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Condensation heat transfer in microgravity conditions
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In the present paper, a thorough review of the experimental and numerical studies dealing with filmwise and dropwise condensation
under microgravity is reported, covering mechanisms both inside tubes and on plain or enhanced surfaces. The gravity effect on the
condensation heat transfer is examined considering the results of studies conducted both in terrestrial environment and in the absence of
gravity. From the literature, it can be inferred that the influence of gravity on the condensation heat transfer inside tubes can be limited
by increasing the mass flux of the operating fluid and, at equal mass flux, by decreasing the channel diameter. There are flow conditions
at which gravity does exert a negligible effect during in-tube condensation: predictive tools for identifying such conditions and for the
evaluation of the condensation heat transfer coefficient are also discussed. With regard to dropwise condensation, if liquid removal
depends on gravity, this prevents its application in low gravity space systems. Alternatively, droplets can be removed by the high vapor
velocity or by passive techniques based on the use of condensing surfaces with wettability gradients or micrometric/nanometric
structuration: these represent an interesting solution for exploiting the benefits of dropwise condensation in terms of heat transfer
enhancement and equipment compactness in microgravitational environments. The experimental investigation of the condensation heat
transfer for long durations in steady-state zero-gravity conditions, such as inside the International Space Station, may compensate the
substantial lack of repeatable experimental data and allow the development of reliable design tools for space applications.
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INTRODUCTION

In recent years, increasing interest has been addressed to the study
of two-phase flow heat transfer in thermal control, thermal
management and life support systems for space applications.
Single-phase heat transfer systems may be progressively replaced
by two-phase counterparts owing to the need of reducing the size
and the weight of thermal management subsystems while meeting
the increasing power requirements and heat dissipation demands
of space aircrafts’. As the spacecraft is under the continuous
influence of varying gravity conditions during its journey to space,
the heat dissipation systems inside space vehicles are required to
operate efficiently in different gravity environments.

During phase change processes such as condensation and flow
boiling, the level and the direction of gravity acceleration strongly
influence the spatial distribution of the liquid and vapor phases,
having different densities®. As gravity is suppressed, a new
balance between inertial, viscous and interfacial forces becomes
effective and the mechanisms governing the interactions between
phases drastically change®*.

Considering filmwise condensation, only limited information is
available for characterizing the fluid flow behavior and the
condensation heat transfer in reduced gravity environments owing
to the limited access to the existing platforms which allow to
reproduce microgravity conditions and the inherent difficulties of
performing experiments in such conditions. Among the available
platforms for microgravity experiments (parabolic flights, drop
towers, sounding rockets, International Space Station), parabolic
flights represent the most widely used due to the affordable cost,
the possibility to install large experimental racks and to interact
manually with them, and the good data repeatability, despite the
low quality of residual gravity (£0.01 gJ). In adiabatic conditions,
several experimental and theoretical studies have been performed
to investigate the effect of the varying gravity level on the two-
phase flow features®™. Such studies were typically carried out in

conventional tubes (inner diameter larger than 10 mm) during air-
water co-current upward annular flows, using parallel wires
conductance probes for the measurement of the liquid film
thickness inside channels®®. The available literature on this topic
shows little coherence with regard to the effect of gravity on the film
thickness and interfacial waves characteristics, which is found to be
negligible for some authors® and remarkable for others®'%'", Such
contradictory results suggest that further experimental studies are
required during both adiabatic and diabatic two-phase flow,
especially for the development of reliable predictive tools in
reduced gravity environments or for updating existing correlations,
which are typically retrieved from on-ground experiments’'2-14,
With regard to dropwise condensation, no experimental studies
have been performed in microgravity conditions to the authors’
knowledge. Indeed, gravity is paramount in standard dropwise
condensation for the removal of droplets which grow in size or
coalesce with other droplets. Therefore, other experimental
approaches for droplets removal need to be developed for exploiting
the merits of dropwise condensation in low gravity space systems.
In the present work, a comprehensive survey of the available
experimental and numerical studies dealing with in-tube condensa-
tion, condensation on enhanced surfaces and dropwise condensa-
tion in microgravity conditions is performed. Predicting methods for
in-tube condensation heat transfer in microgravity conditions are
also mentioned in the present paper. To conclude, the challenges
and future perspectives of the research on condensation heat
transfer under microgravity are outlined at the end of the paper.

FILMWISE CONDENSATION INSIDE CHANNELS AND ON PLAIN
SURFACES

Extensive experimental and theoretical research has been per-
formed to investigate the influence of gravity on the interfacial
behavior and flow condensation heat transfer by varying the tube
inclination angle during on-ground experiments'>'° (see Table 1).
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8 %8 & b= varying gravity level. Temporal variation of gravity acceleration,

E & % 2 3 saturation-to-wall temperature difference and heat transfer coeffi-
cient of HFE-7000 during one parabola inside a 3.38 mm inner
diameter channel at 130 kgm~=2 s~' (Azzolin et al.?’).

w
" y o . )
e g g g 5 £ saturation-to-wall temperature difference and heat transfer coeffi-
; 2 - .
5 52 ?y; 2 E cient in the five heat transfer sub-sectors for heat transfer
=S v . .
g8 g8 vgg g' measurements (numbering from 1 to 5 refers to decreasing vapor
‘O v 3 . — — . . .
2 ;i g-é Soy Sso quality values) at G=130kgm™2 s~'. During microgravity, the
E|D2 2o SECT S € saturation-to-wall temperature differences increase leading to
c 0 S Y 8T Vs . .

S|l&¢9 22 552 56 smaller heat transfer cqefﬁaent values: Thg dlffere.nce betyx{een
the heat transfer coefficient measured in microgravity conditions
and in normal gravity was found to be negligible at high mass flux

~ _ (G=170kgm~2 s71), while reaching 20% at small mass flux
© © ] . . . .

£ % 2 < (G=70kgm2 s~ ). Similar conclusions were drawn in the works
v [ .

~| ExZ Eg2 by Lee et al."?, where local heat transfer coefficients and flow

S|ERE E&E _ _ pattern visualizations of FC-72 obtained inside a 7.1 mm inner

35‘ ;g g ;g g S S diameter channel during a parabolic flight campaign are reported.

9| 22% >3 g g Tests were performed under microgravity, Lunar (0.17 g,) and

EN R 253 2 z Martian gravity (0.377 g,) at mass flux from 129 to 341kgm—2 s~
and at 60-63.4 °C saturation temperature. The influence of gravity

] on flow pattern and condensation heat transfer was significant at

£ N n . R low FC-72 mass fluxes. Lunar and Martian gravity caused the film to
3 . -

Slal= o = ki become thicker at the bottom of the tube and thinner at the top,

: 2w 5 3] T leading to enhanced condensation heat transfer rates compared to
= © . . g

RE:RR S T > microgravity conditions.

n e = c o . . . .
< 15 < < s With the aim to widen the experimental database of Azzolin
Fl=le 2 E N et al.?’, Berto et al.?® employed the same test section to perform
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condensation tests at low mass flux (from 30 to 50kgm=2 s~ ")
during the 70th ESA Parabolic Flight Campaign. Simultaneous
liquid film thickness and heat transfer measurements and flow
pattern visualizations were performed during condensation using
HFE-7000 as working fluid at 38-41 °C saturation temperature. The
liquid film thickness was determined by coupling a shadowgraph
technique (applied to the high speed camera images) to the local
measurements performed by a chromatic confocal sensor and an
interferometer. Similarly to the aforementioned experimental
studies, gravity was found to enhance the condensation heat
transfer especially with the decreasing mass flux. Indeed, as shown
in Fig. 2, at G=50 kg m~2 s~ the heat transfer coefficient during

1.1

1 HFE-7000
[ D=3.38mm
1 .
[ 0
T o9 | &
. [
< i 4 A
g [ *
S L
g 08| o
z ¢
\.f 07 | ]
5 e A
S [ ®
C o6 oo
- [ R A ® x=07
05 [ g x=06
: A x=05
r O x=04
0.4 T S TS TS T A T S I S S S S S NS S S S A S

20 40 60 80 100 120 140 160 180
MASS FLUX [kg m2 s

Fig. 2 In-tube condensation heat transfer penalization under
microgravity. Ratio of the experimental condensation heat transfer
coefficient in microgravity to the one obtained in normal gravity
conditions with HFE-7000 inside a 3.38 mm inner diameter channel
at different mass fluxes G [kg m~2 s~ '] and in the vapor quality x
range from 0.4 to 0.7 (Berto et al.%®).
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normal gravity was about 33-56% higher than the one measured
in microgravity conditions, while at G=30kgm™2 s~' the heat
transfer enhancement due to the gravity effect varied from 52% to
77% considering the whole range of vapor quality. Moreover, the
heat transfer degradation in microgravity conditions was less
noticeable at high vapor quality for all the tested mass velocities.
A practical implication of these results is that it is possible to
overcome the influence of gravity altogether by increasing the
mass flux of the working fluid.

In the work by Berto et al.?® the flow pattern visualizations,
shown in Fig. 3, confirm stratified-wavy flow during normal gravity
and hypergravity and annular-wavy flow in microgravity condi-
tions. Moreover, during microgravity the interfacial features can be
mainly classified as high-amplitude disturbance waves, which are
sporadic (frequency around 10-20 Hz) and fairly regular in shape,
and small-amplitude ripples, which are more frequent (frequency
around 40-50 Hz). Instead, under normal gravity the interfacial
waves display more random features in terms of frequency and
velocity.

Considering the available experimental studies on filmwise
condensation under reduced gravity, a potential improvement in
the measuring accuracy could derive from the simultaneous local
measurement of liquid film thickness and heat transfer coefficient,
which was performed on-ground by Beaumale et al.?°. In their
work, two high-precision measurement techniques were applied
to a 3.38 mm inner diameter sapphire tube allowing accurate
measurement of the wall temperatures by means of an infrared
camera and of the liquid film thickness using a confocal or an
interferometric sensor. Moreover, some interesting results on
condensation in reduced gravity could be obtained by testing
various channel shapes (square, triangular, ...), in order to address
the balance between shear and capillary forces, and testing fluids
that display different thermodynamic and transport properties.

All the aforementioned experimental studies agree that the
condensation heat transfer penalization in reduced gravity can be
overcome by increasing the vapor shear stress. Apart from vapor
shear stress, the condensate can be efficiently removed in a
microgravitational environment by means of suction through a
porous wall, centrifugal force, electromagnetic field and capillary
force®®. Although these forces represent viable solutions for
removing the condensate and increasing the condensation heat

NORMAL GRAVITY HYPERGRAVITY

/

MICROGRAVITY

HFE-7000
G=30kgm?2s

L —»>
Inner wall —_
—

-

FLOW

HFE-7000
G=50kgm2s

-

FLOW

Fig. 3 Flow pattern visualizations with the varying gravity level. Flow pattern visualizations during two-phase flow of HFE-7000 inside the

3.38 mm inner diameter channel at mass velocity G =30kgm™2

Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA

s (top) and G=50kgm~2 s~ (bottom) and different vapor qualities,
performed in normal gravity, hypergravity and microgravity conditions (Berto et a

1.28).
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Fig. 4 In-tube condensation heat transfer coefficients under zero-gravity resulting from numerical simulations, compared to horizontal
and vertical configurations. Cross-sectional average heat transfer coefficients versus vapor quality at (@) G=100kgm=2 s~' and (b)
G=800kg m~2s~' during condensation inside a 1 mm inner diameter minichannel (Da Riva and Del Col*'). The error bars correspond to the

combined (Type A and Type B) experimental uncertainty.

transfer, limited experimental and numerical studies have been
conducted so far. A complete overview of the available studies is
reported in Supplementary information (Section A).

Extensive research has been conducted on heat pipes in
reduced gravity conditions, although such studies do not provide
information specifically targeted to the condensation phenom-
enon. The available experimental and numerical works on this
topic are briefly presented in the Supplementary information
(Section B).

Numerical and analytical studies

The volume-of-fluid (VOF) method has been widely adopted in
numerical studies to track the liquid-vapor interface during
condensation. Transient simulations are typically performed to
study interfacial waviness, intermittent flow patterns or transitions
between flow pattern regimes, while steady simulations are
mainly focused on steady liquid film thicknesses, vapor-liquid
interface and local heat transfer coefficient. Da Riva and Del Col*'
performed steady-state simulations of condensation of R134a
inside @ 1 mm ID circular minichannel in horizontal and vertical
downflow configuration (with gravity) and in zero-gravity condi-
tions by means of VOF method. Two different computational
approaches were considered depending on the mass flux: the first
approach for small mass fluxes (G=100kgm~2 s~') corresponds
to the assumption that the flow is laminar inside the liquid phase
and turbulent in the vapor phase, whereas with the second
approach for high mass fluxes (G=800kgm=2 s~') the low-
Reynolds SST k ~ w model was adopted to account for turbulence
in the liquid film. As depicted in Fig. 4, at G=100kgm~2 s~ the
condensation process is gravity dominated: the liquid condensed
in the upper part of the tube is drained to the bottom by gravity,
while the film thickness is kept uniform in the upper half of the
tube. Due to stratification, 62% of the total heat transfer rate takes
place at the upper half of the channel. Moreover, much higher
heat transfer coefficients are obtained in the horizontal config-
uration as compared to the vertical one. The total heat flow rate at
G=100kgm~2 s~" is 5% higher in vertical downflow configura-
tion as compared to the zero-gravity simulation: indeed, the
gravity force acts together with the shear stress to slightly reduce

npj Microgravity (2023) 32

the thickness of the condensate film. At G=800kgm~2 s7’, the
effect of gravity is negligible since the condensate film is almost
evenly distributed all around the internal circumference of the
tube. In such condition, the normal-gravity horizontal, normal-
gravity vertical and zero-gravity simulation cases display almost
identical results.

According to Li and co-workers®<>°, gravity induces a heat
transfer enhancement during condensation compared to zero-
gravity condition, especially at low vapor quality and low mass flux
inside large diameter tubes. This finding comes from numerical
simulations performed using ANSYS Fluent with VOF method
during condensation of R410A inside circular smooth tubes with
inner diameter between 0.25 and 4 mm. Turbulent effects in the
liquid and vapor flows during the condensation process were
considered using the SST k ~ w model, similarly to Da Riva and Del
Col*'. Similarly, Toninelli et al.?>3* concluded that the gravity effect
on the condensation heat transfer and liquid phase distribution of
R134a was more significant for a 3.38 mm inner diameter channel
compared to a 1 mm minichannel. However, although the liquid
film thinning at the top of the channel observed for the larger
diameter tube due to gravity, the heat transfer coefficient in the
1 mm minichannel was higher than the one in the 3.38 mm tube
due to the lower average liquid film thickness. Moreover, Toninelli
et al.3* numerically found that the heat transfer coefficient inside a
horizontal square 1 mm inner diameter channel in the absence of
gravity is comparable to the one obtained under normal gravity
conditions, since the capillary forces control the liquid film
distribution in the channel and the influence of gravity is not
significant. As shown in Fig. 5, in the square channel surface tension
pulls the liquid towards the corners and a thin liquid film forms at
the center of each flat side. Such distribution of the liquid film
remains almost the same both under normal gravity and in the
absence of gravity. Therefore, due to surface tension effects, the
cross-sectional average condensation heat transfer coefficients
inside the square minichannel are higher than those inside the
circular one both with and without gravity effect.

The VOF numerical simulations of Gu et al3* on R1234ze(E)
condensation inside channels with inner diameter from 1 to
4.57 mm confirm the higher influence of gravity on heat transfer
at low mass flux and low vapor quality inside large diameter tubes,

32,33
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R134a
G=100kg m?s!
T,,=40°C
D,=1mm

x=0.6

=—Normal gravity (with surface tension)
= = Zero-gravity (with surface tension)

= *Normal gravity (w/o surface tension)

''''''' Zero-gravity (w/o surface tension)

l gravity

Fig. 5 Effect of surface tension and gravity on the liquid phase
distribution in square and circular channels. Liquid-vapor inter-
face during condensation of R134a under capillary and gravity
forces resulting from VOF simulations in circular and square
minichannels at 40 °C saturation temperature, 100 kgm~2 s~ mass
flux and 0.6 vapor quality (Toninelli et al.>%).

already addressed by Li and co-workers®>33, At G=400kgm~—2s~'
and for a channel with hydraulic diameter D, = 1 mm, the gravity
effect was only noticeable at low vapor quality (x=0.4), with a
slightly thicker liquid film at the bottom of the tube compared to
the top. When the diameter decreased to 2 mm, the liquid phase
accumulated in the lower half of tube due to the increased gravity
influence and decreased inertia effects, while generating a very
thin film in the upper part of the tube wall. Instead, at
Dp, =457 mm most of the liquid phase accumulated at the
bottom of the tube. However, the authors observed that the
average liquid film thickness is the same with and without gravity
acceleration for each considered tube. Hence, gravity affects the
condensation heat transfer by changing the liquid film distribution
rather than the average film thickness. Since one of the viable
ways to reduce the gravity effect on condensation heat transfer is
to decrease the channel diameter, Miscevic et al.3® developed a
1-D model of convective condensation in the absence of gravity
inside a capillary-driven two-phase loop of 560 um inner diameter
at low mass flux. The predicted mean void fraction and
condensation zone length were found to be in good agreement
with experimental data obtained during on-ground condensation
tests, thus demonstrating the dominant role of capillary force
upon flow.

Li et al.>” adopted the VOF method and the SST k ~ € model for
both the liquid and vapor phases to evaluate the effect of gravity
on the condensation of R134a in a horizontal square minichannel
with 1 mm hydraulic diameter and length L =50, 600 mm at mass
fluxes equal to 50 and 500kgm~2 s~'. In the shorter channel,
gravity exerts no significant effect on the condensation heat
transfer, as the distribution of the liquid film inside the channel is
the same with and without gravity acceleration. Instead, in the
longer channel the liquid mainly resides at the bottom of the tube
when gravity is present, while it is uniformly distributed inside the
channel when gravity is ignored. Similar results were obtained by
Marchuk et al3® from a 3D film-vapor condensation theoretical
model: the condensation heat transfer coefficient of pure
saturated ethanol inside a 0.5 mm ID channel during microgravity
was found to rapidly decrease with the increasing distance from
the inlet of the tube due to the growth of the condensate film
thickness around the whole perimeter of the tube.

The effect of gravity on the condensation heat transfer inside
differently shaped channels was investigated by Nebuloni and
Thome3°. A theoretical model was developed to predict time
dependent film condensation heat transfer for circular and non-
circular (square and triangular) channel shapes under normal
gravity and microgravity conditions. Surface tension effects led to
the thinning of the liquid film towards the tube corners and to a
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heat transfer enhancement in the case of square and triangular
shaped channels, while the effect of gravity was found to be
relevant only for the circular channel.

It is worth highlighting that none of the aforementioned
numerical and analytical studies involve a comparison with
experimental data taken in reduced gravity platforms. This fact
further stresses the need to enlarge the available experimental

database on filmwise condensation for validating such numerical
and analytical tools.

Predicting methods for condensation heat transfer in
microgravity conditions

Few predictive tools are available in the literature for identifying
the flow conditions at which the gravity effect on the condensa-
tion heat transfer is negligible. Such methods are highly
instrumental in the design of thermal management systems in
aircraft and spacecraft avionics. Among them, Del Col et al.?'
developed a dimensionless correlation for predicting the critical
mass velocity at which the effect of inclination starts to appear
during condensation inside tubes. The dimensionless inclination
parameter Y* (Eq. 2), calculated as a function of the EOtvos
number Eo (Eq. 3), the thermodynamic vapor quality x, the liquid
and the vapor densities p, and pg, allows to predict a gravity
dependent region during condensation:

Y* = 0.185 - EQ®35 . (M) 1748 )
Pc
— .a.D2
Fo— PL=Pc) 9Dy .
o

In Eqg. (3), g is the gravity acceleration (equal to 9.81 ms™2) and
o is the surface tension of the fluid. The Y* parameter should be
compared with the dimensionless inclination parameter Y
(expressed by Eq. 4), where 8 is the inclination angle which is
equal to 0° in horizontal configuration and 90° in vertical
downflow and (dp/dz)¢c represents the single-phase pressure
gradient for the vapor phase, calculated by Eq. (5):

vy — PL—=pPc) - g-sin(h)

dp (4)
(dz) f.G
2
(d_p) _2:f-(G-x) 5)
dz/ 6 Dn - pg

where G is the mass velocity and fis the friction factor. For a given
operating condition, if Y is lower than Y*, no effect of inclination is
predicted according to the criterion of Del Col et al.2'. Azzolin
et al.?” applied this criterion to round tubes of 1 mm and 3.38 mm
inner diameter with HFE-7000 at 47 °C saturation temperature and
the critical mass velocity was found to be respectively equal to
50kgm~2 s~ and 70kgm~2 s~', as shown in Fig. 6. This result
confirms that, when the internal diameter becomes higher, the
range of mass velocity displaying an effect of gravity is increased.

O'Neill et al.*® recently developed two mechanistic criteria
based on dimensionless parameters for predicting the mass
velocity required for gravity independent flow condensation heat
transfer’’. The first criterion addresses vertical downflow and
vertical upflow, when gravity acts parallel to or opposite to the
flow direction, respectively. The criterion is based on the Froude
number Fr and vapor core Reynolds number Re. which are
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respectively defined as follows:

| pg - (T — uy)?
Fr_{pL-g-sinG-DF ©)

Re, = P5- (Ug — u;) - (Dp — 26) )
Me

where Dr is calculated as follows:

D? — (Dy — 26)°

Dr =—"5,-25)

(8)

In Egs. (6-8), Dy, is the hydraulic diameter, 6 is the orientation
angle and g is the dynamic viscosity of the liquid. Instead, Ug, u;
and &, which respectively represent the mean vapor core velocity,
the interfacial velocity of the liquid film and the liquid film
thickness, are all obtained using an annular flow control-volume-
based model. This first criterion for gravity independence can be
expressed with the following equation:

0.235

Fr| >
Fr a- Re?

9

where a=16 and n=-1 for 0 < Re.,<2000, a=0.079 and
n = —0.25 for 2000 < Re, < 20000 and a = 0.046 and n = —0.20 for
Re, > 20000.

The second criterion allows to determine the flow conditions at
which horizontal flow condensation is able to guarantee
circumferentially uniform annular flow. It is expressed in terms
of Bond number Bo and Weber number We:

[Bo|

W<5.12-10*5 (10)
e
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where

(oL —Pg) g - cosO- L3, an

o

Bo =

(PZ’ . plé) . (HG - UL)z'Lchar
(Pl +pE) -0

We = (12)

In Egs. (11-12), u, is the mean liquid velocity, Lcpqr is the
characteristic length (equal to the hydraulic diameter Dy, in the
case of channels), while p/ and pZ are modified expressions of
the liquid and vapor density, respectively°.

The dimensionless criteria expressed by Egs. (9) and (10) allow
to determine the minimum mass velocity required to overcome
body force effects on flow condensation heat transfer. Such
criteria were developed considering the experimental heat
transfer data obtained by Park et al.'” during condensation of
FC-72 inside a 11.89 mm inner diameter channel in horizontal,
vertical downflow and vertical upflow orientations. The authors
observed that the local heat transfer coefficients for the three
orientations overlap at mass velocities in the range
G=425-577kgm~2 s~ In Fig. 7, the values of the dimensionless
group in the first and the second criterion are reported versus
their respective mass velocity. Points below the dashed line
indicate that the heat transfer performance of this configuration
would be independent of gravity. The critical mass velocity of FC-
72 is around 420 kg m~2 s~', which is in good agreement with the
experimental data.

Several predicting models for condensation heat transfer inside
conventional and mini-/micro-channels in normal gravity condi-
tions have been developed over the years. For conventional
horizontal channels (D, > 3 mm), condensation models differenti-
ate between gravity-dominated flow regime, where the heat
transfer coefficient is sensitive to the saturation-to-wall tempera-
ture difference driving force, and shear-dominated flow regime,
owing to the influence of mass flux and vapor quality**’. For
mini-/micro-channels, since the gravity effect condensation is
expected to be less important, correlations developed for
condensation inside circular conventional tubes may not be able
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Fig. 7 Mechanistic criteria for gravity-independent condensation
heat transfer. Values of the dimensionless group in (a) the first
criterion and (b) the second criterion for gravity-independent
condensation heat transfer versus inlet mass velocity, evaluated
using the experimental exit conditions (O'Neill et al.*°).

to accurately predict the heat transfer coefficient, especially at
small mass flux*®->1,

In a reduced gravity environment, the applicability of the
available predicting tools for condensation heat transfer inside
tubes, which are derived from experiments performed on ground,
is not guaranteed and must be verified by means of experimental
investigations. In the work of Berto et al.?%, the models of Shah?’,
Cavallini et al.>? and Kosky and Staub®® were considered for the
prediction of the condensation heat transfer coefficient of HFE-
7000 during microgravity inside a 3.38 mm inner diameter tube at
mass velocity from 30 to 50 kg m~2 s, Even if the mean absolute
deviations were found to be smaller than 20%, none of the
selected models was able to predict the data trend with vapor
quality, whatever the mass velocity. The same conclusion was
drawn considering the comparison between the experimental
average liquid film thickness data and the values predicted by the
models of Cioncolini et al.>%, Cavallini et al.>? and Kosky and
Staub®3. Therefore, for such low values of mass flux, gravity plays a
non-negligible role.

Kim and Mudawar®®> developed a control-volume model for
annular flow condensation. This model was adopted by Lee et al.
for the prediction of the condensation heat transfer coefficient of
FC-72 at mass velocity G=129-340.5kgm~2 s~ inside a 7.1 mm
inner diameter channel during microgravity. The model showed
an acceptable agreement with the heat transfer coefficient data,
with an overall mean absolute error MAE of 27.5% (60.5% and
97.4% of the data falling within +30% and +50%). Lee et al.!
compared the experimental data taken during condensation of
FC-72 in microgravity in the 7.1 mm |.D. tube with the predictions
of well-known correlations for the condensation heat transfer
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coefficient (Akers et al.”®, Cavallini and Zecchin®’, Shah>, Dobson
and Chato*?, Wang et al.>°, Koyama et al.%°, Kim and Mudawar®’).
The smallest mean absolute deviation between predicted and
experimental heat transfer coefficients was obtained with Kim and
Mudawar®’ model (MAE =21.8%, with 69.2% of points falling
within +30%), followed by the correlations of Shah®® (MAE =
27.6%) and Wang et al.>° (MAE = 28.9%). The success of the Kim
and Mudawar®' correlation, indicated by Eq. (13), was attributed to
its reliance on a massive database, which includes 17 different
working fluids and a broad range of operating conditions and
geometrical parameters.

HTC - Dy,
A

b

= 0.048 -Re}® - P -
tt

(13)

In Eq. (13), A, is the liquid thermal conductivity, Re, is the
Reynolds number of the liquid phase (=G-(1 — X):Du/y,), Pr, is
the Prandtl number of the liquid (=u;- ¢, /A;) and ¢g is the two-
phase multiplier, defined as follows:

Pe=1+C-X+X (14)

while X is the Lockhart-Martinelli parameter, expressed as
function of the frictional pressure gradients based on the actual
flow rates for the individual phases:

(dp/dz),

|25

X =

Reinarts et al.>> and Best et al.®? applied a modified Dittus-

Boelter correlation, given by Eq. (16), for the prediction of the
condensation heat transfer coefficient of R-12 in the low vapor
quality region inside a 8.7 mm inner diameter channel during
microgravity:

HTC - Dy,

0 0.8
; :0.023~Ref‘8-Pr?’3-<1+x~ L) (16)
L

Pc

The mean absolute deviation between experimental and
predicted values was found to be lower than 31%. Mishkinis
and Ochterbeck®® assessed the reliability of recent models for
condensing two-phase flow regimes, pressure gradients and local
heat transfer coefficients in normal gravity and microgravity
conditions with ammonia, propylene and R134a. They concluded
that on-ground models developed for two-phase annular flow,
such as Shah®® model, can be suitably extrapolated to the
microgravity case as the physical mechanisms are the same for
terrestrial and microgravity annular flow conditions.

Further experimental investigations in microgravity are needed
to assess existing 1-g correlations in microgravity applications or
to develop new models for the prediction of the condensation
heat transfer coefficient inside channels. Although annular flow is
the main flow pattern observed during microgravity, the validity
of available terrestrial correlations for two-phase annular flow heat
transfer when applied for design purposes in a microgravity
environment should be experimentally verified, especially at low
mass fluxes due to increased effect of surface tension and viscous
forces®.

FILMWISE CONDENSATION ON ENHANCED SURFACES

A widely employed method for enhancing filmwise condensation
involves the creation of fins on the heat transfer surface. The heat
transfer enhancement is provided not only by increasing the
contact area between the vapor phase and the cold surface but
also by the effect of surface tension forces, which redistribute the
condensate along the fin surface together with other forces
(gravity, shear stress, ...), and by the induced turbulence in the
liquid film during flow condensation inside channels.
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Fig. 8 Condensation heat transfer on a fin surface under normal gravity. Heat flux distribution (b) under normal gravity for each selected

area of the fin (a) (Glushchuk et al.”9).

If a liquid-vapor interface is curved, a gradient of capillary
pressure is established across the film according to Laplace
equation:

o
PPy = (17)

where P, is the pressure in the liquid film, P\ is the vapor pressure
and R is the curvature radius of the film surface. Any curvature
variation along the interface induces a pressure inhomogeneity
within the liquid which leads to fluid redistribution. The fin shape
also influences the distribution of the condensate film along the
fin surface, hence it can be identified as one of the parameters
that must be optimized during the design phase®. Barakhovskaia
and Marchuk®® identified the most appropriate fin shape for
condensation experiments under microgravity, able to guarantee
a stable flow of the condensate film under the effect of a constant
capillary pressure gradient. The condensate film thickness of HFE-
7100 under terrestrial gravity was found to be half of the one
obtained in the absence of gravity, leading to a much higher
condensation rate. The designed fin shape was proposed also for
experiments under microgravity onboard the ISS. Marchuk and
Kabov®” developed a mathematical model for investigating
filmwise condensation of FC-72 on a curvilinear disk-shaped fin
under microgravity conditions, taking into account the influence
of capillary forces.

Few experiments have been performed so far to investigate
filmwise condensation on fins under microgravity. Glushchuk
et al.?® conducted a condensation experiment of pure HFE-7100
on a curvilinear brass fin of 16 mm height aboard the Airbus A300
Zero-G aircraft for ESA Parabolic Flight campaigns. An optical
afocal system was developed for measuring the temporal
evolution of the condensate liquid film along the fin, which was
in turn used to deduce the local Nusselt numbers in various
gravity conditions. The derived heat of condensation was found to
increase in hypergravity and decrease noticeably during micro-
gravity. The thickness of the condensate film on a curvilinear
surface of 15mm height was measured with the same optical
setup employed by Glushchuk et al.%® during a parabolic flight
campaign®. Under microgravity, a local minimum in the liquid
film thickness was detected at the conjugation area of condensed
film and the meniscus at the bottom of the fin. Such liquid film
distribution generates the two local maxima in the heat transfer
coefficient values: the first one is located around the tip of the fin,
while the second one is related to the conjugation area (where the
film thickness is at its minimum).
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Glushchuk et al.”® experimentally analyzed the balance of forces
acting on the condensate flow during condensation on a single
cylindrical fin under various gravity conditions (0.05 g, 1 gs and
1.8g,). A round cylinder of 8.9 mm height with smoothed corners
was chosen as the most suitable axisymmetric surface for
measuring the liquid film thickness using an optical afocal system.
During both normal gravity and microgravity phases, the liquid
mainly accumulates at the fin tip and at the fin base leading to
thicker condensate film under reduced gravity. Surface tension
forces overcome gravity at both parts of the fin corner, in the area
where the thin film at the lateral wall joins the liquid meniscus and
when the liquid level at the fin base is very small. Analysis of the
heat flux distribution along the fin surface under both normal
gravity and microgravity (Figs. 8, 9) underlines that the areas
under the dominant effect of surface tension forces display high
values of heat flux, providing 10-15% of the total heat load. Under
reduced gravity, the highest heat fluxes (in the order of
10-100 kW m~2) are obtained at the corner of the fin tip, where
the curvature gradient is maximum, and on its cylindrical part.

EFFECT OF GRAVITY DURING DROPWISE CONDENSATION

During dropwise condensation (DWC) the vapor phase changes to
liquid phase forming discrete droplets on the surface whose
temperature is below the dew temperature of the condensing fluid.
It is well established that DWC allows to reach very high values of
the heat transfer coefficient compared to filmwise condensation
(FWC)”". The creation of surfaces that can promote DWC is one of
the main issues. The available processes to treat the solid substrate
and the fundamental mechanisms involved during DWC are
described, for instance, in a recent paper by Wang et al.”2. DWC
is a cyclic process: condensation begins at a molecular scale with
drops formation in preferred nucleation sites’3. Growing by direct
condensation at first and later by coalescence, drops reach the
critical size at which external forces (e.g., gravity, vapor drag)
overcome adhesion forces and they start to move, sweeping the
surface and making new nucleation sites available.

To achieve DWC, the surface energy of the wall must be lower
compared to the surface tension of the condensing fluid: for this
reason, it is easier to promote DWC with high surface tension
fluids such as water. Furthermore, since droplets after growing
must be removed from the surface (this allows to clean the surface
and re-start the nucleation process), high droplet mobility is
required. As demonstrated by Cha et al.”4, achieving stable DWC is
not governed by surface intrinsic wettability (which is related to
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Fig. 9 Condensation heat transfer on a fin surface under microgravity. Heat flux distribution (b) under microgravity for each selected area

of the fin (a) (Glushchuk et al.”®).

the static contact angle) but rather, it is dictated by low contact
angle hysteresis. In fact, as shown in Parin et al.”>, DWC can be
achieved even on hydrophilic surfaces with advancing contact
angle below 90°.

Since the cyclic DWC process is based on the removal of formed
droplets, thus cleaning the surface and allowing the formation of
new droplets, DWC experiments on ground are usually run on
vertical surfaces in quiescent vapor conditions: when the gravity
force overcomes the adhesion force, the droplet starts to move
sweeping the surface.

The dependence on gravity for liquid removal may limit the
potential application of DWC in low gravity environments and
even on ground when considering horizontal surfaces. Gravity can
affect DWC in different ways, depending on surface characteristics
and vapor conditions. In the following, the effect of gravity during
DWC on smooth surfaces and nanostructured surfaces is
addressed. Available studies concerning the gravity effect during
DWC are summarized in Table 3. There are no studies of DWC
performed in microgravity.

As stated before, the gravity force is often used to remove the
biggest droplets, contributing to reduce the critical radius beyond
which the drops are not pinned on the surface anymore. After
departure, sliding droplets clean the surface promoting the
nucleation of new small droplets. The reduction of the departing
radius provides an increase of the condensation heat transfer
coefficient since big droplets present the highest heat transfer
resistance due to thermal conduction through the liquid. Wang
et al’® combined visual experiments and lattice Boltzmann
numerical simulations to analyze, among others, the influence of
inclination on the critical sliding radius and global heat transfer
coefficient. The critical sliding radius is found to be 50% higher at
30° inclination with respect to 90° case (i.e., vertical orientation).
Compared to a horizontal surface, the maximum heat transfer
enhancement corresponds to 72.4% and it is obtained at 90°
inclination. Talesh Bahrami and Saffari’” presented a numerical
study of DWC on a micro/nanostructured surface finding that the
orientation of the surface in the gravity field plays an important role
on the drop size distribution. Since drops can oscillate during DWC
(affecting the mobility or even causing the detachment of drops
from the surface), Sakakeeny and Ling’® established, by means of
numerical simulations, that the effect of gravity intensity on
oscillation frequency is particularly significant when the contact
angle is large (i.e., hydrophobic or superhydrophobic surface).

In the absence of gravity force and in presence of vapor flowing
over the surface, the drag force of the vapor that acts on the
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droplets can be used to remove the droplets and thus to clean the
surface, allowing stable DWC (Fig. 10a). Tancon et al.”® experi-
mentally studied the effect of steam velocity during DWC on two
different specimens vertically oriented: a sol-gel coated aluminum
sample and a reduced graphene oxide coated copper sample.
When varying the inlet vapor velocity in the range between 3 and
15.5m s~ ', due to the increase of the vapor drag force on the
droplets, a reduction of the droplet departing radius was observed
along with an increase of the condensation heat transfer
coefficient. The same research group also proposed an analytical
model for the estimation of the droplet departing radius in
presence of non-negligible vapor velocity®°.

In the absence of vapor flow, a passive mechanism can be used
to remove droplets: Bonner et al.3" used a surface energy gradient
(wettability gradient) on the condensing surface. The wettability
gradient creates a difference in the contact angles along the
perimeter of the condensing droplets, causing the motion of the
droplets towards the surface regions with increased wettability.
The movement of the droplets prevents flooding and allows the
condensation of new droplets on the surface. Even when the solid
substrate was placed vertically, the wettability gradient surface led
to 35% higher heat transfer coefficient compared to a traditional
DWC surface. Horizontally, the wettability gradient surface was
able to maintain the dropwise regime. Gu et al.®? explained the
heat transfer enhancement due to the wettability gradient with
the fast motion of the droplets on the surface. Indeed, the motion
of the droplets on a wettability gradient surface was found to be
much less sensitive to gravity as the driving force is inherent in the
energy of the surface. Mancio Reis et al.2% experimentally showed
that the heat transfer coefficient during the transient regime (i.e.,
during about half an hour from the beginning of the condensation
process) on a horizontal surface with a radial wettability gradient
(Fig. 10b) is enhanced by a factor 2 to 3.4 (depending on the
ageing of the surface) in comparison to an untreated surface
(silicon in the raw state). Xu and Chen®* numerically studied the
effect of gravity on nanometric-droplets condensation on a
composite V-shaped surface with wettability gradients by means
of the molecular dynamics approach. They concluded that the
condensation rate becomes larger with the increasing
gravity level.

When the surface includes micrometric or nanometric structura-
tion, the droplets can wet (Wenzel state), partially wet (Wenzel-
Cassie state) or not wet (Cassie state) the surface. In the Wenzel
state, the droplet penetrates through micro/nanostructures and
fully wets their walls and cavities; in the Cassie state, the droplet
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Table 3. List of available studies that address the gravity effect during DWC.
Investigators Type of study Platform Surface Fluid Activities Main results
performed
Bonner Experimental Two-phase Copper with self- Water HTC Heat transfer coefficient on a horizontal
et al.® thermosyphon, assembled monolayer measurements surface of 35000Wm—2 K" with a
inclinable test gradient surface.
section
Mancio Reis Experimental Condensing Silicon substrate with  Water HTC Gradient wettability surface allows
et al.® chamber with silanization measurements maintaining DWC regime, even where
variable Images of droplet no gravity can be used as a mechanism
inclination of population for droplets removal.
the sample HTC found to be 3.4 times greater than
the one on an untreated surface.
Mukherjee  Experimental Humidity Nanopillared Humid air HTC Jumping droplets observed for
et al.®8 chamber, variable superhydrophobic measurements different surface orientations.
inclination of surfaces (silicon Images of droplet Gravity-assisted vertical orientation can
the sample substrate) population increase the HTC by 100% compared to
a horizontal orientation.
Talesh Analytical model - Micro/nanostructured ~ Water Numerical study of Vertical tubes have five times higher
Bahrami and inclined tube DWC on a micro/  overall heat transfer rate compared
Saffari”’ nanostructured with the horizontal one.
inclined tube
Tancon Experimental Two-phase Sol-gel coated Water HTC For a sol-gel coated aluminum sample,
et al.”? thermosyphon, aluminum sample and measurements increasing the vapor velocity from
vertical test reduced graphene Images of droplet 3ms~' to 15.5ms~" leads to an
section, oxide coated population increase of the HTC by about 40%.
downward copper sample
vapor flow
Tancon Analytical model - Flat surfaces with Water HTC Droplet departing radius decreased
et al.®° advancing contact measurements due to the drag force of the vapor.
angle < 90° Images of droplet An equation is proposed to account for
population the steam velocity on the maximum
Modeling of DWC droplet radius when vapor drag and
gravity forces act in the same direction.
Wang Experiments and Condensing Nanostructured Water Flow visualizations Surface inclination plays a determinant
et al.”® lattice chamber with copper HTC effect on the critical removal diameter
Boltzmann adjustable superhydrophobic measurements of droplet.
numerical inclination surface Lattice Boltzmann Compared to the horizontal surface,
simulations simulations for condensation heat transfer is enhanced
coalescence by 72.4% in vertical configuration and
induced droplet AT=2K.
jumping
Xu and Molecular - Composite V-shaped ~ Water Numerical Condensation mode can be controlled
Chen®* dynamics surface with multi simulations by by a composite V-shaped surface with
simulations wettability gradients molecular multi wettability gradients, accelerating
dynamics the condensate drainage both with and
without gravity.

suspends over micro/nanostructures; in the partially wet state
droplets locally wet the substrate between the pillars (liquid-filled
nanostructures under a portion of the nominally Cassie droplet).
Miljkovic et al.®> showed that partially wetting droplets led to a
heat transfer rate 4-6 times higher than droplets in the Cassie
state. Instead, the possible effect of gravity force on the droplet
state is not well addressed in the literature. Xu et al.®® performed
molecular dynamics simulations of the water wetting on an array
of micro pillars under different gravity conditions. They found that
a microgravity environment favored the transition from Wenzel
state to Wenzel-Cassie or Cassie state.

When DWC involves superhydrophobic structured surfaces, the
coalescence between two droplets can generate the jumping of
the daughter drop®”. When this occurs in microgravity, the
jumping droplets may not go back to the solid surface. Mukherjee
et al.®8 used superhydrophobic nanopillars to passively decrease
the maximum droplet departure radius and they studied the effect
of orientation on the global heat transfer rate. Compared to the
horizontal case, an enhancement of 40% is obtained for an
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inclination of 45°, and up to 100% for an inclination of 90°. In the
case of jumping droplets, the heat transfer through each
individual drop is limited because of the reduced contact area
between the surface and the droplet. This can be partially
overcome by considering biphilic surfaces, as suggested by Hoque
et al.®°,

It can be concluded that there is a lack of experimental studies
concerning DWC in microgravity environments (parabolic flight,
space station). The challenge, in addition to the production of
more durable coatings, is to find efficient mechanisms (vapor drag
force, wettability gradient surfaces, jumping droplet) and design
tools to allow droplet removal in the absence of gravity and thus
stable DWC.

CHALLENGES AND FUTURE PERSPECTIVES

Considering the most widely used platforms for reproducing
microgravity (i.e., drop towers, sounding rockets, parabolic flights),
condensation heat transfer experiments may fail to yield reliable
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: droplets nucleate (1), grow (2), coalesce up to a certain radius (2-3); the biggest

droplets are removed (3-4) towards the periphery of the treated zone and new droplets appear (4).

and steady-state experimental data due to the limited duration of
the microgravity phase.

Most of the available technical knowledge regarding the effect
of gravity during condensation comes from experiments con-
ducted in terrestrial environment by varying orientation. Such
experiments are not sufficient to precisely simulate reduced
gravity conditions owing to the inability to completely eliminate
gravity components parallel or opposite to the flow direction.

Parabolic flight campaigns can enable the development of
criteria for identifying the working conditions needed to achieve
gravity-independent performance, but reliable design tools for
condensation in microgravity require steady-state heat transfer
data and flow visualizations for a longer duration. These
experimental conditions can be achieved only with space
experiments.

Considering filmwise condensation, further experiments are
required for assessing the effect of gravity on the condensation
heat transfer, especially at low mass fluxes, when the heat transfer
coefficients are found to be strongly penalized by the absence of
gravity. Moreover, condensation heat transfer coefficients and
liquid film thickness data should be evaluated under various
saturation-to-wall temperature differences, whose effect on the
condenser performance has never been assessed before in a
reduced gravity environment. The channel shape represents
another key factor to counterbalance the detrimental effect of
the absence of gravity on condensation heat transfer. Surface
tension forces exert a great influence on the liquid film
distribution especially for square or rectangular channels, whose
behavior under reduced gravity has been addressed only in
numerical studies. New experimental data on these topics would
be essential for the validation of the existing numerical and
analytical studies on condensation heat transfer in zero gravity
conditions. With regard to dropwise condensation, experimental
investigations under microgravity or zero-gravity conditions could
help to validate the numerical simulation results and assess the
reliability of the proposed practical solutions (i.e. wettability
gradient surfaces) for aerospace applications.

At the present time, the Flow Boiling and Condensation
Experiment (FBCE), resulting from the joint collaboration between
the Purdue University Boiling and Two-Phase Flow Laboratory
(BTPFL) and the NASA Glenn Research Center, is onboard the I1SS*°.
The experiment aims at evaluating the influence of body force on
two-phase transport phenomena in pursuit of mechanistic models
as well as correlations, and determining the minimum flow criteria
to ensure gravity-independent flow boiling and condensation. The
European Space Agency (ESA) is currently involved through
the SciSpacE (Science in Space Environment) Research project in
the design and realization of two experiments to investigate in-tube
condensation and condensation on fins onboard the ISS. Experi-
ments concerning in-tube flow condensation and heat transfer
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enhancement on microstructured surfaces are planned to be
performed onboard the Tiangong Chinese Space Station after 2022.

SUMMARY AND OUTLOOK

To the authors’ knowledge, a total of fourteen works (ten
experimental studies, four review papers) dealing with the
experimental investigation of filmwise condensation in micro-
gravity conditions have been published, while experiments of
dropwise condensation in a reduced gravity environment are not
yet reported in the literature.

In-tube condensation heat transfer under microgravity is
penalized compared to normal gravity conditions, especially
when the vapor shear stress decreases (i.e. decreasing mass flux
and vapor quality, increasing channel diameter). For instance,
considering condensation tests with HFE-7000 inside a 3.38 mm
inner diameter channel, the heat transfer penalization under
microgravity is negligible at mass velocity higher than or equal to
170 kg m~—2 s~" while it ranges from 50% to 80% at mass velocity
equal to 30 kg m~2 s~'. Apart from the case of vapor shear driven
condensation, the condensate can be removed in a microgravity
environment by means of wall suction, surface tension, centrifugal
or capillary forces and electromagnetic field.

The predictive tools for filmwise condensation heat transfer
inside tubes generally consist of mechanistic criteria for identify-
ing the flow conditions for gravity-independent condensation and
modified 1-g correlations for the evaluation of the condensation
heat transfer coefficient. For instance, the minimum mass velocity
required to overcome body force effects on flow condensation
heat transfer of FC-72 inside a 11.89 mm inner diameter tube is
around 420kgm~2 s~ ",

Surface tension forces exert a non-negligible effect during
condensation on finned surfaces. In particular, the highest
condensation heat fluxes (in the order of 100 kW m~2) under
reduced gravity are obtained at the corner of the fin tip, where the
liquid film thickness along the fin is at its minimum. The fin shape
represents one of the key parameters that need to be optimized
during the design phase to change the distribution of the
condensate film along the fin surface and, hence, improve the
condensation heat transfer.

With regard to dropwise condensation, the dependence on
gravity for liquid removal may limit its application in low gravity
space systems. Techniques for droplets removal, both active (such
as non-negligible vapor velocity) and passive ones (i.e. based on
the use of condensing surfaces with wettability gradients or
micrometric/nanometric surface structure) represent viable solu-
tions for exploiting the benefits of dropwise condensation also in
microgravitational environments.

Due to the difficulties and the costs of performing extensive
space-based experiments, steady-state experimental data in
microgravity conditions are still limited and may lack of
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repeatability and accuracy. Therefore, additional experimental and

theoretical

studies are required to better understand the

condensation heat transfer mechanisms in space applications
and for the development of reliable predicting tools for two-phase
heat transport systems for thermal management in microgravity
environments.
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