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Herein we report 2D printing in microgravity of aqueous-based foams containing metal oxide nanoparticles. Such hierarchical
foams have potential space applications, for example for in situ habitat repair work, or for UV shielding. Foam line patterns of a
TiO,-containing foam have been printed onto glass substrates via Direct Foam Writing (DFW) under microgravity conditions
through a parabolic aircraft flight. Initial characterization of the foam properties (printed foam line width, bubble size, etc.) are
presented. It has been found that gravity plays a significant role in the process of direct foam writing. The foam spread less over the
substrate when deposited in microgravity as compared to Earth gravity. This had a direct impact on the cross-sectional area and
surface roughness of the printed lines. Additionally, the contact angle of deionized water on a film exposed to microgravity was
higher than that of a film not exposed to microgravity, due to the increased surface roughness of films exposed to microgravity.
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INTRODUCTION

Currently planned US space exploration missions include manned
missions to the Moon and to Mars. One way to significantly reduce
mission launch mass and mission cost, which has been studied at
least since the 1970s', is to manufacture as much of the mission
mass as possible in situ, preferably via in situ resource utilization.
For example, three-dimensional (3D) printing techniques could be
used to fabricate needed parts or technology in situ®. 3D printing
has been shown to be capable of printing a vast array of materials
(e.g., hydrogels®5, ceramics’~%, metals'®'") in applications ranging
from biomedical'>'® to electrical'*'® to construction'”'8, A
particular form of 3D printing known as Direct Foam Writing
(DFW) has been used to fabricate 3D hierarchical'®?° structures via
the deposition of foams containing a mixture of oil, water, oxide
particles, and other binders?'?2, Furthermore, foam properties can
be tuned through solvent, particle selection, and processing
parameters. The present study focuses on single-layer (2D) DFW of
oil-in-water foams containing titanium dioxide (TiO,), as TiO, is
abundant on the Moon?*2* and could be used as an ultraviolet
(UV) radiation absorber®>?® for space vehicle or habitation
shielding to protect both astronauts and equipment.

It has been shown that foams in Earth’s gravity with liquid
volume fractions (¢) between ¢ = 20%-35% are unstable due to
the gravitational force causing excess liquid to drain, creating a
vertically stratified liquid content profile?’~2°, However, foams
formed without the influence of gravity do not undergo this
convective drainage, and foams with ¢ =30% have been
demonstrated to be stable in microgravity®°. A stable foam
containing TiO, with variable liquid volume fraction could be
useful for performing in situ space vehicle or habitation repair or
for UV radiation shielding. To date, there exists a knowledge gap
on the ability to 3D print foams in microgravity conditions. The
purpose of this study is to demonstrate the ability to perform 2D
DFW of a TiO,-containing foam in microgravity conditions and
perform initial characterization of the foam properties. These
initial results could be used in the future to expand printing 3D
foam structures in microgravity.

RESULTS AND DISCUSSION

Foam density and liquid volume fractions

Immediately after preparation of the foam, the foam density was
measured to be 0.974 (4-/—0.02) g/cm3, and the foam liquid
volume fraction was measured to be 65% (+/—5%).

Scanning electron microscopy (SEM)

Figure 1a shows an optical image of the printed foam immediately
after printing on a glass slide in microgravity during a parabolic
aircraft flight. SEM images of the foam printed in microgravity and
Earth gravity (Fig. 1b, c, respectively) show that both printed lines
(Fig. 1a) exhibit a closed-cell internal structure. Both printed lines
were allowed to dry in ambient conditions for several days before
analysis. Qualitatively, the morphology of the internal structure of
both prints appears to be nearly identical with typical cell size on
the order of 100 um, suggesting the lack of gravitational force
during printing does not significantly impact the diameter of the
bubbles as the foam is extruded.

Coarsening

Figure 2a shows the payload frame housing the 3D printer
(Supplementary Fig. 1) and coarsening experiment on the
parabolic flight aircraft. Coarsening tests were conducted to
observe and measure the evolution of air bubble diameter within
the foam as a function of time, which was prepared by
sandwiching a layer of foam between two glass slides. The
average apparent bubble diameter of the foam was imaged over
the course of the parabolic flight using a digital microscope (Fig.
2b). These average bubble diameters were measured by using an
image processing program, ImageJ (National Institute of Health,
USA), to calculate the area of each bubble in each image. Then, by
assuming each apparent bubble was circular, the diameter was
calculated by dividing the area by Pi, taking the square root, and
then doubling to value to get the diameter. We note that the pixel
resolution of the microscope could limit the accuracy of the
measured diameters. It was observed that the bubble diameter
increased with time (Fig. 2¢), as expected. The smaller bubbles
have a higher pressure than the larger bubbles. Due to the surface
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Fig. 1 Optical and SEM images of the printed foam. a Optical image of the foam immediately after printing on glass slides in microgravity. b,
c Cross-sectional SEM images of the air-dried foams printed in (b) microgravity and (c) Earth gravity. Scale bars are a 25 mm and b, ¢ 100 pm.

interactions between nearest neighbors, the gas from the smaller
bubbles eventually diffuses into the larger bubbles, decreasing the
total count of bubbles, but increasing the average diameter of the
remaining bubbles®'. Using the methodology described by
Kennedy et al, the theoretical and experimental effective
coarsening rates (Degry and Degre, respectively) of the foam were
calculated. D is the effective diffusivity of gas between bubbles.
Defrr Was found to be 9.75%1077 cm?/s. Degre was found to be
4.01*10~"" cm?/s, a significantly lower rate than theory would
predict. Several factors could explain this discrepancy. The present
foam has a high liquid volume fraction (65%), which should slow
down the coarsening rate compared to drier foams. Estimates
were made for some parameters, notably film thickness and
Henry's Law constant, which could not be measured in situ.
Another source of error could be the transient gravitational effects
of the microgravity flight (Each period of microgravity was
followed by a period of hypergravity. See the methods section
for more detail.), which could impact the drainage of the foam.

Contact Angle

A difference in contact angle was observed for deionized (DI)
water between thin films (thickness =1.4mm) exposed to
microgravity and Earth gravity (Fig. 2d). An average angle of
30.98 £ 1.70° was observed for the film that was printed in
microgravity, compared to an average angle of 25.74 + 2.43° for
the Earth gravity film; this lower angle is expected to increase
lateral spreading of the printed foam lines.

Foam line widths, cross-sectional area, and surface roughness

The foam was printed in both microgravity and Earth gravity (in
the laboratory), and at two different speeds, 8 and 11.31 mm/s.
The printed foam line from one microgravity parabola is illustrated
in Fig. 1a. The horizontal and vertical line segments in the image
were printed at 8 mm/s, and the angled line segments (45° relative
to the horizontal and vertical segments) were printed at
1131 mm/s. The average line widths were measured to be
1.18£0.05mm and 1.07+0.09 mm for the horizontal/vertical
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and angled line segments, respectively, using optical profilometry
for the microgravity print (Fig. 2e). The average line widths for the
Earth gravity print were measured to be 1.36+0.04 mm and
140+0.02mm for the horizontal/vertical and angled line
segments, respectively. The extrusion pressure remained constant
at 20.7 kPa for all line segments. Each line was printed with a
standoff distance of 0.220 mm. For the microgravity case, the
thinner line width at a faster writing speed is consistent with
conservation of mass: the foam volume printed per unit time
remained the same, but the writing distance increased per unit
time. There was less material per unit distance printed, leading to
a decrease in the spread of the foam upon deposition on the glass
substrate. However, it is noted that the results for the Earth gravity
case are not statistically distinguishable from each other (i.e., their
respective error bars overlap). The line widths for both writing
speeds in Earth gravity are higher than their respective line widths
in microgravity. This could indicate that the gravitational force
does play a role in the spreading of the foam. This is probably
related to the interfacial surface tension between the entrapped
air, foam walls, and the glass substrate. Without gravity, surface
tension will cause the bubbles in the foam to attempt to become
more spherical; with gravity, they will become more deformed.
This deformation, relative to the foam in microgravity, may cause
the foam to spread on the substrate more readily at higher writing
speeds. We suspect that within a few seconds after deposition, the
foam becomes “pinned” to the substrate, preventing further
spreading and deformation during the hypergravity portion of the
flight parabola.

Cross-sectional area (Fig. 2f) and surface roughness (Fig. 2g)
were also measured using optical profilometry. Interestingly, the
cross-sectional area was higher for both writing speeds in
microgravity compared to Earth gravity (51.4% and 15.1% increase
for the 8 and 11.31 mm/s lines, respectively). Coupling this
information with the results from the line width measurements,
it can be inferred that the lack of gravity during the extrusion
allows the foam to better retain its shape after printing. It does not
spread as readily on the glass substrate in microgravity as in Earth
gravity. The surface roughness exhibited a similar trend. The foam
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Fig. 2 Coarsening, Contact Angle, and Optical Profilometry Plots. a Image of the payload containing the experiments onboard the
parabolic flight aircraft. Photograph used with permission from Zero Gravity Corporation2, b Optical image of the foam during the coarsening
experiment. Scale bar is 500 pm. ¢ Average bubble diameter of the foam over the course of the parabolic flight. d Contact angle of DI water on
films exposed to microgravity and Earth gravity conditions. (e-g) Average printed e line widths, f cross-sectional area, and g surface roughness
for two writing speeds printed in microgravity and Earth gravity conditions. All error bars represent standard deviation.

line segments printed in microgravity have a higher measured
surface roughness (103% and 93.9% increase for the 8 and
11.31 mm/s lines, respectively) than the segments printed in Earth
gravity. We attribute this difference in surface roughness to the
shape of the profile of the printed lines, as stated above.

CONCLUSION

This work has demonstrated that gravity plays a significant role in
the process of DFW. The foam spread less over the substrate when

deposited in microgravity as compared to Earth gravity. This had a
direct impact on the cross-sectional area and surface roughness of
the printed lines, as well, increasing both values. Additionally, the
contact angle of DI water on a film exposed to microgravity was
higher than that of a film not exposed to microgravity. Additional
work in this area should focus on exploring applications that can
take advantage of these results and expand the experimental
design to fabricate 3D foam structures in microgravity. Hierarch-
ical foams have potential for in space use for in situ habitat repair
work or UV shielding.

Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA npj Microgravity (2021) 55



G.J. Cordonier et al.

METHODS
Flight profile and gravitational acceleration over time

This flight took place on a modified Boeing 727-200 (operated by
Zero Gravity Corporation, “Zero-G”). Microgravity conditions were
achieved by flying a series of 25 parabolic microgravity flight
paths. The foam line in Fig. 1a was printed in a 20 s time segment
in which the plane flew downwards until the plane’s vertical
acceleration matched that of Earth’s gravitational acceleration,
9.81 m/s?, simulating microgravity (Supplementary Fig. 2). Each
microgravity parabola was followed by a short period of
hypergravity (gravitational acceleration between 1- and 2-times
Earth gravity) as the plane pulled up.

Metal oxide-stabilized foam preparation

The foam line shown in Fig. 1a was printed using a foam
formulation that was prepared by combining aqueous and oil
liquid phases and frothing to entrap air*'?2. The aqueous phase
was prepared by combining 2.87 g of titanium dioxide particles
(21 nm diameter, Aeroxide P25, Aldrich), 6.48 g of deionized (DI)
water, and 1.77 g of titanium(lV) bis(@mmonium lactato) dihydr-
oxide solution (TALH, 50 wt. % in water, Aldrich) in a 50 mL beaker.
The molar ratio between TiO, particles and TALH was kept at 12:1.
The mixture was stirred with a magnetic stir rod for 15 min at
350 rpm, followed by sonication in an ice water bath for 15 min.
This stirring-sonication step was carried out once more before a
final stirring for 24 h. The oil phase was prepared by combining
0.85 g of stearic acid (97%, Acros Organics), 1.18 g of polysorbate
60 (Alfa Aesar), and 0.8 g of glycerol (>99%, Sigma-Aldrich) in a
250 mL beaker. The molar ratio between TALH and stearic acid
was kept at 1:1. The mixture was stirred with a magnetic stir rod
on a hot plate at 80 °C for 5 min, melting the stearic acid. Next, the
mixture was stirred at 350rpm for 5min, homogenizing
the constituents. The aqueous phase was then incorporated into
the oil phase using a pipette while continuing to stir and heat. The
mixture was stirred and heated until becoming homogenous.
Finally, the mixture was removed from the stirring hot plate and
frothed at 1,500 rpm for 8 min with a tabletop overhead stirrer
with an impeller attachment, entrapping air and forming
the foam.

To prepare the foam for transportation to the Zero-G aircraft, it
was transferred to 3 cc syringe barrels (Nordson) which were then
sealed. A plunger was placed on top of the foam inside the barrel
to aid in evenly distributing the air pressure for extrusion. Once
ready to use in flight, the seals were removed and a plastic
tapered nozzle tip (Nordson) of inner diameter 0.58 mm was
attached to each syringe. The foam was extruded through the
nozzle only during the microgravity portions of each parabola
during the flight onto microscope glass slide substrates. The glass
substrates were cleaned, first with detergent in DI water, and then
isopropy! alcohol before loading into the payload.

3D printer design and operation

Six sets of four glass microscope slide substrates were mounted in
custom plastic substrate holder frames that were secured to the
3D printer (Supplementary Fig. 1) via two parallel T-slot quarter-
round rails mounted on translatable XY- and Z-stages (Applied
Scientific Instrumentation, ASI). The XY-stage moved the sub-
strates relative to the nozzle and the Z-stage controlled the
nozzle's standoff distance to the substrates. An ASI control box
(LX-4000) was used to send custom code from a laptop to the
stages to perform the 3D printing. Micro-Manager (ver. 1.4)
software (together with the MMCorePy Python library) was used to
communicate with the control box. In Python, coordinates for
each print beginning and ending location were referenced from
pre-written Excel files; then the coordinate commands were sent
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to the ASI Control Box. The entire assembly was housed in a
payload secured to the floor of the aircraft during flight (Fig. 2a)

To command pressure to the nozzle, the Python code sent
binary data to the serial monitor, where a Teensy 4.0 microcon-
troller 3DmakerWorld) was reading the data via the C++ Arduino
platform. Printing would begin whenever a SparkFun 3-axis
accelerometer (Model MMA8451) connected to the Teensy 4.0
detected that the Z-direction (i.e., gravitational) component of
acceleration was 2.94 m/s? or less. Upon seeing a ‘1’, the Teensy
set a general-purpose input/output pin (GPIO) high, which sent a
5V signal to the Nordson Ultimus Il EFD pressure controller to
apply the pre-set extrusion pressure to the syringe. A Kobalt 2
Gallon Quiet Tech air compressor (Model 3300243) supplied the
high-pressure air required to operate the Nordson EFD to extrude
the foam. A ‘0" was sent by the Python code to the serial monitor
at the end of each parabola to stop the 3D printer traverse once
the Z-direction acceleration was above 2.94 m/s% this command
also caused the Nordson EFD pressure controller to stop applying
pressure to the syringe.

The standoff distance between the nozzle tip and the glass
substrates was measured to be 0.220 mm, taken immediately prior
to the deposition during flight using a feeler gauge. The extrusion
pressure was set to 20.7 kPa. The writing speed was 8 mm/s for the
horizontal and vertical foam line segments, and 11.3 mm/s for the
diagonal segments, when both the X- and Y-axis motors were
driven in conjunction (Fig. 1a).

Characterization

Scanning Electron Microscopy (SEM) was performed using a JEOL
JSM-7600F scanning electron microscope operated with a 5.0 kV
bias and a working distance of 10 mm. To preserve the structure of
the foam as printed, samples were not treated with any post-
processing or curing steps beyond air-drying. A razor blade was
used to cut a cross-section of each printed foam sample, which
was then placed on copper tape. The exposed cross-sections were
sputtered with gold-palladium before observing in the SEM.

The contact angle was determined by measuring images of
sessile drops of deionized water on a flat film of the foam. One
film was exposed to zero gravity aboard the parabolic flight. The
other film remained in Earth’s gravity. The droplets were 2 L in
volume each and deposited using a Matrix Electronic Pipette
(Thermo Scientific). Images were taken with a digital microscope
and analyzed using ImageJ to measure the angles.

A Bruker Contour GT KO Optical Profilometer with a green light
source was used to measure line width, cross-sectional area, and
surface roughness of the horizontal and vertical line segments of
the foam line (Fig. 1a). A total of 32 lateral thickness scan
measurements were taken for each of the line segments.

For the coarsening experiment, doctor blading was used to coat
a clean glass slide with the foam. The thickness was set at
1,400 um. A second glass slide was placed on top of the foam and
then taped to it, to prevent any relative motion of the slides,
which could obfuscate the time evolution of the bubbles. The
assembly was loaded onto the payload with a fixed digital
microscope focused on the bubbles. A laptop interfaced to the
microscope recorded images at 10s intervals over the flight
duration.

Foam density was measured by measuring foam volume and
foam mass in each syringe. Foam air volume fraction was
measured by measuring the prepared ink volume before and
after frothing.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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