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Reinforcement learned adversarial agent (ReLAA) for active
fault detection and prediction in space habitats
Matthew Overlin 1✉, Steven Iannucci1✉, Bradly Wilkins1, Alexander McBain1 and Jason Provancher1

With growing interest for human space tourism in the twenty-first century, much attention has been directed to the robust
engineering of Environmental Control and Life Support Systems in space habitats. The stable, reliable operation of such a habitat is
partly achieved with an ability to recognize and predict faults. For these two purposes, a reinforcement learning adversarial agent
(ReLAA) is utilized in this work. A ReLAA is trained with experimental data to actively recognize and predict faults. These capabilities
are achieved by proposing actions that activate known faults in a system. Instead of issuing these harmful actions to the actual
hardware, a digital twin of the mock space habitat is simulated to discover vulnerabilities that would lead to faulted operation. The
methods developed in this work will allow for the discovery of damaging latent behavior, and the reduction of false positive and
negative fault identification.
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INTRODUCTION
Space tourism is a budding industry with increased interest from
the general public1,2. Companies such as SpaceX, Blue Origin,
Virgin Galactic, and Boeing are either planning sub-orbital leisure
flights or have already completed such trips. Union Bank of
Switzerland estimates that the space tourism sector of the space
economy will be worth US$4bn by 20303. Present-day trips,
however, may only be short-duration visits that occur over a
period of hours or days. For such trips to be possible, science and
engineering research has sought to understand the potential for
medical risk during these crewed missions4. To increase the safety
and reliability of these missions, accurate system health monitor-
ing (SHM) must be deployed. The methods in this work will
identify faulted operation in order to enable safer leisure travel
with reduced medical risk.
Separate from the design, engineering, and construction of

vessels launched into low Earth orbit, this work primarily seeks to
monitor the operation of these vessels. Many conventional SHM
fault detection methods compare measurement data with
established healthy operational bounds5–9. Such methods may
be described as passive, since a fault is declared based on static
pre-defined rules. Passive HM does not capture and understand
the short- or long-term dynamics of the system, thus leaving it
vulnerable to unexpected or sudden faults. For example, a passive
system will not understand the relationship between two features
that could combine into a coupled or cascading fault.
Other research has developed fault detection solutions that can

be updated during operation, but these methods may be purely
data-driven models10–12. Because the agent in this work employs a
physics-based digital twin, potential failures may be captured in a
digital twin’s simulation results. Such information is useful during
the agent’s training and deployment phases. Purely data-driven
models may not have failure data available during training. Such
failure data may not be easily attainable from an experimental
setup with expensive hardware assets8.
Prior research has found that purely physics-based models or

hybrid physics-based and data-driven models hold certain key
advantages not found with purely data-driven modeling

approaches13,14. In short, models with physical basis are under-
stood to be more explainable, generalizable, and interpretable; all
are qualities necessary in models of life-sustainment systems.
Other digital twin systems have been successful in integrating
physics-based models in lieu of a surplus of data that is necessary
for supervised machine-learned systems7,15.
Each ReLAA developed and implemented in this work is an

artificial neural network (ANN). Such networks are often trained
with variants of gradient descent (ADAM, SGD, etc.), a first-order
optimization algorithm used to find local minima in objective
functions. Instead of these traditional optimization algorithms,
some have found advantages with training ANNs through
neuroevolution, an evolutionary process that allows an ANN’s
parameters to change with new training data. Unlike gradient-
based approaches, activation functions, hyperparameters, archi-
tectures, and algorithms can be learned in addition to the ANN
parameters16,17. As explained later in this article, the training
process for the ReLAA is completed through neuroevolution.
Artificial intelligence is usually implemented in the form of an

ANN which may be described as a universal approximator. They
are trained through a learning process where the parameters of
the ANN are optimized to approximate a unique policy. Through
reinforcement learning, a perturb-and-observe approach is used
during the training process18. Actions selected by an agent are
issued to a digital twin of an experimental apparatus (or an actual
experimental apparatus), and the results are quantified as
desirable or not by calculating a reward. If the actions lead to a
large reward, then the ANN yielding the high reward is used to
generate offspring agents19. In this work, a ReLAA is not used for
controlling elements in the mock space habitat, but instead for
fault recognition and prediction.
Unfortunately, genetic algorithms like NeuroEvolution tend to

converge upon a single solution19,20. In a system as complex as
the one designed and implemented in this work, a single solution
is not capable of understanding the varied dynamics while still
being computationally feasible21. Research into expanding the
diversity of the solution space is ongoing, with promising
results17,20,22. For the ReLAAs, two common techniques are
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implemented, the clustering and fitness sharing, both of which are
designed to promote diversity and outliers during training.
This work introduces a framework to develop and test an active

fault detection strategy on a physical demonstration system. First, in
Methods section, the design and construction of the physical mock
space habitat for life sustainment is outlined as well as the sensors
and tools required to measure and communicate the physical
system state to the software implementation. Also, in Methods
section, a brief description is given for the following project tasks:
middleware implementation, digital twin development, fault
elicitation and reinforcement learning. In Results section, results
are shared from the experimental operation and fault emulation.
Results from the deployment of multiple ReLAAs are also presented.
Finally, a discussion and conclusion are included.

METHODS
Physical demonstration system
Each ReLAA developed in this work was tested and validated with
live sensor stream data collected from the mock space habitat.
The experimental setup is described as a system of systems:
thermal control system (TCS), grey water filtering system (GWS),
and an electrical integration model.
The goal of the physical demonstration system is to have a

physical test system capable of eliciting measurable, realistic
faults that are representative of an actual space habitat.
Considerations in the design must be made for not only the
actuation of faults within the system(s) but also the measurement
and detection of the faults. The measurement and detection
capability, primarily achieved with a variety of sensors, allows for
the physical system to be integrated with a physics-based model
to create a unified digital twin. The large volumes of data,
collected via instrumentation hardware in the mock space
habitat, will be key in training the ReLAAs and also validating
the digital twin used by the ReLAAs.
An empty, isolated room was re-purposed to serve as the mock

space habitat in this work with an assumed volume of 28m3 and
9.3 m3 of habitable space per occupant. Some prior work has
investigated many of the factors that would lead to a certain
habitable volume, and has suggested a lower limit for the
habitable volume given a certain number of days for a crewed
voyage23. A volume of 9.3 m3 would roughly translate to a crewed
duration of 17 days (or fewer). Thus, the decision was made to
consider a habitat capable of sustaining three personnel. Then, the
number of habitat occupants (3) was used as the basis for sizing
the GWS. Waste produced by each occupant is assumed to be
7L/day/person. With the assumption that the GWS would be
processing a day’s volume of water in 1 h, a through-flow rate of
21 L/h is assumed. The estimated maximum power consumed by
the whole GWS is 250 W. The room’s temperature would be
controlled with the TCS so that a habitat temperature of 20 °C is
maintained. Altogether, a maximum power of 560 W is assumed
from the TCS. These design decisions spurred an initially estimated
power draw for each system to ensure appropriate relative power
draws and the appropriate consideration of components. These
power draws were then used to size the electrical system. Given
250W from the GWS, 560W from the TCS and 200W from a load
bank, the electrical system was sized to supply 1 kW of power to
the whole mock space habitat.
As the scope of this project is limited to the aforementioned

systems, other potential systems typically found in an Environ-
mental Control and Life Support Systems (ECLSS) will be emulated
in the experimental setup with the 200W load bank. The load
bank was sized to account for the difference between the GWS
and TCS power draws and the capacity of the DC power source to
ensure that all habitat systems cannot be powered simulta-
neously. This will enable faults to cascade when the system is

placed in states where power consumption is approximately equal
to the system’s capacity.

Thermal control system (TCS)
The TCS was designed, built, instrumented, and operated as one
of the sub-systems in the mock space habitat. The TCS in this work
is different from more practical systems which may be integrated
with ECLSSs in modern spacecraft24. Certain assumptions were
made and should be noted. There is a single closed loop of
circulating water, which would not be practically implemented on
spacecraft. Typically, there would be internal and external loops,
and other fluids would be circulated through these loops such as a
propylene glycol mixture or ammonia which have lower freezing
temperatures. Because this TCS is to be used as part of a mock
space habitat for the ReLAA, simplifications in the TCS design were
accepted. With the current design and implementation, a variety
of faults could still be realized in the experimental setup.
In the TCS, the temperature measurements are insightful since

the goal of the TCS is to regulate the habitat’s room temperature.
The habitat temperature is ultimately regulated with the proper
operation of the TCS, and this is achieved with additional
observability from other sensors. Pressure and flow measurements
obtained at various locations in the TCS allow for sufficient
visibility. An annotated picture of the TCS is shown in Fig. 1.

Grey water filtering system (GWS)
The GWS was designed based on a water recycling system
designed and operated in prior NASA work25. The components in
the GWS were sized to deliver roughly 21 L/h of potable water. A
simplified schematic of the GWS is shown in Fig. 2. When filtering
grey water, the forward osmosis (FO) module is first used. Water
flows through two different paths within the FO module, an inner
path (consisting of feed/dirty water) and an outer path (consisting
of draw/salt water) in the opposite direction. These two cavities
containing water flow are separated by a semi-permeable
membrane. Due to the osmotic pressure differential between
the feed water and draw water, water passes through this
membrane from the feed to draw side and ultimately into the
draw solution (DS) tank. A majority of the contaminants would be
removed in this filtering process with the resulting product from
the FO being a salt water solution.
Water is then pumped out of the DS tank and through a reverse

osmosis (RO) module. The RO module uses hydraulic pressure
rather than osmotic pressure to force a solution through a semi-
permeable membrane. The RO has one input and two outputs,
with potable water exiting one output and rejecting water cycling
back to the DS tank. For every 1 L of potable water flowing into
the product tank, 2 L of water re-enter the DS tank from the
rejection of the RO module. A variety of sensors are included in
the experimental setup for the GWS: pressure, flow, total dissolved
solids, electric power consumption, and tank water level.

Experimental instrumentation, data acquisition, and control
The experimental setup integrates the data collection and
operation activities of the physical demonstration system to a
sensor and computational hub that can remotely monitor and
actuate the system. This computational hub uses NASA’s core
Flight System middleware software architecture to ingest sensor
data, process raw voltages to physical values, and record historical
data for use by a digital twin. Further developments were also
accomplished to allow a terminal user to have remote access to
the system, control programmable actuators on the system, and
synchronize data to a cloud storage service. The sensor and
control hub computer is a Raspberry Pi 4b single-board computer
that communicates with two Arduino Mega microcontroller
boards via USB. One microcontroller is used for reading sensor
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values, and the other is used for issuing commands to the
demonstration system’s programmable actuators.

Digital twin development
The integrated physics-based model (TCS, GWS, and electrical
subsystem model), simulated in the MathWorks Simscape
environment, is referred to as a digital twin because it is a virtual
representation of the mock space habitat that is updated from
real-time data and used to inform decision-making processes
(fault recognition and prediction)26,27. In this work, the integrated
model’s parameters were adjusted so that its simulation results
would agree with experimentally captured data from the habitat.
Because the ReLAA would need the ability to forward-look and
anticipate faults, the digital twin would need to execute
simulations faster than real time. The difference between
simulated and measured waveforms was quantified, on average,
with a mean absolute deviation of 7% or less. There is often a
tradeoff between model accuracy and simulation speed, and this
work prioritized simulation speed, though the model’s accuracy
was found to be satisfactory.

Using the Functional Mock-up Interface (FMI) standard, the
model was compiled as a functional mock-up unit (FMU) for
use by a ReLAA28. The FMI standard is often used to simplify the
creation, storage, exchange, and use of dynamic system models so
that they may be flexibly simulated on a variety of computational
platforms. When using the FMU, the ReLAA would specify input
stimuli, set points, and other necessary information needed to
specify a what-if scenario. With the integrated digital twin model
implemented as an FMU, the ReLAA could be deployed offline to
recognize faults in previously captured data or online to forward-
look from a present snapshot of data.

Fault elicitation
A failure modes and effects analysis was conducted to identify
faults of interest within the system(s). These faults inform where
and how perturbations are applied to the mock habitat and how
they will be measured, and the expected system response given the
operational scenario. Table 1 highlights some faults to be emulated
in the mock habitat and the associated perturbation mechanism.
For binary mechanisms like switches and relays, the agent has the
ability to toggle the position between ON and OFF states. For
continuously adjustable values such as variable resistors and values
the agent had the ability to discretely increment the actuator by a
set value. That is, the rightmost column in Table 1 lists the actuation
points in the experimental setup where the ReLAA may affect
change with its actions. The faults and mechanisms outlined in

Fig. 1 In the thermal control system (TCS), water is circulated
through a closed loop to regulate the mock space habitat’s room
temperature. a A simplified schematic illustrates the operation of
the TCS by showing how important components (heat exchanger,
pump, chiller, and heater) are arranged in the loop. b The TCS was
mostly assembled, installed, and instrumented on one wall within
the mock space habitat (chiller not shown). (The annotated picture
is provided by PacMar Technologies and used with permission.).

Fig. 2 In the grey water filtering system (GWS), grey water is
sourced from a feed tank, filtered through a forward osmosis (FO)
module, filtered through a reverse osmosis (RO) module, and
finally fed into the product tank as potable water. a A simplified
schematic illustrates the operation of the GWS. Essentially, there are
3 loops in which water flows. The FO and RO modules are key
components. b The GWS was mostly assembled, installed, and
instrumented on one wall within the mock space habitat. The GWS’s
feed tank (left) and product tank (right) are out of view in this
picture. (The annotated picture is provided by PacMar Technologies
and used with permission.).
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Table 1 were evaluated individually to uncover specific fault
responses, as well as combinations of perturbations to elicit
cascaded faults. This fault analysis informed a design of experi-
ments that was later executed as part of this work.

Reinforcement learning
This framework uses reinforcement-learned adversarial agents to
learn perturbations to the digital twin that cause faults. The
adversarial agent executes forward simulations while performing
these perturbations on the digital twin to predict faults early,
thereby identifying latent conditions which could lead to future
faults. The adversarial agent is trained using a neuroevolutionary
approach to learn how to cause and diagnose faults in the
system. Here, a neural network represents the learned policy
while an evolutionary algorithm iteratively optimizes the policy.
The validated digital twin allows for the use of a genetic
algorithm for training. Without it, an intractable amount of
experimentally captured data from the mock space habitat
would be necessary. The digital twin allows for the agents to
break the system during training while not actually harming any
physical systems. The verification of the demonstration system
and the speed of simulation become essential to the quality of
the adversarial agent.
In addition, fitness sharing is introduced after clustering to

increase diversity in the population. In fitness sharing, each
population member scales its fitness based on its proximity to
population members. Therefore, densely packed population
members have a lower fitness value than comparably good
solutions in sparsely populated regions. The distance is the KL
divergence between solutions, each represented by a discrete
distribution based on states29. In general, the KL divergence
between two probability distributions P and Q is computed as
shown below in Eq. (1):

KLðP;QÞ ¼
X
i

pðiÞ ln pðiÞ
qðiÞ

� �
(1)

The policy calculates a discrete distribution based on the current
state, therefore to compute the KL divergence between two
policies, denoted by πP and πQ. A set of recent states, s∈ S, is used
to get divergence by running the population member through an
optimization problem. That is, the quantity computed in Eq. (2) is to
be maximized to ensure diversity between two policies πP and πQ.

KLðπP; πQÞ ¼ 1
jjSjj

X
s2S

KLðπPðsÞ; πQðsÞÞ (2)

Next, a population member’s fitness scales with respect to the
distance of all nearby population members. Therefore, with the

KL divergence metric, the fitness function is scaled by γ, which is
computed as shown in Eq. (3):

γ ¼
X
Q

fKLðπP; πQÞjKLðπP; πQÞ< δg (3)

This scaling factor γ is applied such that the ith agent has a
fitness of Fi, but a scaled fitness of Fiγ−1. This scaled fitness
accounts for diversity between agents and is the metric used to
select those agents which will parent subsequent generations of
agents or be used in deployment. If a population member Q is
within δ KL divergence it is considered a neighbor and included in
the distance scalar. Population members that are similar to each
other will not survive to the next generation, increasing diversity
in the population.
The agent learns a mapping from the state space to the action

space using guidance from a fitness function. The state space of
the adversarial agent is the sensor data that would be mirrored in
the real system. The action space is the set of components that the
agent could perturb to cause a fault. For example, this includes
each of the pipes it can clog and the filters it can foul. Each agent is
a feed-forward neural network with inputs of the state-space sensor
measurements, a list of 50 values. It has four layers, with a SoftMax
output layer that has the same length as the number of possible
faults, an array with 14 units. The output vector contains floats from
0 to 1 that represent the percentage probability that an action is
taken. Then, when assuming a normal distribution, an action is
selected. After this selection, the action is then issued to the digital
twin or the mock space habitat. When the action is issued, a fault
may or may not occur. If the ReLAA is well-trained (indicated with a
high fitness), then it is more successful in causing faults with the
actions selected from its output vector of probabilities.
Before training, a wide variety of experiments were performed

to capture several possible healthy and faulted operational
scenarios. In this data which shows actions and sensor data
together, the ReLAA learns this mapping. That is, the agent was
trained to find actions that push the system into failure. Agents
only act during a limited time horizon to encourage the discovery
of imminent failure cases.
The digital twin can be simulated with a real-time factor of

20 to 1. To train agents efficiently, each training run is conducted
on a standalone CPU process, allowing for 24 branches to be
simulated at once. Due to the total policy of the agents being
spread over the entire population, parallelization allows for the
current state space to be subject to numerous operational
scenarios, leading to varied possible fault generation events.
Overall, the parallelization enables training to be conducted up to
18× faster than without parallelization.
The flow of data during training and deployment is shown in

Fig. 3. The iterative neuroevolutionary optimization occurs in the
training block on the left, while data generated by agents is saved
for future use in the deployment. Once the agents are trained,
each can be loaded into the deployment framework where it will
be given the chance to perturb simulation events from the current
simulation state, as indicated in live sensor data provided to a
deployed ReLAA. Note that the ReLAA can be provided with past
or present sensor data and a digital twin simulation with 0 time
steps can be performed to identify past or present faults. Of
course, the results of the 0-time step simulation are trivial. From
the digital twin’s initial state, the simulation would illustrate the
time evolution into another state- the same state since the
simulation is performed for 0 time steps. The simulated data is
then analyzed to identify faults. A database of historical data is
generated during the training phase due to the limitations of the
FMU software standard and sensors. In order to generate a
simulation from a complex state, the sensor values are fed into a
Ball Tree algorithm. This structure finds the closest internal state
that can be loaded into the FMU given the current sensor state.

Table 1. Identified faults through the failure modes and effects
analysis and their associated mechanisms where the ReLAA can affect
change in the experimental setup with its actions.

Subsystem Faults Mechanism

GWS Membrane fouling, clogging,
restrictions, leaks

Valves

TCS Freezing Chiller, external heater

Blockages, leaks Valves

Electrical Power spikes Variable resistors

Shorts Circuit breaker

Power loss DC power supply

Sensors Sensor failure Disconnect from power,
software logic

Sensor drift Variable resistors,
software logic

Misc. LSS systems Load spikes Load bank

M. Overlin et al.

4

npj Microgravity (2023)    15 Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA



The FMU (the implementation form of the digital twin) is then
simulated to identify faults and appropriately notify a user.

ReLAA’s rewards and fitness
The fault detection methods shared in this work, using ReLAAs,
will identify actions that lead to faulted operation. This is achieved
utilizing a digital twin rather than taking potentially harmful
actions in the mock space habitat. The ReLAA agent is adversarial
in nature and earns a reward (during its training process) when
damaging actions are found. The reward function at any given
state, rs is defined below where, m, is the number of features
measured. For each feature, there is a reward. For a single feature
xv, the feature reward depends upon if this feature value is above,
below, or within upper and lower operational bounds. This is true
for all features when the current state value is within the features
lower bound and upper bounds, xl and xu. The equation below is
used to compute a feature reward.

rv ¼
1; if xv > xu
1; if xv < xl

maxf xu�xv
1
2ðxu�xlÞ ;

xv�xl
1
2ðxu�xlÞg; otherwise

8><
>:

(4)

Then, the reward function for a particular state rs can be
computed. rs depends on all rv values as shown in the equation
below:

rs ¼
Xm
v¼1

1
100

ð1� rvÞ (5)

Finally, the fitness of a given agent, Fi, depends on all rewards rs
in a simulation run.

Fi ¼ 1
jjSjj

X
s2S

rs (6)

The fitness for one ReLAA is ultimately the metric used to
judge whether or not the ReLAA is used to be deployed or
worthy of parenting subsequent generations in the neuroevolu-
tionary process.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

RESULTS
The mock space habitat is operated in a variety of conditions to
emulate the normal and faulted operations of an actual space
habitat.

Mock space habitat operation and fault emulation
Twenty different experiments were conducted, each containing
several disturbances to allow the mock habitat to operate in
different states. Measurement data from the TCS and GWS are
shown in Fig. 4.
First, an experiment was designed and performed over several

hours with regard to the TCS. The time evolution of the
temperatures in the TCS is shown in the first plot in Fig. 4. The
TCS is allowed to reach a steady state, but then certain faults
are emulated: sudden pump blockage, reduced flow through
chiller, bypass valve opening/closing. When such faults are
actuated, there is usually a deviation in the room temperature,
which is undesirable.
Second, an experiment was performed with regard to the GWS,

and a relevant plot of pressures is shown in Fig. 4. In the GWS, its
normal or faulted operation can be visualized in these pressure
measurements obtained at various points in the experimental
setup. During healthy operation, the pressures are generally the
largest. With the presence of a clog, leak, or other damage, several
pressure measurements typically deviate from their nominal
values. Measurement data were collected during various testing
conditions—healthy, drifted, or faulted—allowing for an operation
baseline to be established for agent training and deployment.

Fault detection and prediction
Training was conducted on a validated digital twin, assessing 36
agents per epoch. On each generation, agents were sorted into a
goal of six clusters, with each top 2 performing agents in each
cluster chosen as parents for the successive generation. Each
agent’s parameters were subject to Gaussian noise with a
maximum variability of 0.25 with a standard deviation of 0.10
(each parameter is between –1 and 1). From 12 parents, a total of
36 agents were to be tested in the next training epoch. The
performance of an agent is quantified as the cumulative sum of
the rewards over the 10 testing runs of that generation.
The fitness of the top performer in each generation is shown in

Fig. 5. Over the scheduled 100 generations, the performance of
the top agents steadily improved until the 65th epoch where the
population reached its maximum reward. After this peak, the
next 40 generations show a leveling-off in performance as
agents find optimal solutions. In addition, the diversity of each

Fig. 3 Multiple ReLAAs are trained before they are deployed to detect faults.
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agent is calculated at each generation. Some distance between
clusters is desirable and incentivized through the neuroevolu-
tionary structure. Relative distances between clusters increase by
a factor of 20 throughout the first 20 generations as the system
performs its state space exploration. With many agents trained
to discover faulted behavior, the pool of agents used for fault
detection is considered diverse. Following a peak in diversity
around the 20th epoch, the clusters begin to approximately
converge again to a steady state distance. During this time, the
fitness of each cluster is improving as denoted by the lightening
of each dot’s color.
When properly trained, the agents will issue actions to the

system which leads to faulted behavior. For example, Fig. 6 shows
an agent’s rollout in an operational scenario. As the flow meter
2 sensor measurement (shown in black in Fig. 6) would indicate,
the TCS in the mock space habitat is operating satisfactorily,
within healthy operating bounds (shown in red in Fig. 6).
When testing two of our agents on simulation-derived training

data, both are able to force the system to a fault using two
separate actuation methods. In the testing scenario, a clog within
the RO module is actuated at a rate of 0.5% per second until it
reaches an over-fault percentage of 30. This slight disturbance is
recognized by the adversarial agents, and they each present a
unique solution.
Agent 1 (green rollout in Fig. 6) actuates the RO clog fault

within the GWS, causing a cascade effect through the electrical
system. Because of the RO clog in the GWS, reduced flow is
observed throughout the TCS. As the clog in the RO filter
becomes worse, pressure grows above the control threshold

level, triggering the pumps to activate. The GWS pumps draw
more power than typical to push water through the clog. This
results in a decrease in the habitat’s DC bus voltage. With a lower
operating voltage for the TCS’s centrifugal pump, the pump
cannot provide a sufficient pressure differential. For this reason,
flow is reduced, and the room temperature cannot be effectively
regulated with the TCS. In this particular example of an indirect
fault, a clog in the GWS has indirectly prohibited the TCS from
regulating the habitat temperature.
Agent 2 (blue rollout in Fig. 6) simulates the clogged strainer

within the TCS. This filter is located on the intake of the TCS pump.
As the clog builds, pressure slowly drops as there is a linear
downtrend to the blue, jagged output. When the clogged strainer
fault is further actuated, it is not the ideal choice to break the
system. This demonstrates a key contribution to this active
learning framework. Multiple underlying component issues,
where none are independently causing a component fault, can
lead to a full system fault. As demonstrated in this work, our active
fault detection framework with the adversarial learning agent will
predict these hard-to-discover faults.

DISCUSSION
The neuroevolutionary training of a population of adversarial
agents was successful, as seen by increasing rewards for the
agents throughout the training process. In the clustering step of
training, diversity was achieved, and the system didn’t converge
to a single solution. The top agent’s reward increases steadily at
the beginning of training to a maximum reward, but then

Fig. 4 Experimentally captured data from the mock space habitat illustrate the operation during normal and faulted conditions.
a Normal and faulted operation is shown for a variety of faults emulated in the TCS. b Pressures throughout the GWS change in response to
normal and faulted conditions.
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reaches a plateau. The inconsistent growth from epoch to epoch
is a result of fitness sharing in the system due to the random
noise added to the parameters on each generation. This is a
necessary concession made in the system to not optimize toward
a single local minimum.

This approach to creating adversarial agents was successful in
reaching its goals, but has several technical limitations. Due to the
complexity of the FMU simulation and the corresponding
operation software, each simulation takes minutes to run and
generates substantial amounts of data. This limits the amount of

Fig. 6 ReLAA rollout shown for TCS flow meter 2. A successfully trained ReLAA issues actions to the system which allow for faulted
operation: the reduction in flow (outside of satisfactory operating bounds shown in red) throughout the TCS as shown in green.

Fig. 5 KL divergence during adversarial agent training. Average reward is represented by the dot color, with lighter being higher
performers.
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training that can be conducted and how much data can be stored
for the deployment framework.
The digital twins were leveraged to allow for the creation of a true

adversarial agent. It allows agents to learn how to break the system
components repeatedly without lasting impact, physical or monetary.
This process is key when developing intelligent systems that allow for
limited or no data collection before deployment. The simulation
provides for faster-than-real-time operation, pivotal when attempting
to accurately predict and observe possible latent faults.
In this work, a framework for active fault detection is

proposed, implemented and demonstrated. A mock space
habitat was designed, built, instrumented, and operated to
enable the demonstration of the fault detection method
developed in this work. A suitable FMEA analysis was conducted
to identify damaging faults that would cause irreparable
damage to the mock space habitat. A design of experiments
was executed to exercise the experimental setup in a variety of
operating conditions, normal and faulted. A digital twin model,
simulated as an FMU, was validated with the mock habitat’s
measurement data.
With a large volume of data collected, multiple ReLAAs were

trained to recognize normal and faulted behavior. The training
for these ReLAAs was completed in several generations using a
neuroevolutionary process so that diversity could be achieved.
Then, the agents were deployed to discover damaging actions
that could damage the mock space habitat. Because there are
multiple agents, a variety of damaging actions were found. With
these vulnerabilities discovered, a system operator can then use
this information to take proper action, thereby mitigating or
preventing faults.
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