was then performed in a
simulated three-year round-trip to Mars187. In under 200 days, B.
longum and L. acidophilus viability was decreased by about 2-logs
while B. subtilis maintained viability up to the end of the
experiment (545 days). Therefore, researchers concluded that
freeze-dried bacterial spores showed the most promise for
withstanding long-duration space missions including ambient
spacecraft conditions and radiation with an estimated shelf-life of
4.7 years187. Overall, these studies provide foundational informa-
tion on the storage, stability, and viability of probiotic candidates
when flown in space. These results suggest that with further
testing, probiotic bacteria can be an essential component of the
astronaut medical toolkit for the maintenance of a healthy gut
microbiome, prevention and treatment of bacterial infections or
medical concerns that may arise in future space missions.

Engineered probiotics to combat infection. In addition to the
observed decrease in beneficial bacteria, microbial tracking
studies have shown that spaceflight conditions can also lead to
an increase in opportunistic pathogens in both the built
microbiome and astronaut microbiome. This is particularly
problematic due to the dysregulated immunity of astronauts in
space178. Since antibiotics are the most commonly used ther-
apeutic for the treatment of bacterial infections, researchers are
investigating whether microbes can be used for antibiotic
production in space. This is particularly relevant considering that
antibiotics are known to have accelerated degradation and
decreased efficacy when flown and stored in space for long
periods of time188. On the Space Shuttle Mission STS-77, Lam et al.
analyzed the effects of spaceflight on the production of monorden
by Humicola fuscoatra WC5157, a marine fungus. Monorden has

demonstrated antimicrobial activity against pathogenic fungi and
antitumour activity on human tumor cell growth in vitro189. Using
solid-state fermentation, researchers observed up to 190%
increased yield of the antifungal in spaceflight compared to
ground controls at 23.8 and 8.2 μg, respectively190. Similar results
were obtained in another study analyzing the production of
actinomycin D, an antibiotic and antitumor agent, by Streptomyces
plicatus on the ISS. After 17 days in orbit, the amount of antibiotic
produced by ISS samples increased by up to 577% compared to
ground controls191, and over a 72-day period, researchers noted
increased production of actinomycin D in ISS samples specifically
at early time points192. While much work is yet to be done toward
on-demand microbial production of antibiotics in space, these
studies demonstrate that microbes are a promising platform for
this application. Elucidating the mechanism driving this increased
yield early in antibiotic production in microgravity could enable
the engineering of bacteria for enhanced antibiotic or therapeutic
bioprocessing in space or even be applied to increase antibiotic
production on Earth.
Antibiotic-associated diarrhea (AAD) may arise in space as a side

effect of administering antibiotics to treat infections. Several
studies have investigated the use of Debaryomyces hansenii as a
treatment for AAD in a mouse model. D. hansenii is commonly
used in the food industry for the processing of cheese and has
been identified as part of the human gut microbiome193,194. When
administered for treatment of AAD, D. hansenii alters the
composition of the microbiome by promoting the growth of
beneficial lactase-producing bacteria and by inhibiting the growth
of opportunistic pathogens195–197. In one study, the presence of
Proteobacteria in the intestinal mucosa increased in response to
diarrhea, from ~19% in a normal group to ~36% in an AAD model
group, and treatment with D. hansenii was able to restore
Proteobacteria to normal levels195. Proteobacteria abundance
often positively correlates with IBD and inflammation and is
generally regarded as an indicator of microbiome instability198. In
spaceflight, the proportion of Proteobacteria in the astronaut skin
microbiome was decreased, namely Gammaproteobacteria and
Betaproteobacteria175, while it was increased in the salivary
microbiome199.
While bacterial infections are typically treated with antimicro-

bials, the formation of biofilms and propagation of multi-drug
resistance in the spaceflight environment (discussed later in this
review) limits these therapeutic options. A promising alternative
currently being investigated on Earth is the use of engineered
microorganisms as live biotherapeutics (e.g., biosensors, probiotics
with enhanced benefits, and drug delivery systems)200–204. Well-
established microbial chassis organisms include E. coli and
Saccharomyces cerevisiae, though a microbe more well-suited to
the target therapeutic environment or application can also be
chosen. One example using a less conventional chassis was
recently performed by Garrido et al. where they engineered
Mycoplasma pneumoniae, a human lung pathogen, as a live
biotherapeutic to treat S. aureus and other biofilm-associated
infections in vivo205. Researchers created an attenuated strain of
M. pneumoniae able to secrete anti-biofilm and bactericidal
enzymes, dispersin B and lysostaphin, and demonstrated its
ability to eliminate an S. aureus biofilm in a mouse model205.
Another candidate chassis that could be employed to eradicate
pathogens is D. hansenii, which produces volatile organic
compounds and mycocins that have demonstrated antimicrobial
effects on several pathogenic bacteria and fungi. An alternative to
secreting bactericidal proteins to kill pathogens is the incorpora-
tion of CRISPR/Cas9 gene-editing technology into synthetic
designs to create engineered probiotics for targeted bacterial
killing. This was demonstrated by Neil et al. by delivering CRISPR/
Cas9 on a conjugative plasmid which led to 99.9% eradication of
antibiotic resistant E. coli and complete eradication of Citrobacter
rodentium in the GI tract of a mouse model206. CRISPR/Cas9 gene
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editing has also been demonstrated in D. hansenii207, and could
be applied to engineer this strain for increased production of
mycocins that can target C. albicans208,209.
Microbes can also be engineered as biosensors to identify or

inhibit pathogenic bacteria by sensing an important indicator
molecule and releasing a signal or enzyme in response. For
instance, biological targeting systems have been demonstrated
using engineered E. coli for directed killing of the biofilm-
associated pathogen Pseudomonas aeruginosa, a bacterium that
has been demonstrated to have increased biofilm formation and
pathogenicity on the ISS210. Saeidi et al. engineered E. coli with a
synthetic genetic circuit containing three modules: sensing, lysing,
and killing. The sensing module includes a constitutively
expressed transcription factor, lasR, which detects and binds to
N-Acyl homoserine lactone (AHL), a quorum sensing molecule
released from P. aeruginosa. This bound complex activates the
lysing and killing modules expressing lysis E7 and pyocin S5
proteins, respectively. This leads to perforation of the E. coli cell
membrane and release of the bacteriocin which targets the
pathogen and killed 99% of viable cells211. Following this study,
Hwang et al. programmed E. coli with a modular circuit containing
the same sensing module coupled to a motility and killing
module. The motility module expressed the chemotaxis protein
CheZ to initiate motility toward the pathogen, while the killing
module produced antimicrobial and biofilm-degrading proteins,
MccS and DNaseI. Viability of P. aeruginosa was examined and
found that E. coli harboring both the motility and killing biosensor
modules resulted in the killing of 60% of cells210. Biological
sensors to detect and/or reduce pathogenic bacteria using
traditional chassis such as engineered Lactobacillus or E. coli have
also been demonstrated against intestinal P. aeruginosa212,
vancomycin-resistant Enterococcus213, Candida albicans214, and S.
aureus215,216. These studies highlight the vast potential of
engineered microbes to sense and kill space microbiome-
associated pathogens and disrupt biofilms. Since the choice of
probiotics is both bacteria- and ailment-dependent217, the use of
synthetic biology to create genetically engineered biotherapeutics
with higher complexity and multiple functions (i.e., able to target
multiple pathogens) is vital to minimize the amount of cargo on
future space missions. The viability of these therapeutics for
humans and their ability to function in the conditions of
spaceflight still need to be investigated, but these examples help
to shed light on what the next generation of engineered
biotherapeutics could offer.

Engineered probiotics for disease prevention and detection. Engi-
neered probiotics can also be a valuable tool for the prevention or
detection of more serious health issues such as GI disorders,
kidney stones, cancer, and cardiovascular disease (CVD), or the
treatment of their associated symptoms. Space-induced changes
in the gut microbiome observed in astronauts aboard the ISS by
Voorhies et al. included an increase in Parasutterella, a bacteria
associated with IBD175. In IBD pathology, purinergic receptors are
activated by extracellular adenosine triphosphate (eATP) released
by commensal gut bacteria and immune cells, promoting
intestinal inflammation. Engineered yeast probiotics containing a
human P2Y2 purinergic receptor have been developed for the
treatment of IBD by responding to physiological eATP levels and
secreting the eATP-degrading enzyme apyrase218. This probiotic
was shown to be effective in a mouse model of IBD, decreasing
intestinal inflammation and dysbiosis. Bacterial probiotics can also
be engineered to detect gut inflammation by sensing tetrathio-
nate, thiosulfate or nitric oxide219,220, or with programmable
memory systems to detect and respond to an environmental
stimulus221.
The risk of kidney stones due to bone decalcification,

dehydration, or increased growth rate of calcium-depositing
nanobacteria222–224 is increased in spaceflight, which could also

be prevented or treated using probiotics. Calcium oxalate is the
major component of kidney stones, therefore ideal probiotic
bacteria are efficient in oxalate degradation, such as Oxalobacter
formigenes225 and B. subtilis. B. subtilis strain 168 has been
presented as a novel probiotic therapy as it has been shown to
break down the oxalate in kidney stones in a Drosophila model226.
The oxalate decarboxylase (OxDC) enzyme derived from B. subtilis
can also be used to engineer other bacteria as probiotics for the
treatment of kidney stones. The expression and subsequent
purification of this enzyme in E. coli was able to reduce oxalate
concentrations in a mouse model in urine and feces by 44% and
72%, respectively, compared to controls227. The OxDC gene was
also introduced into Lactobacillus plantarum on a plasmid, leading
to expression and secretion of this enzyme where it was able to
degrade 70–77% of oxalate in vitro, and reduced oxalate as well as
calcium, uric acid, creatinine, serum uric acid, and BUN/creatinine
ratio in urine compared to controls in a rat model228.
Probiotics including Lactobacillus and Bifidobacterium can also

be used to improve cardiovascular health by reducing weight,
cholesterol, and adipose tissue while also preventing or attenuat-
ing injuries to the heart (e.g., heart failure, ischemia, cardiac
hypertrophy)229. Using a rat model, Lactobacillus rhamnosus or a
placebo was administered to subjects following coronary artery
occlusion for a six-week duration. Compared to placebo controls,
rats given the probiotic treatment showed attenuation of left
ventricular hypertrophy, improved systolic and diastolic left
ventricular function, and additional improvements up to six weeks
after withdrawing treatment230. Other Lactobacillus species have
had positive effects on CVD including L. plantarum which helped
to reduce serum levels of leptin and fibrinogen, which are CVD risk
factors231. These probiotics can also be genetically engineered to
enhance their potential benefits. For instance, E. coli Nissle 1917
has been genetically engineered to produce
N-acylphosphatidylethanolamines which, when administered to
mice, led to decreased adiposity, insulin resistance and lipid
accumulation in the liver232. This has important implications for
astronauts as spaceflight can induce negative, aging-like effects
on the cardiovascular system (i.e., decreased fitness, arterial
stiffening, and insulin resistance) and radiation exposure has
been well-characterized to increase the risk of developing
radiation-induced cardiovascular disease (RICVD)233,234.
Crewmembers are at an elevated risk of cancer development

due to radiation and other spaceflight factors235–237. As such,
methods for cancer prevention and treatment are important to
implement during deep space exploration and bacterial-mediated
cancer therapies could be a promising approach Bacteria can be
used naturally or engineered for cancer therapy to specifically
target and colonize tumors, or as a drug delivery system for
anticancer agents238. Many bacteria have been investigated for
these applications including Bifidobacterium239, E. coli240–242,
Clostridium243,244, Salmonella245–249, and Streptococcus250 species.
A study using E. coli engineered with synthetic adhesins to target
a tumor antigen in vivo found that lower doses of engineered E.
coli were required to colonize tumors compared to wild-type
controls240. Tumor targeting was also demonstrated in an
attenuated strain of Salmonella typhimurium harboring a short
hairpin RNA expression plasmid. It was engineered to target
inhibin, a tumor marker, resulting in significant inhibition of colon
cancer and melanoma growth in a mouse tumor model247.
Bacteria can also be engineered to improve tumor and metastasis
visualization within mammalian hosts, facilitating their use as
diagnostic and therapeutic microbial agents. For example, E. coli
was engineered to express an acoustic reporter gene allowing
them to be imaged noninvasively in vivo and to produce protein-
nanoparticle gas vesicles for targeted breast cancer therapy242. E.
coli was also engineered with lacZ, encoding the β-galactosidase
reporter, which can be easily detected in urine as an indicator of
liver metastasis251.
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Bacteria hold great potential for the development of easily
modifiable biotherapeutics that could be invaluable for treatment
or prevention of health issues during long-duration space
missions. However, additional research and clinical validation is
necessary before employing engineered bacteria as biotherapeu-
tics for space-associated disorders and diseases.

Life support and nutrition
BLSS can provide crew members with oxygen, food, and water,
and will be imperative for long-duration space missions and for
the establishment of sustainable human habitats on the Moon or
Mars. Due to their diverse applications for spaceflight, microalgae
and cyanobacteria are often studied for their incorporation in BLSS
and photobioreactors. They produce oxygen, remove carbon
dioxide from the environment and help with water purifica-
tion104,105,252,253. These microbes are also edible allowing their
biomass to provide nutritional and therapeutic benefits without
the need for protein purification35,254.

Enhanced photosynthesis. Oxygen for astronauts on the ISS is
currently transported in pressurized tanks from Earth or is
produced using water onboard through electrolysis255. Therefore,
the ability to improve carbon uptake and oxygen output using
microbes on the ISS, for space travel and in future extraterrestrial
habitats, is an essential step toward the creation of sustainable
and self-sufficient systems. Oxygen production, CO2 capture, and
photosynthetic capacity could be enhanced in BLSS using
synthetic biology tools to address the bottleneck of photosynth-
esis: the carbon fixation cycle. Metabolic engineering of cyano-
bacteria can improve photosynthetic capacity as demonstrated by
Berepiki et al. where expression of mammalian cytochrome P450
(CYP1A1) acting as an electron sink in Synechococcus PCC 7002
improved photosynthetic efficiency and increased electron flow
rate by ~30%256. Using the same cytochrome P450 gene, Santos-
Marino et al. engineered metabolic pathways for sucrose
production and cytochrome P450 as a carbon and electron sink,
respectively, into Synechococcus elongatus. Ultimately, this
resulted in increased photosynthesis, and simultaneous expres-
sion of both sinks had an additive effect on photosystem I
oxidation and photosystem II efficiency257. Another strategy to
improve this cycle is by increasing the substrate concentration of
ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo) to
improve carbon uptake. In the cyanobacterium Synechocystis sp.
PCC6803, one study found that genetic installation of additional
bicarbonate transporters resulted in a 2-fold increase in carbon
uptake and biomass258. Metabolic engineering of cyanobacteria
can also be used to produce industrially relevant high-value
chemicals and bioproducts such as biofuels. Some engineering
efforts have been demonstrated in the model cyanobacteria
species, S. elongatus PCC7942 and Synechocystis sp. PCC6803, to
produce ethanol, ethylene, isobutyraldehyde, and isoprene259–262.
The biotechnologically relevant bacteria, Ralstonia eutropha (i.e., C.
necator) has also been engineered by Dogutan and Nocera to
capture CO2 to produce biofuels and edible biomass, in an
artificial photosynthetic cycle that is much more efficient than
those that are naturally occurring263.

Microbial production of nutrients. In addition to oxygen, micro-
algae can provide a sufficient source of proteins, carbohydrates,
fatty acids, minerals, and vitamins required for a balanced
diet264,265. These nutritional outputs can be further enhanced
using synthetic biology approaches. Genome editing technologies
for these marine species have expanded over the last 20 years,
namely due to improvements in DNA sequencing, manipulation
techniques and availability of genomic information266. Some of
these methods and technologies include DNA delivery via
conjugation, the generation of auxotrophic strains, and DNA-free

or plasmid-based genome editing (e.g., using CRISPR/Cas9)267–270.
Therefore, it is possible to create cell factories using metabolic
engineering to alter the composition or nutritional output of these
species271–273. For example, mutagenesis and CRISPR/Cas9 gene
editing technologies have been used to modify the biomass
composition of the model algae species Chlamydomonas rein-
hardtii. Irradiated mutant strains have been generated with double
the starch content compared to the wild-type strain through
increased expression of phosphoglucomutase 1 (PGM1) and
decreased expression of downstream enzymes in the glycolytic
pathway274. C. reinhardtii has also been engineered to knock out
the zeaxanthin epoxidase gene resulting in 47-fold increased
production of the carotenoid zeaxanthin, which is important in the
prevention of macular degeneration275, a concern facing astro-
nauts during prolonged spaceflight276.
Synthetic biology approaches are also being used to genetically

engineer microorganisms for the production and long-term
storage of nutrients as part of NASA’s BioNutrients projects277.
Nutrient production and storage on long-duration space missions
is a challenge as they can degrade over time. Therefore, this
project aims to develop a system for on-demand microbial
production of micronutrients on the ISS, whereby packages of
dehydrated, edible yeast can be hydrated and consumed. In the
first segment of the project, BioNutrients-1, Saccharomyces
cerevisiae and S. boulardii species were engineered to produce
antioxidants with genes for zeaxanthin and beta-carotene
biosynthesis pathways, respectively277. The S. boulardii genome
was also engineered to stimulate increased trehalose stores and
with tardigrade-derived cytosolic abundant heat soluble (CAHS)
genes, both resulting in increased tolerance to desiccation. Along
with these strains, several other edible microorganisms are being
tested for their storage and survival in stasis packages in the
ambient conditions of the space environment. These include
yogurt-producing and milk-coagulating bacteria (Lactobacillus
delbrueckii subsp. bulgaricus, Streptococcus salivarius subsp. thermo-
philus, B. subtilis and Bacillus coagulans), yeasts (Kluyveromyces
lactis and Komagataella phaffii Kurtzman) and C1-utilizing bacteria
(Methylobacterium extorquens and C. necator). The production and
stasis packages were delivered to the ISS and will be analyzed for
growth and nutrient expression for a five-year duration. After
47 days, initial stasis package data showed no significant
difference in the viability of bacteria stored on the ISS compared
to ground controls278. These organisms are all attractive
candidates for biological engineering to produce vitamins,
therapeutics, or other useful enzymes for maintaining crew health.
In addition to continued testing of the production of carotenoids,
BioNutrients-2279 aims to further develop the bioproduction
system from BioNutrients-1 by expanding the variety of probiotic
products on the ISS to include yogurt and kefir and investigate the
production of follistatin by the engineered yeast K. lactis279. The
results of the BioNutrients project will provide invaluable
information for the feasibility of using microbes as a platform
for nutrient storage and production for long-term space travel.

Engineered biomaterials
In-space manufacturing and development can be challenging as
necessary materials and supplies are not readily available and
currently need to be transported or resupplied from Earth.
Microbes offer a solution as they can be reprogrammed for the
production of biologically derived materials (i.e., bioplastics,
nanomaterials)280 to generate useful components such as plastics,
adhesives, composites, and rubbers for structural space
applications.

Gel-based materials. One material that would be beneficial to
produce in situ beyond LEO is aerogels. Aerogels, first created by
Kistler in 1931, are human-made, low-density solid materials with
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an interconnected porous network composed of 99.8% air, with
the most common type being silica-based281. Photosynthetic
organisms that can produce silica, primarily algae diatoms (e.g.,
Phaeodactylum tricornutum), are of interest for the generation of
silica-based aerogels and have recently been incorporated into
cellulose aerogel composites282,283. Aerogels are useful materials
for space applications due to their low thermal conductivity, light
weight, and high porosity284–286. To improve the habitability of
other planets for humans and photosynthetic organisms, silica
aerogels provide the benefit of allowing for the transmission of
visible light for photosynthesis while simultaneously blocking
hazardous UV radiation284. In addition, since aerogels are a
thermally insulating material, they can raise surface temperatures
through the solid-state greenhouse effect284. NASA is currently
taking advantage of the thermal insulating properties of aerogels
to protect spacecraft and rovers from the cold Martian surface
temperature, such as for the Mars Pathfinder lander, Mars
exploration rovers (Spirit and Opportunity) and Mars Science
Laboratory mission (Curiosity rover)286. Aerogels have also been
used as a method for capturing particles from space without
damaging them, as demonstrated in the Stardust Mission286.
Therefore, using a synthetic biology approach to generate
aerogels from silica-producing organisms could be interesting to
investigate further.
Other gel-based materials can also be synthesized using

synthetic biology. For instance, Kim et al. took advantage of the
structural properties of synthetic spider silk287,288 and mussel
adhesive proteins, which can act as biological adhesives289,290, to
engineer E. coli with a spidroin-amyloid-mussel foot hybrid protein
that can ultimately assemble into a hydrogel with high strength
and underwater adhesion291. The hybrid protein consisted of a
zipper domain from an amyloid protein, a flexible domain from
spider silk, and a dihydroxyphenylalanine (DOPA)-containing
mussel foot protein. This is a great example of how synthetic
biology can be used to generate bacterial hosts expressing
recombinant proteins with novel or desirable functions and
properties, which can be applied to tackle specific manufacturing
challenges in space. In addition, methods to spatially control the
distribution of microbial cells into hydrogel structures have been
developed using a Stereolithographic Apparatus for Microbial
(SLAM) Bioprinting 3D printer292. Bioresins composed of synthetic
polymers were used to contain the microorganisms and mimic
extracellular polymeric substances (EPS) that are fundamental to
biofilm formation in nature293. The power of this technology was
demonstrated by printing engineered Caulobacter crescentus as
uranium biosensors within this biomaterial using a uranium
responsive promoter fused to GFP and measuring the fluores-
cence output292. This technology could enable genetic engineer-
ing of single strains, microbiomes, and biofilms to be used not
only for biomanufacturing but also for biomining, biotherapeutics,
and bioremediation.

Polymer production and degradation. Plastic materials continue
to play a vital role in the manufacturing of spacesuits and
spacecraft. Progress has been made towards the sustainable
production of high-strength, biodegradable plastics in engineered
microorganisms. Specifically, efforts have been made to increase
the production of polyhydroxyalkanoate (PHA) or polyhydrox-
ybutyrate (PHB) in engineered cyanobacteria, Synechococcus294

and Synechocystis sp. PCC6803295,296. Synechocystis sp. PCC6803
has been engineered with the PHA biosynthetic pathway of R.
eutropha (i.e., Cupriavidus necator)296 or the overexpression of
sigE295 to increase PHA and PHB production, respectively.
Metabolic engineering of the shikimate pathway in B. subtilis or
S. cerevisiae for the increased production of para-aminobenzoic
acid (pABA) has also been studied, which can act as a precursor for
high-strength polymers (e.g., aramid fibers)297,298. Ultimately,
these biologically derived materials can be used to manufacture

parts or even 3D-print hardware in space299.
To make in-space manufacturing and construction off-planet

more sustainable, ISRU or recycling of existing material compo-
nents to produce feedstock for new materials is necessary300.
Microorganisms offer a solution to this problem as many can
naturally degrade polymers for metabolic products. Black fungi,
which are a diverse group of extremophilic melanized fungi, have
been investigated for this application due to their demonstrated
ability to hydrolyze synthetic polymers301). For instance, Aureoba-
sidium pullulans, a black fungus, has demonstrated microbial
deterioration of plasticized polyvinyl chloride (PVC) and dioctyl
adipate plasticizers302. Knufia chersonesos, another black fungus,
has been shown to completely break down the synthetic
copolymer polybutylene adipate terephthalate (PBAT)303. Secre-
tome screening identified seven polyesterase enzymes that could
potentially be involved in this observed polymer degradation,
which lays the foundation for the possibility of further engineering
of this biosynthetic pathway for more efficient degradation303.
Therefore, this group of extremophilic organisms are promising
candidates for plastic degradation, however, this process still
needs to be investigated in simulated or spaceflight microgravity.
Microgravity studies of K. cheronesos that analyzed the effects of

simulated microgravity on the proteome and secretome found
that scytalone dehydratase gene expression was upregulated in
the wild-type strain and downregulated in a melanin-deficient
mutant strain304. This enzyme is involved in the biosynthesis of
dihydroxynaphthalene melanin, which is believed to have
protective qualities that fungi use to withstand the extreme
conditions of space305. This suggests that Knufia species, and
potentially other black fungi have the properties to withstand
space conditions and are good candidates for plastic degradation
in space. Since then, various other extremophilic fungi have been
tested for their survival in space, through exposure to simulated
Mars conditions306,307. These include 12 Chernobyl-isolated strains
(i.e., Cladosporium, Acremonium, Beauveria, Fusarium, Trichoderma,
Penicillium, Aureobasidium, Aspergillus and Apiospora), the black
fungi Exophiala jeanselmei, and the microcolonial fungi Cryomyces
antarcticus and Knufia perforans. Plastic degradation has also been
investigated in extremophilic bacteria, for example Streptomyces
thermoviolaceus, Geobacillus thermocatenulatus and Clostridium
thermocellum308. As these extremophilic fungi and bacteria have
been shown to withstand space conditions, thus they are
promising candidates to use or engineer for plastic degradation
in space. Ultimately, the capacity for manufacturing in space will
be beneficial for long-duration space missions, reducing the need
to bring materials as cargo or have them launched from Earth, and
allowing for on-demand production of materials based on
immediate need.

Myco-architecture
Astronauts venturing out beyond Earth’s protective magneto-
sphere will be exposed to hazardous radiation during deep-space
exploration missions. This includes high-energy electromagnetic
waves from our sun such as UV radiation, gamma, and X-rays or
sub-atomic particles from the cosmos (electrons, protons,
neutrons, and heavy metal ions), known as galactic cosmic
radiation. These forms of radiation strip electrons from molecules
resulting in protein or DNA damage through production of
reactive oxygen and nitrogen species309,310. The result is short-
term or long-term health problems such as cancer, acute radiation
sickness, radiation-induced cardiovascular disease, and neurologi-
cal damage278. Developing a solution for passive radiation
protection for astronauts will be a critical step towards sustaining
long-term presence on the Moon and Mars. The average person
on Earth is exposed to about 6.2 mSv of radiation over a period of
a year, while the average astronaut on the ISS is exposed to
approximately 144 mSv311. One year into a three-year mission to
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Mars, an astronaut would already have been exposed to some
400mSv of radiation311,312. Due to the complex nature of space
radiation, there is likely no one-size-fits-all solution to this
problem. Some proposed architectural concepts for radiation
production include building below ground in lava tubes or piling
meters of regolith outside of a structure313,314 and while materials
like lead and aluminum may be effective, they would be costly to
transport315. As a result, the search for innovative radiation shields
will depend in part on biotechnology, which holds unique
advantages such as suitability for ISRU, self-regeneration, and
adaptability. By selecting model organisms such as extremophiles,
that use radiation as an energy source, we can begin to
understand their properties and refine testing for technology
development.
Fungi on Earth have been isolated in high-radiation environ-

ments, such as the contamination zone of the Chernobyl Nuclear
Power Plant316,317, inside the ISS317, and exteriors of spacecraft in
LEO305. Analogous to phototrophy, fungi appear to perform
radiosynthesis, using pigments known as melanin to convert
gamma radiation into chemical energy318,319. Melanin has the
capability to absorb electromagnetic radiation, resist acids, and
perform powerful antioxidant activity allowing some fungi to
thrive in the most extreme environments on Earth or beyond,
including those with high levels of ionizing radiation320,321.
Studies examining the survival rates of melanized and non-
melanized yeasts with gamma radiation have shown that melanin-
rich fungi were able to shield ionizing radiation at efficacies
comparable to lead and twice as effective as charcoal, whereas the
non-melanized strains lacked the capability to provide shield-
ing322. This may not only be due to the presence of melanin itself
but the spatial arrangement of it within the cell, as it was observed
that in Cryptococcus neoformans, melanin arranged in a spherical
shape, covering the inner surface of the cell membrane, resulted
in superior shielding from radiation323, hypothesized to be due to
the increase in scattering of incident photons318. Melanin is not
the sole mechanism by which fungi survive radiation exposure. In
a study using melanized yeast Exophiala dermatitidis, it was found
that nutrient availability, culture density, metabolic state and DNA
repair mechanisms were better determinants of cell survival after
gamma radiation exposure than melanin324. Other mechanisms
that protect fungi against radiation involve enzymes that remove
reactive oxygen species or those that promote DNA repair, either
through nucleotide excision or photoreactivation325, and various
other secondary metabolites, such as the antioxidant pyranonigrin
A326. Due to the ability of various fungi to withstand, thrive, and
even attenuate space-relevant doses of radiation306,316,318,327–330

there is keen interest in their use for the development of radiation-
resistant shields or structures305,330–332.
Fungal mycelium, a filamentous network of hyphae, is a fibrous

material that can be used as structural components for the
construction of habitats, buildings, furniture, etc.333. Fungal
mycelium as a construction material has attractive characteristics
including self-healing potential, impressive compressive strength,
flexibility, insulation, and hydrophobicity333. The use of mycelium-
based materials and structures in space would be a sustainable,
biodegradable option with demonstrated uses for generating
textiles332 and as an alternative to plastic packaging. Haneef et al.
used two edible and medicinal fungi, Ganoderma lucidum and
Pleurotus ostreatus, to produce mycelium films composed of
polysaccharides, lipids, protein, and chitin334. The fungi were
grown on two different substrates; cellulose or cellulose with PDB,
and the final composition and characteristics of the film differed
based on which substrate they were exposed to334. This suggests
that myco-architecture properties could be modulated simply by
varying the growth substrate. Biocomposites combining fungal
mycelium with cellulose plant fibers335 or with wood and cellulose
nanofibrils have also been investigated336. Since they are living
organisms, synthetic biology could be used to engineer fungi to

secrete other useful structural components such as polymers, for
even more complex structures. Indeed, CRISPR-Cas9 methodology
has been used to create gene deletions in Paecilomyces variotii, a
Chernobyl fungal isolate, and was used to identify the gene
responsible for its radiation resistance337. This technology could
be further employed to enhance various fungi for deep space
applications, such as making them better suited for radiation
shielding.

Concrete production
Another promising construction material to shield humans, plants
and (possibly even) animals from the harsh Lunar and Martian
environments is concrete. Concrete is a promising material for
space applications as it is strong (it has proven to be the most
durable material against natural disasters and extreme weather
events), resistant to burns, rust and rot and could be made with
engineered microbes and in situ resources. Concrete is composed
of three main components: water, cement, and an aggregate (i.e.,
sand, gravel). Researchers have discovered that the use of human
serum albumin combined with regolith from the Moon or Mars as
the concrete aggregate can produce a concrete-like biocomposite
that is made even stronger with the addition of urea338.
Alternatives for cement, one of the main components of concrete,
can be made using engineered bacteria to express recombinant or
structural proteins, such as bovine or human serum albumin339

and spider silk340. This way, protein production and purification
can be scaled-up and ultimately mixed with in situ regolith, rather
than extracting them directly from the source.
Microbes can further aid in the production of concrete through

soil biocementation using microbially induced calcite precipitation
(MICP)341. This is a process wherein microorganisms precipitate
calcium carbonate, the main component of limestone and
cement, by urea hydrolysis or CO2-concentration341. For this
reason, candidate microbes are typically highly urease-active
bacteria, such as Sporosarcina pasteurii (formerly known as Bacillus
pasteurii)342,343. One of the limitations of concrete is that it can
often crack due to shrinkage. Incorporation of microorganisms
into these structures can provide a sustainable solution for in-
space construction but also a long-term biotechnological solution
for concrete maintenance through crack remediation. Bacteria
embedded in the concrete, resulting in what is often termed
“living” or “self-healing” concrete, can repair cracks that form over
time through the precipitation of calcium carbonate crystals344.
This has been investigated using microorganisms including
microalgae (Synechococcus and Spirulina)345,346, Bacillus347, and
Deinococcus radiodurans348. Concrete is a harsh, alkaline environ-
ment (~pH 12) and therefore relies on hardy microbes tolerant of
these conditions. The ability for Bacillus to form spores and its
resistance to alkaline conditions makes this microbe a promising
candidate for survival in the high pH concrete environment.
Concrete remediation using MICP by spore-forming Bacillus
species was demonstrated by Ramachandran et al.349 and later
by Jonkers et al., who demonstrated that the spores remained
viable for up to four months350. While this is a promising start,
experiments need to be performed to determine whether
bacterial spores can remain viable for longer durations. The B.
subtilis gene cluster and molecular mechanism involved in calcium
carbonate biomineralization have been identified351 and therefore
could be used to engineer novel bacteria with enhanced self-
healing capabilities or resistance to the concrete environment.
Using extremophilic bacteria that can tolerate both the

concrete and space environment to produce calcium carbonate
may allow for the construction of Lunar or Martian structures with
increased durability or radiation resistance. One such candidate is
the cyanobacterium Synechococcus, a photosynthetic organism
that can withstand extreme environmental conditions. Using
Synechococcus PCC8806, Zhu et al. incorporated cyanobacteria
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into a mixture of hydrated concrete powder and sand. Results
showed that 38% more calcium was precipitated in conditions
containing cyanobacteria than in controls, and the microbial
calcite layer on the concrete surface was thicker, more adhesive,
and decreased water absorption by twofold345. More recently,
Synechococcus sp. PCC 7002, was tested for incorporation in a
sand-hydrogel scaffold352,353. Following inoculation into a scaffold
of sand, gelatin and media, the microbial viability was analyzed in
varying temperature and humidity conditions. While the scaffold
was strongest at ambient conditions, cells were not viable after
seven days, however at 50% or 100% humidity, 9% and 14% of the
cells remained viable after 30 days, respectively352. Since
desiccation appeared to reduce cell viability, another study
analyzed whether changes in component ratios or addition of
trehalose would allow for increased viability. They found that
using a desiccation protectant like trehalose led to increased cell
viability at ambient temperature without sacrificing the mechan-
ical properties of the structure353. Maintaining cell viability of
cyanobacteria in the concrete structure is vital for enhancing the
crack-healing potential, which was shown to be promising in a
recent study using S. elongatus and S. platensis at varying
concentrations (i.e., 4, 8 and 12%)346. An alternative strategy to
combat desiccation would be the use of a desiccation-resistant
organism such as D. radiodurans, which is a polyextremophilic
bacteria known for its resistance to radiation. Unlike some of the
other candidate bacteria, D. radiodurans is non-spore forming and
therefore has applications for low-temperature conditions348. D.
radiodurans was shown to be viable for up to 28 days in concrete,
providing significant crack healing and increasing the compressive
strength of the mortar by 42% at room temperature and 38% at
near-freezing temperatures348. Strategies enlisting microbes in
combination with Lunar or Martian regolith provide a blueprint for
ISRU for manufacturing strong, radiation-resistant structures that
could further space exploration efforts and the possibility for
human habitation on the Moon and Mars.

NEGATIVE IMPACT OF MICROBES AND MITIGATION
STRATEGIES
While microbes offer many benefits and biotechnological
solutions for extended spaceflight and the development of
sustainable habitats beyond LEO, they can also have a negative
impact on space exploration. This can manifest as increased
microbial pathogenicity, horizontal gene transfer (HGT) of proble-
matic genes, and biofilm formation which have direct effects on
crew health and spacecraft integrity. Understanding how
microbes respond to the space environment, will allow for
mitigation strategies to be developed and implemented, to
ensure successful long-duration space exploration.

Pathogenicity
Several studies have demonstrated that the conditions and stress
of spaceflight can enhance microbial virulence or pathogenicity,
as has been observed with many human-associated pathogens
either grown or isolated on the ISS and/or in simulated
microgravity conditions. Examples include Klebsiella pneumonia354,
P. aeruginosa355, Salmonella enterica serovar Typhimurium356,357,
Serratia marcescens358, enterotoxigenic E. coli359, and Aspergillus
fumigatus360. The presence of microorganisms with heightened
virulence could increase the risk of crewmembers contracting
infections, even more problematic due dysregulated immunity
during spaceflight179. S. typhimurium grown under modeled
microgravity (MMG)356 and in spaceflight357 showed increased
virulence compared to ground controls as demonstrated by an
increased mortality rate in a murine infection model. Similarly, S.
marcescens358 and the pathogenic fungi, Aspergillus fumigatus360,
grown on the ISS or in simulated microgravity exhibited enhanced

virulence compared to terrestrial strains and were more lethal in a
Drosophila and zebrafish model, respectively. The specific
mechanism responsible for increased microbial virulence in space
conditions is still under investigation but genes with altered
expression in-flight may contribute to this virulence response.
These include biofilm-associated genes which were found to be
upregulated in S. typhimurium (e.g., wca/wza genes for colanic
acid synthesis, ompA, fimH) and bacterial motility genes which
were downregulated361. In addition, transcriptional, and proteo-
mic analysis of P. aeruginosa identified genes that were
upregulated in spaceflight including virulence- and adhesin-
associated lectin genes (lecA and lecB) and rhlA which is involved
in biosurfactant production355. However, the most common factor
contributing to space-induced virulence seems to be transcrip-
tional regulation by Hfq, the expression of which was shown to be
decreased under both low shear modeled microgravity (LSMMG)
and spaceflight conditions in S. typhimurium361,362 and P.
aeruginosa355,363. Hfq is an RNA chaperone and global transcrip-
tional regulator responsible for controlling the expression of a
large array of genes and is necessary for the virulence of several
bacterial pathogens355. Consistent with previous studies, hfq was
found to be downregulated in S. aureus grown in LSMMG,
however, unlike previous studies the virulence potential was
reduced364.
Conversely, some studies have concluded that while micro-

organisms with pathogenic potential are present in these space
environments, spaceflight conditions do not lead to increased
virulence or microbial characteristics that would directly impact
crew health365–367. For example, using a macrophage infection
assay, O’Rourke et al. found that there was no significant
difference in the virulence of Burkholderia species isolated from
the ISS compared to Earth controls368. In addition, investigation of
four common clinical pathogens, Listeria monocytogenes,
methicillin-resistant S. aureus, Enterococcus faecalis, and C. albicans
revealed that they were less virulent in space regarding their
ability to kill Caenorhabditis elegans nematodes369. Similar conclu-
sions were drawn in the ISS experiment EXTREMOPHILES, where
sequencing analysis and physiological tests were performed on
microbial communities from several surfaces aboard the space-
craft370. Researchers proposed that while the ISS environment
selects for bacteria with more natural resistance and tolerance to
extreme conditions, it does not induce genetic or phenotypic
changes that result in more extremophilic, or antibiotic resistant
bacteria compared to a built, enclosed environment on Earth370.
Indeed, a pan-genomic analysis of microbes from the ISS and built
environments on Earth found that the antimicrobial resistance
(AMR) genes present in ISS samples were also present in control
samples, and that functional changes common to built environ-
ments do not have a direct impact on astronaut health371.
Collectively, these studies demonstrate the impact of spaceflight
on individual pathogenic microbes in built environments and, for
many, it remains to be determined if the virulence phenotype
depicted in their models will directly translate to mixed bacterial
populations or lead to enhanced pathogenicity in humans.
Therefore, assessing the microbiome within the host and
continuing to elucidate the mechanism involved in potential
spaceflight-enhanced virulence will be necessary. Although there
is some debate regarding the increased pathogenicity of microbial
populations in space, there is evidence of indirect health concerns
caused by harmful biofilm formation370.

Biofilms
Microorganisms in the space environment, as on Earth, can exist in
a planktonic (freely suspended) state, but more commonly form
robust biofilms as a tactic for growth and survival. A biofilm is an
assemblage of surface-associated microbial cells surrounded by an
extracellular matrix of polysaccharides, extracellular DNA (eDNA),
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proteins, lipids, and other components, with a defined architec-
ture372,373. Biofilm-associated organisms differ from their plank-
tonic counterparts with respect to the genes that are transcribed,
proteins that are translated and growth rate372. Although most
bacterial biofilms are harmless, some threaten human health and
safety and can be difficult to eradicate due to increased resistance
to the immune system’s defenses, UV radiation, extreme
temperatures, pH, high salinity, high pressure, limited nutrients,
and various antimicrobials374,375.
Environmental stressors are known to induce biofilm forma-

tion374 and spaceflight is one such stressor. The impact of
microgravity on biofilm formation was investigated for the first-
time using P. aeruginosa376, and later during two NASA-funded
studies, Micro-2 and Micro-2A377. In these NASA studies, P.
aeruginosa grown on the ISS displayed different biofilm char-
acteristics compared to ground controls such as an increased
number of viable cells, biomass, and thickness and a novel
column-and-canopy shaped architecture377. However, this novel
architecture was only observed in biofilms formed by motile
bacteria, as non-motile strains produced flat structures similar to
those seen with the ground controls377. In another early biofilm
investigation experiment conducted in space, Burkholderia cepacia
was grown in sterile water, tryptic soy broth (TSB), and an iodine
solution (a disinfectant), for six days on stainless-steel coupons378.
Results showed that bacteria grown in space, in sterile water, had
a biofilm plate count (measured as CFU/m2) five times larger
compared to ground controls, however, the space grown TSB
population was one quarter of that on Earth378. Those grown in
the iodine solution in space, also had a higher biofilm growth
compared to the ground controls, suggesting increased resistance
to disinfectants during spaceflight378. In addition, spaceflight
conditions have been demonstrated to upregulate gene expres-
sion for the production of extracellular matrix proteins leading to
enhanced cell aggregation compared to ground controls in C.
albicans361. Differential expression of genes related to motility,
which is important for the formation of biofilms, has also been
observed in flight conditions379.

Biofilms and biodeterioration. Microbially influenced corrosion
(MIC), refers to the deterioration of metals and nonmetallic
materials due to microbial activity, most often due to biofilms. As
biofilms increase in quantity more microbial-surface reactions
occur, enhancing structural and/or functional damage, causing
accelerated biocorrosion380.
In a recent Microbial Tracking study (MT-1) of the ISS, the

bacterial bioburden quantified from various surfaces was as high
as 109 CFU/m2381. Some of the biofilm-forming microorganisms
that were identified, Methylobacterium, Sphingomonas, Bacillus,
Penicillium, and Aspergillus have been implicated in MIC on
Earth382–385 with Bacillus polymira, Penicillium rubens and Aspergil-
lus sp. responsible for progressive destruction of a navigation
window on board Mir386. Sphingomonas sp. and Methylobacterium
sp. have not only been detected on surfaces but also in portable
drinking water on the ISS387. Over the course of 15 years (from its
launch in 1986 to 2001), 234 species of bacteria and fungi were
identified onboard the MIR space station, with many exhibiting
potential polymer biodegradation properties388.
Biofilm growth has been observed in the Soviet/Russian (Salyuts

and Mir), American (Skylab), and International (ISS) Space Stations.
Aboard spacecraft, biofilms can jeopardize vital equipment and
threaten astronaut health by corroding surfaces or clogging life-
support systems including air and water purification systems,
spacesuits, navigation windows and radiators368,389–392. Most
notable on the ISS, is the microbial contamination and biofilm
formation that occurs in the wastewater tank of the Water
Recovery System (WRS), which is a part of the Environmental
Control and Life Support System (ECLSS) and used to process
wastewater from various sources (i.e., urine, cabin condensate)

into potable water for crew and other functions393. For future
planned missions beyond LEO to the Moon and Mars, resupplying
spare parts or support materials to repair the listed spaceflight
systems would be impractical as missions could be in the order of
years, in the case of a Mars missions, thus various strategies to
control biofilms, especially in critical life support systems are
essential394. Ways to detect, monitor and control biofilms are
being explored, such as the current spaceflight BAC (Bacterial
Adhesion and Corrosion) study. The aim of this study is to identify
bacterial genes relevant to biofilm growth in space, examine
whether the formed biofilms corrode stainless steel surfaces
mimicking those in the ISS water system, and determine whether
silver-based disinfectants can prevent or control extensive biofilm
formation.

Biofilms and astronaut health. Biofilm formation is an important
characteristic in the infectious disease process of microorganisms.
It has been demonstrated that bacteria can genetically and
physically modify their tolerances to LEO conditions, with one
such mechanism being biofilm formation395–397. Human opportu-
nistic pathogens that form or increase biofilms under simulated
microgravity conditions or when grown on the ISS include E. coli,
S. typhimurium, P. aeruginosa and Micrococcus luteus379,398. It has
also been observed that many species of bacteria and fungi
become more antibiotic resistant and pathogenic when exposed
or grown in spaceflight conditions174. In cases of S. typhimurium17

and P. aeruginosa355, the observed increased virulence (discussed
earlier in this review) was attributed to molecular and phenotypic
changes consistent with biofilm formation. In the case of Klebsiella
pneumoniae grown aboard the Shenzhou VIII spacecraft, the
enhanced antibiotic resistance was associated with adaptations
related to biofilm formation354,399. As biofilm formation can
increase the risk of human illnesses, through harder-to-treat
infections, biofilm properties under space conditions need to be
well understood to enable safe, long-duration, human space
missions. This is even more imperative considering the immune
dysregulation of astronauts and lower efficacy of pharmaceuticals
during spaceflight174.

Positive impact of biofilms. While biofilms can be detrimental to
astronaut health and structural stability, they can be beneficial in
areas such as plant protection, bioremediation, wastewater
treatment, and corrosion inhibition, amongst others400. Thus,
strategies for manipulating biofilms should not focus on complete
eradication, but rather regulation, to promote the growth of
beneficial ones while inhibiting the growth of harmful ones400.
These beneficial applications of biofilms may also be extended to
spaceflight. Ichikawa et al. developed a long-term life support
system that uses an electrochemically activated biofilm reactor401.
This system was tested for the removal of nitrate produced from
biological nitrification and is an important process to allow for
long-term survival of aquatic organisms in a closed system401.
Results from this biofilm-electrode reactor study showed that
neither ammonia nor nitrite accumulated, and nitrate could be
suppressed to about 10 ppm401. Biofilms can also provide insight
into how humans tolerate spaceflight. Biological dosimetry is an
internationally approved method to perform an exposure assess-
ment following a suspected radiation overexposure. In contrast to
physical methods, which measure the actual dose, biological
dosimeters measure dose effects, at the cellular level, when
assessing the impact of radiation exposure on humans402. In the
BIODOS project, four DNA-based biological dosimeters (phage T7,
uracil thin layer, spores, and biofilms) were validated for their
effectiveness in determining the biological hazards of environ-
mental UV exposure (i.e., sunlight), and were shown to be reliable
field dosimeters403. This same biofilm dosimeter was then used in
a study by Rettberg et al. to determine the biological effectiveness
of the UV radiation climate at different locations in the space
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station, with the aim of ensuring that astronauts had enough UVB
to synthesize vitamin D404. Conclusions from this study showed
that the amount of UV radiation inside the station was not
sufficient for an adequate supply of vitamin D and that specialized
UV lamps were needed to maintain healthy levels of Vitamin D for
astronaut health404. Overall, more work on biofilm applications for
spaceflight is needed to tease out the benefits biofilms may offer,
while reducing any harmful properties.

Horizontal gene transfer
The ability for bacteria to survive or even thrive in the spaceflight
environment, with potentially increased pathogenicity and biofilm
formation, may be attributed to DNA transfer. Horizontal gene
transfer (HGT), also known as lateral gene transfer, is the
movement of genetic material from one organism to another by
means other than sexual reproduction or vertical transfer from a
parent cell. This typically occurs through one of three main
mechanisms: direct contact of microbial cells by a pilus (i.e.,
conjugation), natural DNA uptake from the environment (i.e.,
transformation), or introduction by bacteriophages (i.e., transduc-
tion)405–407. More recently, gene transfer agents and membrane
vesicles are being recognized for their contributions to HGT as
well408. HGT is central to microbial evolution because it allows
microorganisms to acquire novel genetic material, which may
confer a fitness advantage to adapt to or thrive within a specific
environment22,409–411.

Prevalence of HGT in the spaceflight environment. In the sealed
spaceflight environment, bacteria must adapt to extreme condi-
tions including microgravity and cosmic radiation412, which could
have an impact on the prevalence of genetic transfer. The three
main mechanisms of HGT (transduction, transformation, and
conjugation) were first investigated for their occurrence in space
by Ciferri et al. during the Spacelab D1 mission (STS-61-A, 1986)413.
They discovered no significant difference in transduction, incon-
clusive transformation results, and increased transmission of
antibiotic resistance genes by conjugation in E. coli exposed to
microgravity413. It was postulated that this increase in conjugation
frequency could be due to a decrease in mating pair disruptions in
microgravity compared to Earth gravity, as continuous cell-to-cell
contact is required for conjugation to occur. Another spaceflight
experiment was performed on the Discovery Mission (STS-63)
where researchers concluded that transformation efficiency to E.
coli was decreased in microgravity414. Later, during the Soyuz
Mission 8S on the ISS, the Mobilisatsia/Plasmida experiment
examined plasmid-mediated conjugation through triparental
mating of both Gram-positive and Gram-negative bacteria415.
They found that conjugation was increased in experiments
between Bacillus thuringiensis strains (Gram-positive), while no
trends were observed in conjugation experiments from E. coli to C.
metallidurans (Gram-negative)415. This increase in conjugation
efficiency could be attributed to the mechanistic differences
between Gram-positive and Gram-negative conjugation, as Gram-
positive bacteria facilitate contact between donor and recipient
cells through surface adhesins rather than conjugative pili416.
However, authors caution the drawing of conclusions due to
failure to obtain transconjugants in some replicates of ground
controls. Conversely, conjugation experiments performed using
the same Gram-positive species (B. thuringiensis) in simulated
microgravity showed that there was no significant difference in
plasmid transfer frequency for a plasmid mobilizing itself (cis) or
mobilizing a separate plasmid (trans) compared to standard
laboratory conditions417. Most recently, Urbaniak et al. tracked
HGT of two antimicrobial resistance (AMR) genes by co-culturing
of two species, Acinetobacter pittii and S. aureus, isolated from the
ISS as part of the Microbial-1 tracking study381. The results
indicated an approximately 100-fold increase of HGT in simulated

microgravity compared to Earth gravity controls (1-g)418. Com-
bined, these results indicate that HGT occurs in spaceflight
conditions within and between Gram-negative and Gram-positive
bacteria and is typically not hampered, and is more often
increased, by spaceflight conditions.

HGT and astronaut health. The human gut houses a diverse
microbial population with ecologically favorable conditions for
HGT given its continuous supply of nutrients and consistent
environmental conditions (e.g., temperature, pH)14. Phylogeny-
based research suggests that over the course of their evolution,
more than half of total genes in the genomes of human-
associated microbiota were introduced by HGT419. While HGT is a
normal occurrence within the human microbiome, an increased
number of transfer events passing AMR genes from commensal
bacteria to opportunistic pathogens during spaceflight could
cause changes in these microbial communities175. These transfer
events have been investigated in Staphylococcus epidermidis, a
bacterium normally present in the human epithelial microbiome,
which harbors the methicillin resistance gene mecA on a mobile
genetic element. HGT was found to be an important factor for the
acquisition of mecA by the pathogen S. aureus, leading to
methicillin-resistant S. aureus (MRSA)420,421. Recent research has
also demonstrated the transfer of AMR and virulence-associated
genes from commensal E. coli to pathogenic E. coli422. The transfer
of AMR genes can cause increased bacterial resistance and
virulence, which could have significant health implications423,424

for astronauts due to their dysregulated immunity on long-
duration space missions425. Numerous studies have shown that
HGT is the common mechanism by which AMR genes are
disseminated within an environment, leading to the emergence
of multi-drug resistant bacteria426–428, which limits treatment
options for bacterial infections.
Some research has proposed that the increased virulence or

pathogenicity observed in some organisms grown under space-
flight conditions is attributed to possible increased HGT in
spaceflight conditions357,429,430. In a study comparing similar
species from two extreme built environments, one on Earth
(Concordia Research Station in Antarctica) and one in space (ISS),
it was observed that 76% of the isolates from the ISS were
resistant to one or more antibiotics tested compared to only 44%
of the Concordia isolates429. This increased resistance amongst the
ISS isolates could be attributed to the higher number of mobile
genetic elements (involved in HGT) within their genomes
compared to the Antarctic strains429. The reason for this increase
in mobile genetic elements is unclear but it could be a response to
the unique stressors of the space environment. Further, in a study
published by Urbaniak et al. examining the ISS ‘resistome’, whole
genome sequencing revealed AMR gene clusters in Enterobacter
bugandensis isolated from the waste and hygiene compartment
on the ISS. Further examination showed that these isolates shared
AMR gene clusters with known pathogens from different genera
which were not present in any Enterobacter species isolated on
Earth430. The researchers proposed that these AMR genes may
have been acquired through HGT, but further analysis is necessary
to conclude this with certainty. Changes in HGT-associated gene
expression were also identified in ISS-derived isolates of S.
typhimurium during Space Shuttle mission STS-115, which
exhibited enhanced virulence and increased biofilm formation in
a mouse model compared to the ground control357. The
expression of hfq, an RNA chaperone and negative regulator of
the F plasmid-encoded tra genes, was decreased in spaceflight.
TraJ is an activator of the tra operon, and hfq has been shown to
specifically repress traJ expression by destabilizing its mRNA431. As
a result, several tra genes were upregulated in response to
spaceflight357. Mating assays performed in an hfq mutant showed
an increase in protein levels of TraJ confirmed by immunoblotting
as well as increased conjugation efficiency compared to wild-type
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controls431. Due to the multiple AMR genes found on the
environmental surfaces of the ISS430 and possible enhanced HGT
activity during spaceflight, further studies into HGT and the effect
on crew health are is important to understand for the develop-
ment of mitigation strategies432–434. In addition, further elucida-
tion of differentially expressed genes and their effect on HGT
could identify novel gene targets for modulating or reducing HGT
in the space environment.

HGT and biofilms. As previously discussed, biofilms can be
detrimental to spacecraft and astronaut health; thus, under-
standing the factors that can influence biofilm formation will be
imperative for predicting, preventing, and mitigating spacecraft
contamination. HGT may contribute to biofilms as their formation
can be induced by conjugative plasmids that express factors to
enhance cell-to-cell contact and pilus formation. Conjugative pili
can act as adhesion factors as demonstrated by Ghigo who
monitored biofilm formation on Pyrex slides submerged in
cultures of E. coli K12. They observed that strains carrying a
conjugative F plasmid (F+) formed thick biofilms after one day
(2 × 1010 CFU/cm2), while plasmid-free strains (F−) only formed
microcolonies (8 × 105 CFU/cm2)435. Conjugative pili specifically
were shown to be a contributing factor to biofilm formation as
strains carrying plasmids with mutations in the pilin gene, traA,
were unable to form biofilms435. Reisner et al. confirmed Ghigo’s
findings as the presence of the F plasmid pOX38 in E. coli led to
the formation of mushroom-shaped biofilms with increased
biomass, surface coverage and thickness compared to F-
controls436. To further analyze the contribution of the pilus to
this phenotype, the authors created plasmid mutants for several of
the genes required for pilus synthesis: traQ, traX, traD, traS, and
traT436. Mutants involved in pilus assembly and modification (i.e.,
traQ, traX) displayed a weak biofilm phenotype similar to the
plasmid-free strain (traQ) or decreased biomass and thickness
(traX), while those involved in DNA transfer (i.e., traD) displayed
rapid confluent growth and tower-like structures436. In a different
study performed with 403 natural E. coli isolates researchers
observed biofilm formation in 56 isolates and of those, 89%
contained conjugative plasmids437. These recipients of conjuga-
tive plasmids were able to induce biofilms to a greater extent than
their plasmid-free controls437. Finally, one study validated that
conjugative plasmids enhanced biofilm formation but concluded
that this did not directly correlate with conjugation frequency for
all plasmids tested, suggesting other factors may be involved438.
Other studies suggest that conjugative plasmid-encoded

fimbriae, biofilm-associated pili, and cell wall-anchoring proteins
can also increase biofilm formation. Type III fimbriae encoded as
accessory proteins on conjugative plasmids have been demon-
strated to mediate cell–cell and cell-surface adhesion439, as well as
increased biofilm formation440 in K. pneumoniae441. Further
evidence of this was demonstrated in a uropathogenic strain of
E. coli where Tn5 mutagenesis was used to identify biofilm-
deficient mutants442. All Tn5 insertions were found to be within
the type III fimbriae genes (mrkABCDF) encoded on the
conjugative plasmid pMAS2027. This suggests that type III
fimbriae were necessary for biofilm formation which was
confirmed when this locus was cloned into biofilm-deficient
mutants and was able to restore biofilm formation442.
When analyzed in a space environment it appears that pili and

fimbriae contribute to increased biofilm formation in the short
term but decreased biofilm formation in the long term. In a
spaceflight study, researchers compared biofilm formation of
Acinetobacter schindleri over a short duration (15 days) and long-
duration (64 days) from the Shenzhou-10 spacecraft and
Tiangong-2 space lab, respectively443. They observed reduced
biofilm formation after 64 days and following transcriptional
analysis proposed that this reduction was potentially due to
downregulation of the pil and algR genes associated with

conjugative pili and alginate biosynthesis, or upregulation of
genes involved in metal iron binding (as available iron increases
biofilm formation)443. In another study analyzing Proteus mirabilis
biofilm formation following short-term or long-term SMG,
researchers found that long-term exposure resulted in down-
regulation of genes associated with fimbriae, impeding adhesion,
and ultimately decreasing biofilm formation444.
The rate of HGT amongst bacterial communities in biofilms is

increased as it contains a diversity of bacteria, the structured
extracellular matrix (ECM) provides the ideal environment to
stabilize mating pair formation and bacterial contact for genetic
exchange, and eDNA accumulates within the ECM allowing for
natural transformation435,445–447. Lécuyer et al. analyzed the
conjugative transfer of an integrative and conjugative element
(ICE) between B. subtilis strains on normal media compared to
biofilm-inducing media. Results indicated that conjugative transfer
was increased by 100-fold and 10,000-fold on biofilm-inducing
media using minimal media and rich media, respectively446.
Conjugation experiments performed between S. aureus strains
using donors harboring a mobilizable plasmid and the multi-drug
resistant conjugative plasmid, pGO1 yielded similar results448.
Conjugation was performed with standard filter mating or a
cellulose disk static biofilm model and conjugation frequency in
the biofilm-promoting conditions was found to be ~16,000-fold
higher than in standard conditions448. Overall, HGT promotes
biofilm formation which, in turn, promotes HGT transfer, and both
can contribute to increased bacterial pathogenicity (Fig. 4). If HGT
is increased under space conditions which can consequently lead
to the production of more biofilms, the effect that biofilms have
on spacecraft integrity and function could be even more severe
during long-duration space travel if this feedback loop goes
uninterrupted.

Harnessing HGT as a tool for genetic engineering. Although HGT
has the potential to negatively impact astronaut health and
jeopardize spacecraft during long-duration space missions, con-
jugation machinery can also be harnessed as a tool for the
development of novel mitigation strategies. Conjugation has been
demonstrated within and between many species of Gram-
negative and Gram-positive bacteria in a laboratory setting, and
from bacteria to eukaryotic cells. Conjugative tool development
for many of these species could have implications for their use in
the space environment including those developed to target
opportunistic pathogens (e.g., Enterococcus, Listeria, Staphylococ-
cus449, Streptomyces450, and S. enterica451), or those that could be
used to engineer useful strains such as probiotic candidates (e.g.,
Bacillus449, Bifidobacterium452 and Lactobacillus453) or extremophi-
lic microbes (e.g., D. radiodurans454, yeast455 or algae267,268). When
coupled with CRISPR/Cas technologies conjugation can be used
for the modulation of microbiomes and as a method for targeted
eradication of human pathogens on Earth. This has been
demonstrated using a cis- and trans- conjugative plasmid
encoding the I-TevI nuclease domain fused to Streptococcus
pyogenes or S. aureus Cas9 (TevSpCas9 or TevSaCas9) targeting S.
enterica451. This study demonstrated S. enterica killing efficiencies
ranging from 1 to 100% following conjugation using 65 single or
multiplexed sgRNAs, allowing for the ability to modulate bacterial
populations based on the chosen sgRNA. Another study using a
similar strategy and a trans-conjugative system has demonstrated
specific bacterial killing and targeting of a plasmid-born carbape-
nem resistance gene in E. coli456. Other Cas nucleases can be used
to target pathogens as well, including CRISPR/Cas13a-based
antibacterial nucleocapsids, which have been shown to kill
resistant E. coli and S. aureus species by targeting AMR genes457.
CRISPR/Cas technologies can also be used to inhibit conjugation in
human pathogens458,459, including species that have been
isolated from the ISS such as K. pneumonia460, E. faecalis461, and
Staphylococcus462. The biotechnological applications of CRISPR/
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Cas systems in space are extensive, from using Cas proteins to
understand the biological impact of microgravity to detecting the
presence of pathogenic bacteria or viruses, as demonstrated on
Earth using Cas12 or Cas13 for SARS-CoV-2 RNA detection463–465.
The use of CRISPR/Cas systems for these in-space applications is
feasible as genome editing using a CRISPR-based assay has been
performed in S. cerevisiae onboard the ISS466. The mitigation
strategies discussed here will require further testing and adapta-
tion for space which could be carried out in synthetic human gut
microbiomes467 or in simulated spaceflight biofilms394. However,
these results indicate that harnessing the power of conjugation
and CRISPR/Cas technologies could provide a promising strategy
for detection of pathogenic bacteria, mitigation of HGT and
modulation of human and environmental microbiomes in
spacecraft.

Mitigation strategies
To minimize the health risks associated with extended spaceflight,
it is critical that methods for preventing and treating spaceflight-
induced illnesses be developed before astronauts embark upon
long-duration space missions. Specifically, increased HGT, patho-
genicity and biofilm formation by microorganisms in the space

environment presents the need for highly effective antimicrobials
and targeted solutions for use on spacecraft. Aside from
traditional antibiotics468, the use of live engineered organisms,
and the use of the conjugation and CRISPR-based strategies
discussed above, other mitigation strategies have been investi-
gated to inhibit HGT and the development of biofilms394. One
well-studied method is antibacterial photodynamic inactivation
employing the use of a photoactive compound which accumu-
lates in target bacteria where it is illuminated to produce a
cytotoxic reaction with oxygen resulting in cellular damage and
bacterial death (reviewed in ref. 469). Additional examples of
mitigation strategies include the use of specialized material
coatings or surfaces (e.g., copper-based antimicrobial sur-
faces470,471, silver and ruthenium bio-deterrent surfaces472),
engineered lantibiotics473, chemical water treatment, UV light,
sound waves, and phenols474. Other promising antimicrobial
materials include AGXX472, which was shown to prevent the
growth of Staphylococcus and Enterococcus pathogens on the ISS,
and sterilization using cold atmospheric plasma441. Some poten-
tial antibiofilm coating issues that need to be explored include the
longevity and chemical stability of the coatings475. While several
coatings give extremely promising results in the short term, their
chemical and physical stability may diminish over time476.

Fig. 4 Interplay between bacterial HGT, biofilms, and virulence in space. In microgravity, bacterial HGT can increase cell–cell adhesion, and
production of eDNA and extracellular polysaccharides contributing to increased biofilm formation. Reciprocally, biofilms promote HGT as they
contain high microbial diversity and an ECM structure allowing for increased cell aggregation, stable mating pair formation and eDNA
accumulation. Both HGT and biofilms increase bacterial virulence through cellular adhesion and dissemination of antimicrobial resistance, and
increased biomass and resistance to disinfectants, respectively. Created with BioRender.com.
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Regarding long-term space exploration, replenishing these anti-
microbial coatings will prove challenging. The use of plant-based
extracts is thus gaining in popularity for their antimicrobial and
antibiofilm properties along with the added benefit of being able
to harvest the necessary compounds during spaceflight, as
needed390.

FUTURE OUTLOOK AND SUMMARY
Within the next decade, great strides will be made in space
exploration with the combined efforts of NASA and other space
agencies to reach the Moon and Mars, as well as the expansion of
commercialized spaceflight. The Artemis missions will work
towards establishing a lunar base camp by 2025 with the
purpose of utilizing the Moon as a precursor to Mars exploration.
These missions will involve long-duration spaceflight and
prolonged extraterrestrial occupation, requiring further explora-
tion of health risks and resource sustainability than what was
needed for the decades spent in LEO on the ISS. This review has
discussed the role of microbes and their beneficial or detrimental
impacts on long-duration space missions as demonstrated in
Earth-based simulated space environments or experiments
conducted in spaceflight. Microbes heavily contribute to the
success of our ecosystem on Earth and can therefore be
repurposed for the space environment to help generate a
sustainable habitat. We have summarized the advantageous
properties of microbes in plant cultivation, wastewater treatment,
solid and liquid waste reuse, and atmospheric revitalization. This
review has also considered the use of microbial fuel cells to
generate energy from waste, plant decay, and solar light
conversion. Although more research is needed for efficient
energy conversion in the space environment, we present
microbial fuel cells as an ideal and possible future alternative
for energy generation. We also examined the advantages of
bioengineered microbes for in-flight therapeutics, increased
production of nutrients and oxygen, and the creation or recycling
of infrastructure materials. Most of these microbial technologies
have been successfully demonstrated on Earth, but as suggested,
should be further tested, and applied in the space environment.
Microbes are ideal candidates to aid in human survival during
long-term space travel due to their many beneficial character-
istics, ease of manipulation, and microscopic size, allowing them
to be easily stowed without the concern of added weight. In
terms of health and safety risks, the possibility of increased
microbial virulence and pathogenicity in spaceflight was dis-
cussed, as well as the detrimental effects of increased HGT and
biofilm formation on astronaut health and equipment integrity.
Suggestions were also made regarding mitigation strategies for
further investigation, including antimicrobial metallic surface
materials and coatings that prevent increased HGT or biofilm
formation. This review has presented the vast contributions that
microbes can make towards future crewed missions, human
habitability and sustainability and hopefully encourages more
space-related microbial research interconnected with technolo-
gical development, to continue to safely advance deep space
exploration in the upcoming decade.
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