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Meta-analysis of the space flight and microgravity response of
the Arabidopsis plant transcriptome
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Sarah Wyatt 13 and Simon Gilroy 1✉

Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors
including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant
response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight
experiments deposited in the National Aeronautics and Space Administration’s GeneLab data repository. These data were
reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common
computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly
increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a
curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray
versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define
plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple
elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the
complexity in drawing conclusions arising from comparisons made between experiments with very different designs.
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INTRODUCTION
Spaceflight imposes a unique suite of environmental effects on
biology. For example, microgravity severely curtails the signals
normally generated on Earth from the intrinsic weight of a plant’s
organs1 and by its gravity perceptive cells2–4. By contrast, in the
terrestrial environment, these are key factors driving normal
growth and development. In addition, gravitational forces on
Earth govern a host of physical processes including gas and liquid
flow that are important for normal plant function. Thus, the
microgravity environment can lead to the development of anoxic
regions around metabolically active plant tissues and altered
patterns of evaporative and convective cooling that can impact
leaf function and physiology5–8. Additionally, the increased
radiation exposure inherent in spaceflight is likely to trigger its
own array of responses within the plant. The combination of these
spaceflight-linked effects is outside the evolutionary history of
terrestrial biology and so it remains complicated to predict the
effects of spaceflight on organisms. Yet, understanding the
molecular and physiological responses of plants to these
conditions remains an important goal for space biologists, not
the least because plants are integral to many plans for life support
on long-duration crewed missions and for colonization9.
One way to probe the responses of organisms to spaceflight is

by analysis of changes in their transcriptomes, proteomes,
metabolomes, genomes and epigenomes induced by exposure

to this environment. In the field of plant biology the National
Aeronautics and Space Administration’s (NASA’s) GeneLab data
repository10,11 has aggregated many such omics datasets.
Critically, the deposited data are associated with extensive
metadata covering elements of each experiment’s design ranging
from features of the hardware, radiation exposure and lighting
regime to treatment duration, genotype and organism age. Such
extensive and accurate metadata are critical to understanding the
breadth of differences in experimental designs when making
comparisons between studies. This insight is important as the
flight hardware used, the analysis methodology employed (e.g.,
microarray versus RNA-seq for transcriptome studies) and other
experimental parameters likely superimpose their own, often
poorly defined, influences on the results (so-called batch
effects12). Indeed, recent analysis of rodent spaceflight data
suggests differences in sample preservation eclipsed spaceflight-
driven differences in mouse transcriptional profiling13. However,
given the relatively few opportunities to conduct experiments in
space, making comparisons between existing studies represents a
potentially powerful approach to identify common responses in
the often-limited available spaceflight data.
We have therefore imported 15 spaceflight-related plant

transcriptome datasets from the GeneLab data repository and
manually curated the associated metadata to develop a metadata
matrix (hereafter, the Matrix). This approach allows the more
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robust design of comparisons between studies that share
commonalities in experimental design. Our meta-analyses broadly
confirmed the spaceflight-related changes in cell wall processes
and oxidative stress that were highlighted in many of the original
publications associated with each individual study. Additionally,
Matrix-driven analyses helped reveal new response elements, such
as conserved spaceflight-triggered changes in expression of the
cold response gene COLD RESPONSIVE 78 (COR78), and likely shifts
in ion transport processes. We also identified factors within the
experimental design such as choice of flight hardware and
especially assay technique (i.e., microarray versus RNA-seq) that
can impose greater differences between datasets than the
spaceflight treatment. Thus, the Matrix allows researchers to
explore the wealth of plant biology transcriptomic data generated
during spaceflight-related studies and provides an approach to
better understand underlying factors impacting the robustness of
comparisons made between the different datasets.

RESULTS AND DISCUSSION
Comparative transcriptomics of plant spaceflight-response
data
One method to assess the similarities and differences in
transcriptome-level responses between different plant spaceflight
experiments is to make comparisons using the results of the
analyses already presented in the primary literature on each study.
This approach can be further expedited using tools, such as the
Test of Arabidopsis Space Transcriptome (TOAST) database14 that
aggregates these analyses into an interactive data exploration
environment. Such comparative studies capitalize upon the

unique insights of the researchers who performed each experi-
ment and the tailored analytical tools and approaches they then
employed to define differentially expressed genes (DEGs) in their
original publications. We will refer to these studies as in-house
analyses. However, the wide range of analytical pipelines used in
such a primary literature-based approach inevitably imposes some
limitations on the robustness of any conclusions that can be
drawn between studies. This problem arises because differences in
gene expression patterns between datasets likely involve both the
effects of experimental treatments, such as growing plants in
spaceflight versus a ground control, and of elements specific to
the different analytical programs and statistical approaches used
to analyze the data. Indeed, differences between results from
different software packages analyzing the same raw transcrip-
tomics datasets are well-documented in the literature15. Therefore,
a complementary methodology was also applied by reanalyzing
the plant studies used in our analysis via the common
computational pipelines summarized in Fig. 1. A similar strategy
of reanalyzing published datasets using a common computational
approach has been used in the EMBL-EBI gene Expression Atlas.
For example, when these researchers import RNA-seq data, a
standardized analysis is performed using the integrated RNA-seq
Analysis Pipeline, or iRAP, approach16. Although this analysis
pipeline is different from the one we have adopted, the
standardizing of analysis across all datasets for the EMBL-EBI
gene Expression Atlas is designed with the same goal in mind: to
reduce the potential for generating artifacts that are caused by
making comparisons between datasets that have been the subject
of different initial data analysis methodologies.

Fig. 1 Uniform analysis pipeline applied to Arabidopsis GLDS datasets used in this study. Normalized expression arrays are imported from
NASA’s GeneLab repository (https://genelab-data.ndc.nasa.gov/genelab/projects) and then parsed by the TOAST X-Species Transcriptional
Explorer (https://astrobiology.botany.wisc.edu/x-species-astrobiology-genelab) for analysis of common features between experiments (cross
experiment intersect analysis). The iDEP.92 R-shiny app59 is then used to generate expression heatmaps for clustering, and to perform
Principal Component Analysis (PCA), Multidimensional Scaling analysis (MDS), t-distributed Stochastic Neighbor Embedding (T-SNE),
Weighted Gene Correlation Network Analysis (WGCNA) and K-means statistical analyses. Functional analyses are then performed using the
online tools at Ensembl GO53, KEGG (Kyoto Encyclopedia of Gene and Genomes)56, AraCyc57 and Reactome58. These data are then visualized
as tables and dendrograms of the enriched functional groups that are altered by spaceflight and/or related stimuli.
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Using our common analysis pipeline approach to comparing
DEGs across all the Arabidopsis studies, batch effects (i.e.,
confounding variables imposing effects on patterns of gene
expression over and above those of the spaceflight treatment)
became readily evident. Thus, Principal Component Analysis (PCA)
and Euclidean hierarchical clustering revealed that rather than the
comparison between of spaceflight and ground control, whether
RNA-seq or microarray was used to detect patterns of gene
expression is the factor with the largest effect on separating
studies (PCA1, explaining 83% of the variance between experi-
ments; Fig. 2a, c). Similar analysis showed the important but lesser
impact of lighting environment (Fig. 2b). It is important to note
here that we have used a statistical threshold of p < 0.01 to define
a DEG. Our analysis pipeline also generates the more stringent
adjusted p-value (or q-value) that corrects the p-value for the false
discovery rate associated with multiple testing. Although we have
analyzed the p-value filtered results to encompass as broad a set
of DEGs as possible, q-values are presented in the tables of
Supplementary Data, to allow the reader to define DEG lists using
this parameter. Similarly, a cut off related to fold-change in
expression (such as only evaluating genes showing ≥2-fold
change in e.g., spaceflight versus their paired ground control) is
often used in the literature to limit the extent of the gene lists
being analyzed. Again, we have opted not to apply such a fold-

change cut off to maintain the most inclusive list of DEGs for
analysis. However, fold-change in expression level is also
presented in the Supplementary Data, allowing the reader to
filter the gene lists using a fold-change cut off as appropriate for
their analyses
We next created a connectivity network visualization system

using all the pairwise comparisons that can be made between the
GLDS used in our analysis (Fig. 3a–g; Supplementary Data 2; an
interactive version of this connectivity analysis is available at:
https://gilroy-qlik.botany.wisc.edu/a/sense/app/20aa802b-6915-
4b1a-87bd-c029a1812e2b/sheet/6241e71a-a3c5-4c63-9210-
e05c743699d7/state/analysis). Pairwise factor correlation analysis
was performed by inspection of the Matrix in Supplementary Data
1 and manually scoring factors that are similar between different
pairs of studies, assigning a value of 1 for each factor shared
between a pair and a value of zero if that factor was different.
Thus, the more factors in common between a pair of studies, the
greater their similarity scores. The full pairwise similarity matrix
can be found in Supplementary Data 2. This approach linked
the studies using similarity scores reflecting commonalities in the
different experimental designs and metadata factors within the
datasets in our study. Such network analysis allowed us to further
visualize and dissect links between the factors that potentially
cause the clustering of studies identified in the PCA (Fig. 2).

Fig. 2 Principal component analysis (PCA) of the 15 plant datasets in the Matrix reveals clustering based on analystical approach
(microarray versus RNA-seq) and by lighting conditions. Principal components sperate datasets by a microarray versus RNA-seq-based
analyses and b by growth in the light versus the dark environment of the growth hardware. PC1 principal component 1, PC2 principal
component 2, PC3 principal component 3. Percentage reflects the degree of variance accounted for by each principal component. c Euclidian
hierarchical clustering confirms grouping by assay type (microarray versus RNA-seq) as major factor within the data. Ecotypes: Col Columbia,
Cvi Cape Verde Island, Ws Wassilewskija, Col-0 +Ws, mixed sample 80% Ws, and 20% Col ecotypes. Genotypes: WT wild-type, act2 actin 2, arg1
altered response to gravity 1, atm1 ataxia-telangiectasia mutated 1, hsfa2 heat shock transcription factor A2, phyD phytochrome D.
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When represented graphically as links between studies and
metadata factors, this analysis demonstrated that hardware and
its associated lighting regimes were indeed likely key components
that influence clustering of responses in the data (Fig. 4).

It is important to remember here that the lighting environment
for an experiment is often dictated by the hardware that was used,
for example, most plant experiments performed to date using the
Biological Research in Canister (BRIC) hardware are conducted in

Fig. 3 Pairwise factor correlation analysis creates a weighted network linking studies based on metadata similarity score. a Whole
connectivity network. Numbers and thickness of connection (network edge) reflect degree of connectivity through shared metadata factors.
b–f 5 sub-networks based on common BRIC hardware experiment design: b sub-network of experiments performed using the BRIC hardware
(mean connectivity score: 6.3), c BRIC experiments involving seedlings (mean connectivity score: 6.0). Seedling experiments analyzed using
d RNA-seq (mean connectivity score: 8) or e microarray (mean connectivity score: 7.6) and f BRIC experiments that have used cell cultures, all
analyzed by microarray (mean connectivity score: 7.4). For a–g size of circle for each study reflects the number of connected factors available
for pairwise comparison. g Examples of connectivity of GLDS-7, GLDS-37, GLDS-38, and GLDS-120 by tissues sampled and ecotypes analyzed.
Colored lines reflect factor connecting studies. Ecotypes: Col, Columbia; Ws, Wassilewskija; Ler, Landsberg. See Supplementary Data 2 for full
connectivity matrix.
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the dark. Therefore, lighting and hardware are inevitably closely
linked in our network analyses of current datasets. This observa-
tion also highlights the insight that could be gained by
performing more studies that use the same hardware but with a
range of lighting environments. Such analyses could help separate
hardware-related effects on the plant during growth in space from
those specifically triggered by the lighting environment under
those conditions.
Such network analyses distinguish those studies sharing a high

degree of network linkages within the Matrix, i.e., studies with a
larger number of common features in their experimental design.
Results of comparisons between such highly connected studies
are candidates for more robust analyses due to these shared
factors. For example, although the overall experimental designs
behind GLDS-7, GLDS-37, GLDS-38, and GLDS-120 differ from each
other by ecotype, hardware or experiment duration, each links to
multiple other spaceflight experiments within the Matrix and form
hubs in networks related to hardware and/or tissue sample type
(Fig. 3g). Thus, GLDS-7 was performed in the Advanced Biological
Research System (ABRS) and is of interest due to the high number
of tissues and ecotypes in its experimental design that link to
many other studies in the Matrix. GLDS-37 was conducted in the
BRIC hardware and is extensively linked to other studies due to
the large number of Arabidopsis ecotypes analyzed, as well as the
many other Arabidopsis BRIC experiments available for compar-
ison. GLDS-38 (BRIC) provides RNA-seq and paired proteomics
data that likewise connect to many other BRIC datasets. GLDS-120

took place with a unique hardware setup (square Petri plates that
were attached to the inside wall of the International Space
Station), but contains multiple ecotypes, genotypes and light
treatments that link it to many other studies in the Matrix. These
connections to other studies suggest that comparisons within the
local networks where each study acts as a hub are likely to be
fruitful targets to extract common spaceflight-related responses.
Conversely, such network analyses also revealed studies that are

the most distinct (i.e., least shared metadata factors with other
Matrix studies). One clear set of such studies are those designed
around terrestrial spaceflight analogs such as GLDS-46, GLDS-136,
and GLDS-144. These experiments use elements such as
hyperbaric chambers, space radiation analog exposures, and
microgravity simulation on clinostats and random positioning
machines to mimic specific aspects of the spaceflight environment
and so are more distant in design to the other spaceflight
experiments. Thus, as shown in Supplementary Fig. 1, pairwise
similarity matrix comparisons show spaceflight studies are most
similar to other spaceflight studies (average pairwise similarity
score of 5.88 ± 1.93) and significantly less similar (p < 0.01) when
compared to ground analog studies (average similarity
4.21 ± 1.36), which are most similar to other ground analog
studies. This Matrix-driven network visualization then highlights
the opportunity to design follow-up experiments that use these
analogs of putative spaceflight stressors but where the design of
the study is more interconnected to the factors seen in their
closest spaceflight studies within the Matrix. Such aligned

Fig. 4 Graphical representation of metadata related to tissues, assay type and flight vehicle. The specific assay and tissue types for each
dataset are indicated with network clustering based on hardware. See Supplementary Data 1 and 2 for the Matrix driving this visualization.
Note the hardware used to analyze plant response to spaceflight often defines the types of tissue that are available and so these two variables
are often linked. Purple color circles represent RNAseq analysis of wild-type Col-0 plants, shades of blue represent other WT ecotypes, the pink
circle represents RNA-seq analysis performed on mutants. The size of circles is a qualitative representation of the amount of differentially
expressed loci relative to other genetic varieties used during that study. Ecotypes: Col Columbia, Cvi Cape Verde Island, Ws Wassilewskija, Ler
Landsberg, Col-0 + Ws mixed sample 80% Ws and 20% Col ecotypes. Genotypes: WT wild-type, arg1 altered response to gravity 1, hsfa2 heat
shock transcription factor A2, atm1 ataxia-telangiectasia mutated 1, phyD phytochrome D, Hardware: BRIC Biological Research in Canister, EMCS
European Modular Cultivation System, VEGGIE Vegetable production system, SIMBOX SIMBOX incubator system, ABRS Advanced Biological
Research System. An interactive version of this visualization is available at: https://gilroy-qlik.botany.wisc.edu/a/sense/app/20aa802b-6915-
4b1a-87bd-c029a1812e2b/sheet/6241e71a-a3c5-4c63-9210-e05c743699d7/state/analysis.
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experimental designs could help increase the robustness of
subsequent comparisons to the existing spaceflight data.
We next asked if we could define factors within the metadata

other than spaceflight treatment that help define clustering within
the studies. We therefore took the expression level data for each
individual sample replicate (normalized probe fluorescence

intensity for microarray and FPKM for RNAseq) from all the
studies in the Matrix and calculated the Pearson’s correlation
coefficient for all possible pairwise combinations (Supplementary
Data 3). We next calculated the average Pearson’s correlation
coefficient from this analysis for each set of replicates within an
experiment, providing a measure of correlation for each treatment
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within a dataset to all other treatments in all datasets in the
Matrix. We then sorted these data by each metadata factor within
the Matrix to ask if a particular metadata factor stood out as
explaining the patterns of correlation within the transcriptomics
data. Of these, radiation treatment was the most highly correlated
factor (Supplementary Data 3), followed by genotype, tissue/
developmental stage, flight hardware and then altered gravity (i.e.,
spaceflight). This analysis again highlights the likelihood that
many experimental factors are imposing patterns on spaceflight
transcriptional profiles and reinforces the effects of radiation
exposure as a key area for future spaceflight-related
experimentation.

Mining the Matrix for common patterns of spaceflight-
responsive gene expression
Insights from the network of connections between the
spaceflight-related datasets in the Matrix were then used to make
comparisons between gene expression patterns seen in space-
flight treatments and ground control samples (e.g., excluding the
ground-based spaceflight analog studies). Having defined the
assay type (microarray versus RNA-seq) as one of the most
important confounding factors when comparing spaceflight
responsive transcripts across multiple datasets (Fig. 2), the
microarray and RNA-seq datasets were separated into two parallel
analysis pipelines. The data of the DEGs within the two series of
datasets was then analyzed using Weighted Gene Co-expression
Network Analysis (WGCNA). Unguided WGCNA clustering identi-
fied 3 groupings within the microarray datasets and 4 within the
RNA-seq data (Fig. 5a–c). Krishnamurthy et al.17 have compared
microarray and RNA-seq analyses of identical samples from
Arabidopsis roots, concluding that although the two approaches
broadly agreed (on ~66% of ~6400 DEGs in their study), RNA-seq
analysis revealed significantly more DEGs. Thus, in our study the
RNA-seq is likely providing a broader dataset within which to find
enriched Gene Ontologies likely leading to the increased number
of groupings found by our analysis.
The top 20 enriched ontology groupings shared between the

RNA-seq and microarray analyses are summarized in Fig. 5d and
the full set of significantly enriched Gene Ontologies is shown in
Supplementary Fig. 2. Clade I in both the microarray and RNA-seq
stands out as sharing the most common significantly DEGs. When
expanding this analysis to include shared significantly enriched
Gene Ontology terms (Fig. 5c), terms that broadly cover response
to environmental stresses (such as to light, cold and bacteria) are
seen (Supplementary Fig. 2). This observation supports the
conclusions from numerous previous spaceflight analyses that
plants exhibit a suite of stress-related responses when encounter-
ing the spaceflight environment. However, a further prominent
and novel shared element seen across these analyses is changes in
the expression of genes related to photosynthesis, other aspects
of primary metabolism and also changes to secondary metabolism
(Fig. 5d). This observation suggests that spaceflight and
spaceflight-related treatments are likely impacting these funda-
mental aspects of plant function. However, as a note of caution,

this analysis combines the responses across all the diverse plant
datasets within the Matrix. Even though the analysis in Fig. 5d is
filtered to exclude the broadest Gene Ontology terms (i.e., those
terms encompassing more than 100 genes), such wide-ranging
analysis might be expected to reveal only the most general
common responses, whilst being relatively insensitive to more
subtle or specific spaceflight responses. This is because of the
variation likely imposed by the wide range of experimental
designs encompassed by these datasets, i.e., in addition to
spaceflight-related effects a host of other responses are likely
superimposed on the data, diluting the signal from some
spaceflight responses. It seems likely a similar reason explains
the observation that, although there are shared spaceflight
enriched gene ontologies between experiments, there is no
individual DEG common to all these experiments. The Matrix
facilitates a more targeted subset of comparisons between
datasets (e.g., chosen based on commonalities in the hardware
or plant samples used within each experiment) that might be
expected to reduce this experimental design-driven noise to
reveal these more specific shared gene groupings. An example of
such an analysis described in the following section.

Analysis of studies using common hardware: BRIC datasets
provide 2 tissue types and 2 transcriptome assay types for
meta-analysis
The analyses in Figs. 2 and 3 suggest that both the specific flight
hardware used and its associated lighting regime significantly
impact the patterns of gene expression noted in plants in
spaceflight. Further, our network analyses (Fig. 3b) show that
GLDS-17, GLDS-37, GLDS-38, GLDS-44, and GLDS-121 are all highly
connected, especially for these factors. Thus, these studies all used
etiolated seedlings grown in the dark in the Petri Dish Fixation
Unit (PDFU) cassettes of the BRIC hardware. Additionally, samples
were harvested at the young seedling stage of development (up
to 12 days old) and all included a paired on-orbit and ground
control design to allow for exploration of spaceflight-related
patterns of DEGs18–22. Differences between the studies include
ecotype and analysis type (microarray versus RNA-seq). Never-
theless, their high levels of similarity, especially at the level of the
hardware and lighting used, suggested to us that they could
provide an important set of similarly designed experimentation to
help more robustly reveal common spaceflight responses.
Additionally, all these studies have published in-house analyses
from their respective research groups, allowing us to further test
the relative merits of comparisons drawn between the in-house
results from each original publication versus the common
analytical pipeline that we have used in this study. Table 1
presents a summary of the total numbers of DEGs detected in
these analyses at p ≤ 0.01 alongside the overlap in these gene lists
between the in-house and common pipeline analyses (the full lists
of DEGs are shown in Supplementary Data 4).
The five datasets were separated into microarray (three studies)

and RNA-seq (two studies) groups and analyzed using the GeneLab
pipelines outlined above before making an overall comparison

Fig. 5 Unguided Weighted Gene Correlation Network Analysis (WGCNA) clustering of the Arabidopsis datasets used in this study. This
analysis was performed on the DEGs identified in the RNA-seq (a) and microarray (c) datasets from the spaceflight experiments imported into
the Matrix (see Table 2 for specific datasets used). This analysis identified 4 clusters of DEGs within the RNA-seq (a) and 3 clusters within the
microarray analyses (c). b Overlap in the DEGs within each cluster between the WGCNA RNA-seq and microarray analyses. Purple curves link
identical genes and light blue curves link genes that, although not identical, belong to the same enriched Gene Ontology term found in each
clade. The inner circle represents gene lists, where hits are arranged along the arc. Genes that hit multiple clusters are colored in dark orange,
and genes unique to a single cluster are shown in light orange. d List of top 20 significantly enriched Gene Ontologies drawn from the clusters
of DEGs depicted in a–c that are shared by 2 or more clusters. The full list of enriched Gene Ontology terms is reproduced in Supplementary
Data Fig. 1. Multiple colors under the PATTERN column indicate a pathway or process that is shared across multiple microarray or RNA-seq
clades as denoted by their color coding in a and c. Count number of loci included in enrichment analysis, % proportion of all query genes that
are found in the given Gene Ontology term, P p-value, q p-value adjusted for multiple testing. Analysis made using Metascape24.
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across all the BRIC experiments. The significance threshold to
identify DEGs was set at p < 0.01. In a previous comparative analysis,
Johnson et al.23 reported no common genes amongst the BRIC-16
mission microarray studies (GLDS-17, -44 and -121) when using a
cutoff of p < 0.01 but also applying a threshold of 5-fold or greater
for induction or repression in transcript level as measured on their
microarray (to define the most strongly regulated genes). We
therefore reanalyzed these microarray results using a pipeline
similar to the original authors’ analyses (Affymetrix Express pipeline
and the Probe Logarithmic Intensity Error (PLIER) approach for
normalization21, with a significance setting p < 0.01) but now using
no fold-change filtering (Supplementary Data 4) to be more
analogous to the GeneLab analytical pipeline we have also applied.
Using the in-house analysis by the researchers (GLDS-1718, GLDS-
4422) and the reanalysis of GLDS-12121 using PLIER, the results of
our comparisons across all the microarray studies conducted with
wild-type seedlings identified 86 spaceflight-related DEGs found
across all studies (Supplementary Data 5). The GeneLab reanalysis
identified 114 loci in common between the 3 studies, including
85% of the genes from the in-house analysis. Analysis of the 75
DEGs identified in all 3 studies by both analytical techniques using
MetaScape24 (Fig. 6) revealed enrichment in Gene Ontology terms
including: regionalization, response to Karrikin (a plant stress
response pathway triggered by volatiles originally found in smoke),
regulation of stomatal movement and tropism. These latter two
terms are particularly interesting as disruption of gravitropic growth
is one of the predicted responses of plants growing in the
microgravity environment of spaceflight. Although patterns of
development seen in plants growing in space often show more
randomized directional growth than on the ground, molecular
evidence for altered tropic response reflected in the patterns of
transcriptional changes observed in spaceflight has been less clear.
Thus, the highlighting of tropisms in Fig. 6c suggests the use of the
Matrix approach for analyzing the available data may help reveal
these molecular signatures. Further, this analysis revealed that
stomatal behavior may be affected by spaceflight. Factors such as
reduced buoyancy-driven convection in microgravity would be
predicted to alter gas exchange at the stomatal pore5,8, likely
playing out as altered stomatal function. Again, this effect has been
difficult to reliably detect in the transcriptional fingerprints of
spaceflight responses, but the targeted analyses driven by insights
from the Matrix appear able to reveal evidence for these previously
cryptic patterns of molecular changes. Repeating this analysis made
using Metascape24 but with DAVID (the Database for Annotation,
Visualization and Integrated Discovery25) as an alternative, widely
used tool to assess gene ontology enrichments agreed with the
analysis outlined above and did not reveal any new significantly
enriched ontology terms at p < 0.01. This observation suggests the
Metascape analysis outlined in Fig. 6 is likely capturing most of the
patterns of ontology enrichment in the data.
GLDS-37 and GLDS-38 represent the BRIC samples studied with

RNA-seq, necessitating independent analysis from the microarray
datasets discussed above. Again, we used data from the published
in-house bioinformatics approaches19,20 and the GeneLab

common analytical pipeline. Comparison of these approaches in
the WT Col-0 samples in both datasets shows that at a threshold of
p < 0.01, the common pipeline identified 701 and 951 new loci as
showing altered expression in spaceflight from GLDS-37 and
GLDS-38 respectively, or about 25% more loci than found in the
original authors’ analysis (Table 1 and Supplementary Data 4).
Comparing the GeneLab pipeline-based analysis with that of the
original peer-reviewed publications indicates agreement on 927
(GLDS-37) and 2404 (GLDS-38) DEGs. Further, within this analysis,
164 loci were significantly differentially expressed in both GLDS-37
and GLDS-38 (Supplementary Data 6). Gene Ontology enrichment
analysis of these spaceflight-responsive DEGs across both studies
and in both the in-house and GeneLab analytical pipelines (Fig.
6d) revealed enrichment in responses such as to oxidative stress,
heat shock and changes in cell wall dynamics that have been
highlighted in multiple previous plant spaceflight transcriptome
studies (e.g., refs. 14,19,21,22,26,27). Reanalysis with the Matrix
approach was also able to reveal a fingerprint of hypoxia which
has been predicted as an important factor impacting biology
operating with the reduced convective gas movements inherent
in a microgravity environment6,7 but which has previously proven
difficult to observe in analyses of transcriptional responses of
individual flight experiments using the BRIC. In addition, Gene
Ontologies related to various aspects of ion transport are
prominent in our analysis targeting future investigations focused
on both anion and cation transport as likely to be a fruitful targets
for further understanding the effects of spaceflight on plants.
Lastly, since processes associated with responses to spaceflight

are still largely unknown, Supplementary Data 7 provides a list of
spaceflight-responsive DEGs from this analysis that currently have
no GO or KEGG annotation. These genes provide potential targets
for study for novel processes triggered by plant growth in space.
We next used Metascape analysis on these lists of DEGs from

the analysis of GLDS-37 and GLDS-38 to explore potential
protein:protein networks, applying Metascape’s protein-protein
interaction enrichment analysis and Molecular Complex Detection
(MCode)28. These analyses take the lists of differentially expressed
genes and mine an array of protein interaction databases
(STRING29, BioGrid30, OmniPath31, InWeb_IM32) for enriched net-
works of physical interactions. MCode then allows a focus on
highly connected hubs when the numbers of proteins in the
network become very high. These analyses again revealed
enrichment for a response network associated with ion transport
and chaperone activity (Fig. 7). In addition, multiple network
clusters related to protein ubiquitinylation were identified. This
observation suggests spaceflight may have triggered alterations in
proteasome activity, possibly related to stress-induced protein
turnover. Such a response to stress-related protein dysfunction
would be consistent with the elevated chaperone activities
suggested by the heat shock protein (HSP)-related protein:protein
interaction cluster identified in this same analysis.

Table 1. Comparison of the differentially expressed gene counts from in-house and common pipeline analyses.

GeneLab Accession Assay GeneLab count Original count Loci in both Difference In-house reference

GLDS-17 Microarray 2459 499 34 1960 37

GLDS-44 Microarray 4031 3826 2597 205 41

GLDS-121 Microarray 2122 2177 2121 –55 40

GLDS-37 RNA-seq 2785 2084 927 701 38

GLDS-38 RNA-seq 3870 2919 2404 951 39

Data is taken from the original spaceflight research publications (in-house, i.e., using the original authors’ analyses with p ≤ 0.01) and the GeneLab analysis
(p ≤ 0.01, adjusted for multiple hypothesis testing using the Benjamini and Hochberg method).
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Intersection between RNA and microarray analyses
By combining the differentially expressed gene lists from both
microarray and RNA-seq analyses identified using the GeneLab
common pipeline approach, 6 common spaceflight response loci
were identified but in only three of the studies (GLDS-37, GLDS-
38, and GLDS-121). This observation reinforces the idea that
variation in experimental design and analysis approach may be
obscuring some common patterns of response (see below).
Within the BRIC-19 experiment that generated the data in GLDS-
37, in addition to the Col-0 ecotype (also used in GLDS-38) and

Ler-0 (also used in GLDS-121), two additional ecotypes were
investigated (Cvi-0, Ws-2). These same six genes were also
differentially expressed across all the ecotypes in this study,
reinforcing their likely common response nature. These 6
common genes were: AT1G74310 (HOT1/HSP101; HEAT SHOCK
PROTEIN 101), AT1G58340 (ABS4, a plant MATE multidrug and
toxic compound extrusion transporter), AT5G52310 (COR78; COLD
REGULATED 78), AT4G11290 (PRX39, a cell wall peroxidase),
AT5G09220 (AAP2, AMINO ACID PERMEASE 2), and AT1G73480
(MAGL4, an α-β hydrolase). Analysis of these loci using the graph-

Fig. 6 Analysis of shared DEGs between the in-house and GeneLab pipeline analyses of plant experiments performed in spaceflight using
the BRIC hardware. Overlap between gene lists for microarray studies (a) or RNA-seq (b) where purple curves link identical genes and light
blue includes the shared Gene Ontology term level. Curves link genes that belong to the same enriched Gene Ontology term. The inner circle
represents gene lists, where hits are arranged along the arc. Genes that hit multiple lists are colored in dark orange, and genes unique to a list
are shown in light orange. Sectors denoted by GeneLab ## show the analysis using GeneLab common pipeline; sectors denoted by a citation
show the original authors’ in-house analysis. c, d Significantly enriched GO terms from analysis of common genes found in the microarray (c)
and RNA-seq (d) analyses identified in both the in-house and GeneLab pipelines. Analysis in c and d performed using Metascape.
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based network analysis tool KnetMiner23 revealed broad connec-
tions to the plastid and membrane function (Fig. 8).
Some of these genes have been discussed in the individual

analyses originally published on each BRIC experiment(s)18–22.
However, the power of the current meta-analysis lies in high-
lighting these particular genes as possible core markers of the
spaceflight response across multiple experiments within the BRIC
hardware and revealing a difference in GLDS-17 and GLDS-44.
Interrogating the experimental design reveals that one obvious
difference between GLDS-17 and the other BRIC investigations is
that 3% (w/v) sucrose was used in the seedling media in GLDS-17
compared to 0.3–1% (w/v) in the other studies. Sucrose is
generally added to the media of Arabidopsis seedlings to support
the heterotrophic growth of the plants in the dark conditions in
the BRIC. However, the higher sucrose in BRIC-17 [https://genelab-
data.ndc.nasa.gov/genelab/accession/GLDS-17] was specifically
added to facilitate comparisons between the seedlings in this
experiment and a parallel set of cell cultures that required much
higher sucrose for growth. The differences in gene expression
between BRIC-17 [https://genelab-data.ndc.nasa.gov/genelab/
accession/GLDS-17] seedlings and the other BRIC experiments
then implies that changes in primary metabolism experienced by
the etiolated seedlings in the BRIC may be an important factor in
determining spaceflight related transcriptional responses, echoing
the altered primary metabolism inferred from our meta-analysis
across all the spaceflight datasets analyzed as part of the Matrix in
Fig. 5. Such observations are especially relevant in the context of
possible spaceflight-related hypoxia discussed above. Indeed,
Loreti et al.,33 used microarray analysis in ground-based research

to investigate the changes that take place in seedlings that
experience low oxygen stress with or without the addition of
external sucrose. Their analyses revealed that exogenous sucrose
significantly alters patterns of anoxia-related transcriptional
change. Thus, the increased sucrose concentration in the media
found in GLDS-17 should dramatically affect the plant hypoxia
response and so is likely to alter responses to this particular effect
of the spaceflight environment.
Precisely why GLDS-44 also does not show the conserved

transcriptional responses seen in GLDS-37, GLDS-38, and GLDS-
121 is less obvious as its experimental design is very similar to
these other BRIC-based experiments and it was flown side-by-side
on the same mission as GLDS-121. However, subtle features such
as the seed planting density differed between these studies and
so effects of plant density and competition might be super-
imposed on these results. This analysis then highlights how
understanding the feature(s) in these experiments responsible for
the differences in expression pattern offers enormous potential to
define factors with wide-ranging effects on the plant spaceflight
response; i.e., the difference(s) between GLDS-44 and GLDS-121
and the other BRIC experiments clearly had dramatic effects on
the patterns of spaceflight-related gene expression and so
exploring how these studies differ in design should help define
some key spaceflight-response related factors.
Looking at the shared DEGs between GLDS-37, GLDS-38, and

GLDS-121 identifies HSP101 as a common spaceflight response
marker. Indeed, upregulation of Heat Shock Proteins (HSPs) in the
spaceflight environment is well known18,19,27,34,35. Heat Shock
Proteins are molecular chaperones associated with protecting and

Fig. 7 Protein:protein interaction network inferred from the common DEGs identified using the GeneLab analysis pipeline of GLDS-37
and GLDS-38. Analysis using Metascape with annotation of densely connected network elements identified with the MCode algorithm. Colors
represent clusters grouped by shared ontology term. Size of circle shows the number of protein:protein interactions that each node/locus is
annotated as being involved with as identified by the MCode analysis.
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refolding proteins in response to cellular damage36. Consistent
with the enriched clades corresponding to photosynthesis
identified in Fig. 5, patterns of HSP101 upregulation and its
relationship to the chloroplast (Fig. 8), suggest that this protein
may play an important role in ameliorating chloroplastic
proteotoxic stress possibly resulting from spaceflight-induced
production of reactive oxygen species (ROS) in the plastid. Indeed,
the HSP100 family are known to be induced by abiotic stressors
such as oxidative stress37 and have even been linked to tolerance
to the proteotoxic damage caused by hypoxia38. Previous
work14,19 has demonstrated a significant correspondence between
patterns of gene expression altered by oxidative damage from the
high light stress response on Earth (which is strongly linked to
damaging levels of plastid ROS production) and the spaceflight-
associated DEGs identified in the seedlings from BRIC experi-
ments. Similarly, the large number of plastid genes responding to
spaceflight identified in seedling samples from BRIC-16/GLDS-4422

reinforces the idea that this organelle may be an important site of
spaceflight-induced responses. However, it is important to note
that the BRIC experiments we have analyzed were all conducted
under dark growth conditions. Therefore, the light-driven reac-
tions of photosynthetic electron transport that are a major source
of plastid ROS production on Earth are not responsible for these
spaceflight-related effects and so the source of any spaceflight-
triggered ROS production within the plastid remains to be
defined.
Our meta-analysis using the common GeneLab analysis

pipelines also highlights COR78 as likely a part of a conserved
transcriptional response of Arabidopsis on orbit in the BRIC

hardware. Although originally identified as a cold induced
transcript, COR78 is now known to be highly inducible in response
to a range of abiotic factors ranging from wounding and salt
exposure to osmotic stress, drought and even the hypobaric (low
pressure) environments predicted for future large scale, space-
based plant growth facilities39–41. A common feature of all these
stressors is that they trigger signaling through ROS and induce
oxidative stress. Indeed, COR78 expression is regulated through
the same ROS-responsive transcriptional cascades (i.e., H2O2

responsive modulation through the DREB2A transcription factor)
that modulates heat shock response elements such as HsfA342,
providing a possible link to the heat shock factor component of
the spaceflight response. In a further tantalizing link between the
chloroplast and COR78 response, COR78 expression is co-regulated
with elements of the plastid antioxidant system and indeed, its
expression is thought to be tightly linked to the levels of H2O2

processing by the plant43.
In summary, the GeneLab database is accumulating an ever-

increasing number of datasets that investigate the transcriptional
effects of spaceflight on early plant development. This aggrega-
tion of information, along with careful curation represents a
powerful resource to begin to understand spaceflight responses in
these organisms. Spaceflight imposes some commonly encoun-
tered and some unique challenges when comparing datasets.
Thus, as with all large omics-level analyses, differences in
protocols and analysis pipelines can impact the robustness of
comparisons. However, spaceflight also leads to further challenges
related to an often-restricted capacity for biological replication
and with limitations on experimental design dictated by available

Fig. 8 Network analysis of the 6 common spaceflight responsive genes identified from analysis of Arabidopsis seedlings flown in the
BRIC hardware. Query genes are highlighted in yellow. AT1G74310 (HOT1/HSP101; HEAT SHOCK PROTEIN 101), AT1G58340 (ABS4, a plant MATE
multidrug and toxic compound extrusion transporter), AT5G52310 (COR78; COLD REGULATED 78), AT4G11290 (PRX39, PEROXIDASE 39, a cell wall
peroxidase), AT5G09220 (AAP2, AMINO ACID PERMEASE 2), and AT1G73480 (MAGL4, an α-β hydrolase family protein). Analysis performed using
KnetMiner. Purple connector, link to biochemical function; cyan connector, link to physical location in cell; green connector, link to associated
phenotype; black connector, direct physical or genetic linkage. Note links to plastid (green oval) for MAGl4, HSP101 and COR78. An interactive
version of this analysis is available at: https://knetminer.com/beta/knetspace/network/970c571c-15da-4b93-87ad-ef1418ef9d29.
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spaceflight hardware. We have begun to address some of these
issues by applying a common analytical pipeline for datasets and
then constructing a matrix of metadata to allow for sorting and
comparison across studies driven by their known similarities and
differences. In this work we focused on two elements to highlight
the potential of this approach: (1) making broad comparisons
across the entire sets of data to draw conclusions about
confounding variables that likely superimpose differences on
spaceflight datasets, and (2) making analyses focusing on the
commonly used BRIC hardware to help researchers understand
the possibilities offered by designing comparative analyses in the
context of the Matrix metadata. However, the possible compar-
isons guided by this Matrix are vast and so there remain many
more opportunities for the research community to draw new
insights from Matrix-focused analyses.
From the Matrix-driven exploration presented here, we found

that: (1) comparisons across different transcriptome monitoring
technologies (RNA-seq versus microarray) should be performed
with great care as differences in the technology used can impose
greater variation on results than the biological treatment (space-
flight versus ground control); (2) environmental conditions and
hardware-related constraints in the experimental design produce
smaller but also important differences that can confound
interpretation of the spaceflight versus ground control compar-
isons; (3) when these factors are controlled for, comparisons
across the breadth of spaceflight-related Arabidopsis experiments
reveal alterations in general responses to environmental stresses,
photosynthesis, and other elements of primary and secondary
metabolism (Fig. 5). These broad areas provide targets for the
generation of future models of how spaceflight may affect plant
physiology and development. Our analysis of the BRIC hardware
shows how with a more targeted approach, common response
genes can be identified that then point to potentially core
spaceflight responses. For example, the BRIC analysis strongly
points to the plastid as a likely shared response site across many
spaceflight experiments. The observations of conserved roles for
HSP101 and COR78 suggest that a fundamental disruption of the
ROS and/or antioxidant systems related to the plastid may be
accompanying plant growth in space.
It is important to note limitations inherent in the approach we

have applied to meta-analysis of these spaceflight datasets. Due to
flight and hardware constraints, the spaceflight experiments
collected for this meta-study were limited to young seedlings of
Arabidopsis. Although some experiments have tested the viability
of plants to reach mature and reproductive developmental stages
these have generally not involved omics research. We must await
the data from more studies throughout the phases of the plant life
cycle to understand how well our developing insights from
seedlings and young plants will apply to individuals at maturity.
Similarly, we must await further studies on a wider array of plant
species to extend these approaches beyond the plant most
commonly grown in spaceflight, Arabidopsis.
One further limitation on our approach is that at present we

manually curate the import of each experiment’s metadata into
the Matrix. However, the GeneLab data repository has standar-
dized its metadata formats for both current and future datasets
offering us the opportunity to automate both import and curation.
This automated approach will be facilitated through GeneLab’s
automatic programming interface (API) which offers a program-
accessible link to the metadata files. Continual updates to the
Matrix will allow the power of inferences drawn to grow as quickly
as the new plant spaceflight datasets are deposited.
Our analysis of the BRIC datasets suggests that focusing on a

few hardware options that can then be the subject of multiple
flight studies would greatly add to the power of such comparative
omics-level analyses. Nevertheless, the results presented here
offer the promise that as these experimental data become
available, meta-analyses across the broad plant biology omics

data landscape will provide a powerful approach to supplement
the insights drawn from analyses focused on each individual study
in isolation. The Matrix analysis presented herein provides a
toolset to help expedite the development of such new investiga-
tions. Additionally, while the scope of potential hypotheses
generated by these analyses is extensive, the current Matrix
meta-analysis highlights three specific focus areas for future
research that may prove particularly fruitful. These include: (1)
studies examining the effect of variable light regimes on space
grown plant productivity and physiology, (2) analyses aimed at
determining the potential causes of altered redox activities in the
plastids of space flown plants, and (3) experiments examining the
function of HSP101, ABS4, COR78, PRX39, AAP2, and MAGL4 in
response to spaceflight stressors.

METHODS
Assay pipelines and datasets
The GeneLab data repository currently holds the largest number of
publicly accessible datasets of omics- (transcriptomics-, proteomics-,
epigenomics- and genomics-) based studies of biological,
spaceflight-related studies. For our analyses of plant responses
using this resource we focused on the results assessing changes in
the transcriptome as the most numerous kind of dataset available.
We included such studies based on the minimal criteria that they: (1)
were performed on the most widely used plant model species,
Arabidopsis thaliana (which represents nearly all of the plant data
currently deposited in GeneLab) and (2) had at least 3 biological
replicates per treatment (to provide statistical rigor on subsequent
analyses). A summary of the 15 studies (encompassing 10
microarray and 6 RNA-seq GeneLab Data Sets, or GLDS) that fulfill
these requirements is presented in Table 2. These experiments were
performed on missions run by NASA, the European Space Agency
and the Chinese Space Agency. To ensure the greatest degree of
comparability between results, all of the primary data was
reanalyzed through common computational approaches developed
by GeneLab and implemented in the Galaxy computing environ-
ment44. Briefly, the microarray analysis pipeline used the R/
Bioconductor software package limma45 to perform differential
gene expression analysis. Background correction by the Robust
Multichip Average (RMA) method and between array normalization
by the quantile method46 were performed through the Bioconduc-
tor Oligo package47. Gene level estimation was generated using the
Maximum Interquartile Range method and annotations were added
using the Annotation-Db class gene annotations specific to
Arabidopsis thaliana from the Bioconductor repository
(www.bioconductor.org). In cases where multiple probes mapped
to the same gene ID, representative probes were selected with the
highest mean normalized intensity across all samples. Differential
gene expression analysis used the linear model fit from the limma R
package to perform pairwise comparisons for all groups. For each
probe set, the variance of mean signal intensities was estimated,
improved by an empirical Bayes method for combining variances of
probes showing similar variability, and the significance of the
difference between the means was evaluated with a t-test to obtain
p-values. p-values were also adjusted to q-values to account for
possible errors introduced through multiple hypothesis testing using
the Benjamini and Hochberg method48 and so control for the false
discovery rate. Details of the code used to process each dataset are
available at https://github.com/nasa/GeneLab_Data_Processing/
tree/master/Microarray/1-channel_arrays/GLDS_Processing_Scripts.
Both the raw and processed data can be downloaded at https://
genelab-data.ndc.nasa.gov/genelab/projects.
The RNA-seq analysis pipeline used the universal RNA-seq

aligner STAR v2.7.1a49 and the RNA-Seq by Expectation Maximiza-
tion approach (RSEM v1.3.1)13,50 along with the TAIR10 genome
assembly51 accessed through Ensembl Plants52,53. Raw sequence
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data were trimmed and filtered with Trim Galore! (v0.6.2). The
Arabidopsis thaliana Ensembl reference genome TAIR10, release
44, and respective GTF file were used to align trimmed reads with
STAR (v2.7.1a) then the aligned reads were quantified using RSEM
(v1.3.1). Quantification data was imported to R (v3.6.0) using the
tximport package (v1.14.0) and normalized using the DESeq2
(v1.26.0) median of ratios method54. Differential expression
analysis was performed with DESeq2 (v1.26.0) and pairwise
comparisons of all groups were performed using the Wald test
to generate p- and adjusted p-values, and the likelihood ratio test
was used to generate the F statistic p-value. Gene annotations
were assigned using the Bioconductor org.At.tair.db (v3.8.2),
STRINGdb (v1.24.0)29, and PANTHER.db (v1.0.4)55 packages.
Processing code for each RNA-seq dataset are available at
https://github.com/nasa/GeneLab_Data_Processing/tree/master/
RNA-seq/GLDS_Processing_Scripts and both the raw and pro-
cessed data are deposited at https://genelab-data.ndc.nasa.gov/
genelab/projects.
The associated metadata for each dataset was aggregated using

a combination of the information provided alongside each
GeneLab data submission, parallel manual curation from the
literature and through interviews with the primary researchers.
The Matrix of this data is available as both Supplementary Data 1
and as an interactive exploration environment developed in the
Qlik database management software environment (Qlik Technol-
ogies Inc., King of Prussia, PA, USA) at https://gilroy-
qlik.botany.wisc.edu/a/sense/app/20aa802b-6915-4b1a-87bd-
c029a1812e2b.
When they have been employed in the data analyses, online

tools such as the TOAST X-Species Transcriptional Explorer
(https://gilroy-qlik.botany.wisc.edu/a/sense/app/ab2250b5-ee3a-
4da8-b5da-fe87d5f2dbe6/overview), KnetMiner23, Metascape24,

Ensembl GO53, the Kyoto Encyclopedia of Gene and Genomes56,
AraCyc57 and Reactome58 are noted in the text and figure legends.
Principal Component Analysis (PCA), Multidimensional Scaling
analysis (MDS), t-distributed Stochastic Neighbor Embedding (T-
SNE), Weighted Gene Correlation Network Analysis (WGCNA) and
K-means statistical analyses were performed using the iDEP.94
R-package59. For these analyses, the normalized counts were
imported from the GeneLab data repository and processed using
R-studio. The R programming language provides for the statistical
analysis of data (https://www.r-project.org/about.html) within a
commercial development environment called R-studio (R-Studio
inc. Boston, MA, USA).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Source data for this study are publicly available in the GeneLab data repository
(https://genelab-data.ndc.nasa.gov/genelab/projects/) under the Accession codes
GLDS-7; GLDS-17; GLDS-37; GLDS-38; GLDS-44; GLDS-46; GLDS-120; GLDS-121; GLDS-
136; GLDS-147; GLDS-205; GLDS-208; GLDS-213; GLDS-218; GLDS-251.

CODE AVAILABILITY
Details of the code used to process each dataset are available at https://github.com/
nasa/GeneLab_Data_Processing/tree/master/Microarray/1-channel_arrays/
GLDS_Processing_Scripts. Both the raw and processed data can be downloaded at
https://genelab-data.ndc.nasa.gov/genelab/projects. R scripts used for raw data
processing, iDEP.92 analysis and visualization are available at https://github.com/
dr-richard-barker/The-Matrix-2022 The Matrix of this data is available as both

Table 2. Studies used in developing the plant transcriptional Matrix.

Accession Study title Assay type Refs.

GLDS-7 The Arabidopsis spaceflight transcriptome: a comparison of whole plants to discrete root hypocotyl and
shoot responses to the orbital environment

Microarray 44

GLDS-17 Transcription profiling by array of the response of Arabidopsis cultivar Columbia etiolated seedlings and
undifferentiated tissue culture cells to the spaceflight environment

Microarray 37

GLDS-37 Comparison of the spaceflight transcriptome of four commonly used Arabidopsis thaliana ecotypes (Col,
Ws, Ler and Cvi)

RNA-seq 38

GLDS-38 Proteomics and transcriptomics analysis of Arabidopsis seedlings in microgravity RNA-seq 39

GLDS-44 Transcriptomics analysis of etiolated Arabidopsis thaliana seedlings in response to microgravity Microarray 41

GLDS-46 Gamma radiation and HZE treatment of seedlings in Arabidopsis Microarray 60

GLDS-120 Genetic dissection of the spaceflight transcriptome responses in plants: are some responses
unnecessary?

RNA-seq 50

GLDS-121 Biological Research in Canisters-16 (BRIC-16): investigations of the plant cytoskeleton in microgravity with
gene profiling and cytochemistry

Microarray 40

GLDS-136 Dissecting low atmospheric pressure stress: transcriptome responses to the components of hypobaria in
Arabidopsis

Microarray 61

GLDS-147 Arg1 functions in the physiological adaptation of undifferentiated plant cells to spaceflight Microarray 51

GLDS-205 HSFA2 functions in the physiological adaptation of undifferentiated plant cells to spaceflight
microgravity environment

Microarray 62

GLDS-208 Comparative gene expression analysis in the Arabidopsis thaliana root apex using RNA-seq and microarray
transcriptome profiles

Microarray and RNA-seq 36

GLDS-213 A whole-genome microarray study of Arabidopsis cell cultures exposed to microgravity for 5 days on
board of Shenzhou 8

Microarray 63

GLDS-218 Spaceflight-induced alternative splicing during seedling development in Arabidopsis thaliana RNA-seq 64

GLDS-251 RNA-seq analysis of the response of Arabidopsis thaliana to fractional gravity under blue-light stimulation
during spaceflight

RNA-seq 65

In the table, the reference column denotes the initial publication on the data with the authors’ in-house analyses, when available. Datasets are publicly
available at the GeneLab data repository using the url: https://genelab-data.ndc.nasa.gov/genelab/accession/GLDS-#/, where # represents the GLDS accession
number for each study.
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Supplementary Data 1 and as an interactive exploration environment developed in
the Qlik database management software environment (Qlik Technologies Inc., King of
Prussia, PA, USA) at https://gilroy-qlik.botany.wisc.edu/a/sense/app/20aa802b-6915-
4b1a-87bd-c029a1812e2b.
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