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Viability of internal comparisons for epidemiological research
in the US astronaut corps
Robert J. Reynolds 1, Steven M. Day 1 and Lakshmi Kanikkannan 2✉

This study aims to determine whether astronauts who have not flown in space can provide an unbiased comparison to astronauts
who have flown in space when analyzing long-term health outcomes such as incidence of chronic disease and mortality. Various
propensity score methods failed to achieve good balance between groups, demonstrating that even with sophisticated rebalancing
methods the group of non-flight astronauts cannot be demonstrated to be an unbiased comparison group for examining the effect
of the hazards of spaceflight on incidence and mortality from chronic diseases.
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INTRODUCTION
An ongoing challenge for health surveillance among US
astronauts is the search for suitable comparison groups. Ironically,
this is challenging primarily because astronauts are a remarkably
healthy occupational cohort. These results have largely been
attributed to the Healthy Worker Effect (HWE), a result of selection
and/or survival biases, whereby only initially healthy individuals
can join the workforce, and only healthy individuals remain in the
workforce over time1.
Both the selection bias and survival bias aspects of the HWE are

present among US astronauts. The selection bias is intentional:
applicants to the US Astronaut Corps must pass rigorous medical
selection criteria, which are nearly unparalleled in other occupa-
tions. The survival bias stems from the fact that astronauts must
maintain health and fitness over the course of their careers as a
part of flight readiness. Toward this end, they have access to
dedicated astronaut fitness facilities, Astronaut Strength, Con-
ditioning, and Rehabilitation (ASCR) trainers, as well as individua-
lized medical monitoring and care from aerospace medicine
physicians and nurses, all at Johnson Space Center in Houston, TX.
In addition to the HWE, US astronauts also benefit from being of

moderate-to-high socio-economic status (SES). The pay range for
astronauts is over the national median income, and nearly 85%
have post-graduate education. Research in the general population
has repeatedly demonstrated the survival benefits of both high
SES and high levels of education2.
In spite of these advantages, it is possible that the unique

occupational exposures that come with being an astronaut –
particularly exposure to the hazards of spaceflight – may be
deleterious to human health. Thus, astronauts who traveled in
space may not be as healthy as they might have been had they
never gone to space. In essence, the competing forces of the HWE
and the unique occupational exposures of spaceflight make it
challenging to find a comparison cohort to adequately represent
astronauts for the purpose of calculating comparative measures of
long-term morbidity and mortality.
Published studies of Astronaut mortality and chronic disease

incidence have most often compared rates among astronauts to
those of the US general population, but astronauts have also been
compared to general population rates adjusted for smoking

status3, a matched cohort of civil servants at Johnson Space
Center4, to Soviet-era and Russian Federation cosmonauts5, as well
as to professional athletes6. However, it has been suggested by
the scientific community that a natural comparison group might
be a subgroup of astronauts themselves, i.e., those who either
were selected to the US Astronaut Corps and completed their
training but retired from the National Aeronautics and Space
Administration (NASA) before completing a spaceflight or are still
awaiting a first flight. Such individuals would have the same
medical selection criteria imposed upon them, access to the same
health maintenance resources from NASA while still employed,
and the same SES advantages. Meanwhile, a key difference would
be the absence of exposure to space travel. Given these
similarities and this difference, this is ostensibly a good
comparison. However, while this approach could solve many of
the selection bias issues, it could introduce a different set of
potential confounders because spaceflight exposure is not
randomized. Confounding by indication describes the phenom-
enon whereby the differential assignment of exposure creates
classical confounding: the same factors that determine spaceflight
exposure status also are causal factors for health outcomes of
interest.
In this exploratory research, we compared those astronauts who

retired before achieving their first spaceflight (“no-flight” astro-
nauts) and those who completed at least 1 spaceflight (“flight”
astronauts). We fit two different propensity score models to
predict spaceflight exposure status, and then used two different
types of propensity score weightings to attempt to balance the
flight and no-flight groups. For additional comparison, we also
performed propensity score matching under two different
matching algorithms. We use the standardized mean difference
(SMD) score for covariates as the metric of balance between
groups.
Summary statistics and the SMDs for the study variables are

shown in Table 1, stratified by flight status. The variables we used
here are some of those that are predictive of chronic disease
incidence and mortality, as well as potentially related to career
decisions such as retiring from the Astronaut Corps before taking
a space flight. Variables are considered to be balanced between
groups when the SMD is less than or equal to 0.1. As such, Table 1
demonstrates that the flight and no-flight groups are balanced on
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only two characteristics: sex ratio and percentage of astronauts
with a history of military service. All other SMDs are greater than
0.1. In particular, educational attainment is severely unbalanced,
with 78% of the no-flight group having a doctoral degree and the
remaining 22% having a master’s degree, versus only 32% having
a doctoral degree, 53% a master’s degree and 15% having only a
bachelor’s degree among flight astronauts. Also of note is the 10-
year difference in mean year of follow-up start between groups.
We first fit a conventional logistic regression model predicting

no-flight status, the results of which are shown in Table 2. This
standard logistic model largely agreed with the differences in
baseline covariates in Table 1 in that the most clearly related
factor influencing the risk of retiring before completing a
spaceflight was education level, with those who retired before
taking a space flight being nearly 15 times more likely to have
earned a doctoral degree (MD, PhD, or equivalent). The model also
suggested that the risk of retirement before space flight was lower
for astronauts selected later in NASA’s history, those selected at
older ages, White astronauts, and pilots, while risk of retirement
before spaceflight was increased for males and those with a
history of military service. However, it should be remembered that
the purpose of this model is not to draw inferences about what
causes pre-flight retirement but rather to estimate a propensity
score for each astronaut, making the interpretation of this model
of only secondary interest.
Using the model to compute propensity scores, we observed

that the distribution of predicted propensity scores was almost
entirely less than 0.3. Approximately half of the scores were less
than 0.01, meaning most astronauts are estimated to have a 1%
chance or less of being a no-flight astronaut. These low probability
estimates may demonstrate a violation of positivity, a primary
assumption of causal inference analysis. Positivity is the assump-
tion that everyone in the sample has a non-zero probability of
being exposed; in this case, exposed to spaceflight. In a typical
epidemiological study this result may cause a researcher to halt
the study and seek a new comparison group, as, philosophically, a
violation of the assumption of positivity means that the non-flight
and flight groups are not counterfactuals of each other and thus
are not comparable. However, here low propensity scores may
also be an artifact of a small sample. Since our goal in this research
is to compare flight and no-flight astronauts, we were willing to
ignore the potential violation of positivity for the sake of fulfilling
the study.

Alternative likelihood formulations exist for logistic regression
analysis that adjust the model for small numbers of events, such
as the small group of no-flight astronauts. One such method is
Firth penalized logistic regression, which adds a term that
increases the effectiveness of the score function and can adjust
in the case of both small and large samples.
The results of the Firth penalized logistic regression model are

also displayed in Table 2. The model is essentially the same as the
standard model, though the ORs are all pulled toward 1.0 in
comparison to the standard model. Figure 1 shows that, though
most propensity scores estimated from this model have been
moved toward the middle (i.e., toward 0.5), the bulk of the scores
are still below 0.3 with many values again near to zero. As before,
for the sake of this demonstration, we proceeded with propensity
weighting and balance assessment between the weighted groups
ignoring this violation.
Table 3 shows the effective samples sizes and SMDs for the

covariates between the flight and no-flight groups under the
various weighting schemes as well as for the matched cohorts.
Under inverse probability of exposure weighting (IPEW) the
effective sample size (ESS) for the standard logistic regression
propensity model was inflated to just under 1000 individuals from
the original sample size of 318. Similarly, the ESS for the Firth
penalized logistic regression using IPEW was just over 670. In
comparison to the SMDs in Table 1, we can see that, irrespective of
the logistic model used to estimate the propensity scores, the
IPEW method worsened the balance in the distribution of most
covariates, as evidenced by larger SMD scores than the
unweighted sample. Thus, it would seem that IPEW is overall a
poor approach, as it threw baseline covariates further out of
balance and gave extreme influence to the small numbers of no-
flight astronauts.

Table 1. Baseline comparison between flight and no-flight astronauts.

Variable Flight (n= 309) No-flight (n= 9) SMD

Study start year (mean) 1991.8 1982.8 0.518

Study start age (mean) 40.7 39.2 0.212

Males (%) 86.0 89.0 0.082

Race/ethnicity (%) 0.451

White 90.6 77.8

Black 4.5 11.1

Hispanic 3.2 11.1

Other 1.6 0.0

Highest Education (%) 1.104

Bachelor 15.2 0.0

Master 52.8 22.2

Doctoral 32.0 77.8

Military (%) 70.0 67.0 0.074

Pilot (%) 70.0 56.0 0.283

SMD Standardized Mean Difference.

Table 2. Comparison of propensity score models predicting flight
status.

Standard Logistic Firth penalized
logistic

OR (95% CI) OR (95% CI)

Year of selection 0.93 (0.85, 1.01) 0.94 (0.88, 1.01)

Age at selection 0.92 (0.69, 1.18) 0.94 (0.75, 1.17)

Male 1.62 (0.18, 35.51) 1.33 (0.20, 9.08)

White race 0.16 (0.02, 1.38) 0.19 (0.04, 1.03)

Doctoral degree 14.62 (2.38, 121.37) 12.06 (2.37, 61.41)

Military 6.11 (0.88, 53.72) 4.74 (0.86, 26.15)

Pilot 0.51 (0.06, 3.80) 0.56 (0.09, 3.20)

Fig. 1 Estimated propensity scores for flight and no-flight
astronauts, using a Firth penalized logistic regression model.
The estimated scores show that most astronauts have a low
probability of going to space, which may suggest a violation of the
positivity assumption.
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The models using propensity score overlap weighting (PSOW)
produced better balance with reasonable ESS. Here the ESS was
approximately 15 when using the standard logistic model and
approximately 18 when using the Firth penalized logistic
regression model. The PSOW method using the standard model
brought 5 of the 7 variables into balance, and reduced differences
in the remaining two variables. The PSOW method using the Firth
penalized model performed nearly as well, bringing 4 of 7
variables into balance.
Overall, propensity matching improved balance between the

flight and no-flight groups under both the greedy matching
algorithm and the optimal matching algorithm. While matching
brought better balance than IPEW, it was not as effective at
balancing as PSOW. The greedy and optimal algorithms
performed about equally by balancing the same variable and
having comparable SMDs for the remaining.
Beyond the obvious issue of group sizes, examination of

demographic covariates suggests that there are sizable and
potentially important differences between the flight and no-flight
groups, which would subject any outcome models to an unknown
degree of bias from measured and unmeasured variables. While
simple covariate adjustment in outcome models can remove
confounding in measured factors, it does nothing to address
confounding resulting from unmeasured factors which may be
present in non-randomized exposure groups. For example, in the
context of the occupation of astronauts, there may be many
considerations that lead flight-eligible astronauts to retire from
the Astronaut Corps before ever having the opportunity to
complete a spaceflight. Some examples of these may be minor
health issues that disqualify them from flight eligibility, divergent
career ambitions, or changing family situations. These factors,
unmeasured here, drive the eventual flight status of astronauts
and are reflected by the imbalance in baseline covariates seen in
Table 1. Several of these may also exert causal influence on long-
term health outcomes.
With the luxury of a larger dataset, the potential for successful

propensity analysis would likely improve. Additional astronauts in
the sample – particularly no-flight astronauts – would likely lead to
more reasonable weights in a propensity-weighted analysis or
better matches in the matched analysis. Either of these could, in
turn, lead to better balance and hopefully better control of
confounding. Thus, the conclusion we draw from this research is
that the group of no-flight astronauts is not a valid comparison
group for examining the effect of the hazards of spaceflight on
long-term health outcomes such as the incidence and mortality of
chronic diseases.
This research does not address the potential for flight/no-flight

comparisons for outcomes that may be transient and/or observed
on much shorter timescales, such as physiological or psychological
changes due to spaceflight. However, before attempting to make
flight/no flight comparisons in studies of such other outcomes,
epidemiologists should still carefully weigh the potential for
confounding by indication. The critical question in such instances
remains the same: whether or not the outcome is potentially
confounded by the non-random nature of spaceflight exposure.
As is often the case in research concerning spaceflight, researchers
should consider this on a case-by-case basis, within the context of
the research question to be answered.
Recent literature has demonstrated that the small size of the

Astronaut Corps yields low statistical power in analyses of both
incidence and mortality7,8. Attempting to analyze even smaller
matched sub-groups can only exacerbate this problem. In the
2004 Review of the Longitudinal Study of Astronaut Health, the
Committee on the Longitudinal Study of Astronaut Health at the
Institute of Medicine wrote, “hypothesis-specific comparison
groups will be needed for definitive assessment of specific risks
identified in the astronaut”9. Nearly 20 years later, we believe that
this is still the case.Ta
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As humanity continues to plan for the exploration of Mars in the
coming decades, understanding the long-term health risks from
extended space travel will be more important than ever. Some
useful comparisons have already been identified, more are under
development, and almost surely even more will be needed. We
are confident that with creativity and perseverance, epidemiolo-
gists will meet these challenges and help ensure humanity’s
destiny among the stars.

METHODS
Study population
After removing two astronaut candidates (ASCANs) who did not
complete the astronaut training, the astronaut dataset comprised
348 astronauts, 39 of whom had not completed a space flight.
Subsequent consideration of the data identified three situations
that place astronauts in the non-flight group. The most common
situation – accounting for 20 of the 39 no-flight astronauts – is
that of comparatively recent graduates from astronaut candidacy
who are on active duty and awaiting their first flight assignment.
Second, there were 10 astronauts who died while on active duty
on or before their first spaceflights (9 from vehicular and
spacecraft accidents, and one from cancer). The remaining nine
no-flight astronauts were those who completed their astronaut
training but retired from NASA before receiving a flight
assignment.
Death must be considered a competing risk for pre-flight

retirement among astronauts waiting to complete their first
spaceflights. This means that for flight astronauts, the time from
selection as an astronaut candidate to the first spaceflight is
immortal survival time, or a period in which an astronaut is
guaranteed not to have died because he lived long enough to
receive the exposure of interest and to be counted among the
flight astronauts10. Similarly, for non-flight astronauts, the time
between selection and retirement from NASA is immortal survival
time. This has several important implications for studying health
outcomes as a result of spaceflight exposure: (1) the proper follow-
up period for assessing the effect of spaceflight on mortality

outcomes for flight astronauts begins with their first spaceflight;
(2) the proper follow-up period for no-flight astronauts who
retired from NASA before completing a spaceflight begins with
the date of retirement; (3) astronauts who either are still waiting
for their first flight assignment or who died while waiting for their
first flight assignment should be considered to have an undefined
spaceflight exposure status and should be excluded from analysis.
After exclusion of these 30 no-flight astronauts, there were 318
total astronauts left for analysis, 9 of whom were non-flight
astronauts. Figure 2 summarizes the data inclusion-exclusion
process and the resulting dataset sizes.

Standardized mean differences
We assessed the balance in covariates between the exposure
groups using standardized mean differences (SMD). The SMD for a
particular covariate is defined as the difference in means between
exposure groups, divided by the pooled standard deviation. When
values of the SMD for a particular variable were greater than 0.1
we considered that variable to be imbalanced between groups
and interpreted this as evidence of as possible confounding by
indication11.

Propensity score models
We next fit two propensity score models and used them to
generate two different propensity scores for each astronaut. In
this context, the propensity score represents an estimated
probability of spaceflight exposure derived from a logistic
regression model. The two models were a standard logistic
regression model and a Firth penalized logistic regression model.
The latter model uses a different likelihood - it adds a term that
offsets the first-order term from the expansion of the maximum
likelihood estimation. This increases the effectiveness of the score
function, and the newly added term goes to zero as the sample
size increases, thereby adjusting in the case of both small and
large samples12.
The models included terms for calendar year of selection,

age at selection, sex, race, highest educational attainment

Fig. 2 Data cascade diagram for the study of flight and no-flight astronauts. Of the 350 astronauts originally included for study, 32 were
disqualified for inclusion based on dropping out of the training class, dying before they could take their first flight, or having as-yet
indeterminate flight status. This left 318 astronauts for potential study of long-term health outcomes. Effective sample sizes ranged from a
high of 995.67 astronauts (standard logistic regression propensity model with inverse probability of exposure weighting), to a low of 45
astronauts when performing propensity matching.
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(bachelor’s degree or equivalent, master’s degree, or doctoral
degree), history of military service, and whether or not the
astronaut was a licensed pilot. Because the no-flight group was
much smaller than the flight group, we modeled the
probability of being in the no-flight group in the propensity
score models.

Inverse probability of exposure weighting (IPEW)
Our first approach to rebalancing the data was to use the
propensity score model to generate inverse probability of
exposure weights for each observation13. In this method, exposed
astronauts are assigned a weight of 1/p, and unexposed
astronauts are assigned a weight of 1/(1-p), where p is the
predicted probability of being in the no-flight group obtained
from the propensity score model. In this way, the astronauts who
were very unlikely to be in their actual exposure group are up-
weighted, and those likely to be in their realized exposure group
are down-weighted. This forms a new “pseudo-population” of size
equal to the sum of the weights across all astronauts. This
weighting allows us to re-examine balance in the pseudo-
population and, if appropriate, to use the pseudo-population in
outcome analyses.

Propensity score with overlap weighting (PSOW)
The second form of propensity weighting we used was PSOW14.
This weighting is computed as (1-propensity score) for members
of the treatment group, and simply the propensity score for
members of the comparison group. IPEW is widely used but
extreme propensities in the study population can lead to bias and
unwarranted variance. PSOW is a potential remedy to this
problem, as it down-weights the subjects with extreme propensity
scores.

Propensity score matching
Another approach to rebalancing the exposure groups was to
conduct propensity score matching. In this method, members of
the exposure group are matched to each other according to their
propensity score. We used two different matching algorithms here
in an attempt to obtain the best possible balance from the
matching. First, a nearest-neighbor “greedy” matching was used,
followed by “optimal” matching15; both are commonly used
matching algorithms. Whereas greedy matching takes the best
available match for any given observation as it matches each
observation in turn, optimal matching attempts to make the best
possible set of matches as a whole. These two algorithms often
create divergent matched sets, making it worthwhile to imple-
ment both here for comparison. The propensity score model used
for this matching was the same as the standard logistic regression
used for the propensity score weighting described in the previous
section.
A review of the literature on propensity matching suggested a

ratio of 1 or 2 control subjects to 1 exposed subject is most
efficient for minimizing bias, though a ratio of up to 4:1 is
considered reasonable16,17. As a 2:1 ratio would produce a total
sample size of only 27 astronauts, we selected a ratio of 4:1 here.
The effect of this choice would be to improve precision at some
potential cost of increased bias. Further, as we have only nine
available no-flight astronauts in comparison to 309 flight
astronauts, we again chose to consider the no-flight astronauts
as the “exposed”. This had the effect of guaranteeing that all nine
no-flight astronauts were retained in the matched set, as well as
exactly 36 for the best-matched flight astronauts, for a total
sample size of 45.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data for this study were taken from our database of astronaut biographical and
career details originally compiled from publicly available sources on the internet,
such as astronaut biographies on the NASA website, the NASA Astronaut Fact Book,
and the popular press articles and obituaries18,19. This database has been used
extensively in studies of astronaut morbidity and mortality6,10,20. This database
included information on all US astronauts selected between 1959 and 2017 (NASA
astronaut classes 1–22). As the data were gathered from publicly available sources on
the internet and contained no protected health information, the study was exempt
from institutional review. There are no limitations in accessing the database: for
access or for more information regarding the database, please contact Robert
Reynolds (rreynolds@mortalityresearch.com).
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