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Equivalence of sessile droplet dynamics under periodic and
steady electric fields
Muhamed Ashfak Kainikkara 1, Dipin S. Pillai 1✉ and Kirti Chandra Sahu 2✉

The electrohydrodynamics of a sessile droplet under the influence of periodic and steady electric fields in microgravity conditions is
theoretically investigated using an inertial lubrication model. Previous studies have revealed that a freely suspended spherical
droplet with unequal conductivity and permittivity ratios exhibits distinct dynamics under periodic and equivalent steady forcing in
the root mean-square sense. However, it is unclear when (if at all) such distinct dynamics occur for periodic and equivalent steady
forcing in the case of sessile droplets. The equivalence between periodic and steady forcing is shown to be governed by the
interfacial charge buildup, which further depends on the competition between the charge relaxation and forcing timescales. A
circulation-deformation map is introduced for the sessile droplet that acts as a guideline to achieve electric field-induced wetting or
dewetting as the case may be. We also demonstrate that a droplet may be rendered either more or less wetting solely by tuning
the forcing frequency.
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INTRODUCTION
The dynamics of sessile droplets under the influence of electric
fields has fascinated researchers for decades due to their
importance in a variety of microgravity applications1,2 as well as
technological operations ranging from electrostatic spraying, ink-
jet printing, medical diagnostics to microelectronics3,4. Further, the
effect of electric field on the shape of a sessile droplet is also a
promising means to determine the surface tension of fluids under
reduced gravity, where conventional techniques are not applic-
able3,5,6. Despite significant progress in the field over the years,
there are still considerable gaps in our understanding of the
parities and disparities of a droplet’s dynamical response under
alternating (AC) and direct (DC) electrical fields, owing to the
difficulties in capturing the underlying physics as well as the
assumptions made about the electrohydrodynamic properties of
the fluids. A comprehensive understanding of the effect of an
electric field on droplets and bubbles is of importance both for
terrestrial as well as space applications.
For leaky dielectric fluids, a few studies7–9 have shown, via two-

dimensional numerical simulations, that the steady mean defor-
mation of a droplet subject to an alternating electric field is equal
to the steady-state deformation under an analogous root mean
squared (RMS) direct electric field. However, for the case of a
levitated droplet under an electric field, Torza et al.10 demon-
strated experimentally that this is not true for all fluid-pair
combinations. Recently, Sahu et al.7 also showed numerically that
for a levitated spherical conducting droplet, the deformation
behavior under the AC field may or may not always have the same
mean amplitude as under the RMS DC field. They demonstrated
that deformation behavior is influenced by the electrical
conductivity (σ) and permittivity (ε) ratios between the droplet
and the surrounding fluid. A concern that emerges then is what
happens in the case of a sessile droplet under AC forcing for all
possible combinations of timescales associated with charge
relaxation and electric forcing, which can have significant
ramifications in a variety of applications outlined above.

Many researchers have investigated the spreading of a sessile
droplet on various surfaces under DC forcing, focusing on the
transient spreading phase4,11 and the final equilibrium shape
assuming a constant contact angle or pinned contact line12. Oh
et al.13 used a combination of the dynamic contact angle model
and the interfacial normal stress condition to study the electro-
wetting of a sessile droplet. Bateni et al.6 experimentally showed
that in a steady electric field, polar sessile droplets increase their
contact angle regardless of the field polarity, whereas for nonpolar
droplets no influence on contact angle was observed. Mugele
et al.14 found that a needle-like electrode undergoing attachment-
detachment cycles with a droplet can cause it to oscillate,
resulting in enhanced mixing. Later, they used AC electric forcing
to produce oscillations in a sessile droplet to achieve chaotic
mixing15. Lu et al.16 used molecular kinetic theory to describe the
contact line dynamics of a sessile droplet under AC forcing and
successfully match with their experimental results. The hydro-
dynamic flows inside a droplet under AC forcing were investigated
by Lee et al.17. They observed that low-frequency flow is caused
by shape oscillation in conjunction with contact line oscillation,
whereas high-frequency flow is caused by the electrothermal
effect, which is triggered by electrical charge generated due to
electrical conductivity and permittivity contrasts across the
interface.
The above review shows that the electrohydrodynamics (EHD)

of a sessile droplet under AC electric forcing has received far less
attention than under DC electric forcing, even though the former
can expect substantially richer dynamics. Moreover, it is essential
to establish whether the deformation seen under DC and AC
forcing is analogous. Thus, we attempt to answer this question by
performing a large number of numerical simulations for a wide
range of electrical properties of the droplet fluid and employ a
thin precursor film-based model developed using the weighted
residual integral boundary layer (WRIBL) technique18,19. Our
findings reveal that the mean droplet deformation under AC
forcing is the same as corresponding RMS DC forcing when the
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timescale associated with charge buildup at the interface is small.
The mean droplet deformation under AC forcing, on the other
hand, deviates from that under equivalent RMS DC forcing when
the relaxation timescale becomes comparable or greater than the
forcing timescale. This phenomenon is explained via the distribu-
tion of surface charge formed at the interface and the associated
flow field. The zero deformation curves for a sessile droplet under
AC and DC forcing are also determined numerically in the
electrical conductivity and permittivity ratios space.

METHODS
The schematic diagram shown in Fig. 1 displays a three-
dimensional sessile droplet on a surface under the influence of
an external electric field in a microgravity condition. The droplet
(designated by fluid 1) is assumed to be a Newtonian fluid with
density ρ1, and dynamic viscosity μ1, and the ambient fluid
(designated by fluid 2) is taken to be hydrodynamically passive.
The surface tension acting at the interface separating the fluids is
denoted by γ. The electrical permittivity and conductivity of fluids
1 and 2 are (ε1, σ1) and (ε2, σ2), respectively. A Cartesian coordinate
system (x*, y*, z*) with its origin located at the center of the droplet
on the bottom electrode is employed, such that u*, v*, and w*

denote the components of the velocity vector, v!�
in the x*, y*, and

z* directions, respectively. Here, the asterisk is used to denote
dimensional variables. In this study, we attempt to answer the
following two questions: (i) is there an equivalence in the droplet
deformation under AC and DC electric fields in the RMS sense?, (ii)
if there is an equivalence, under what conditions does it exist? A
parametric study is also conducted for a wide range of electrical
permittivity and conductivity ratios to study the deformation of a
sessile droplet under AC forcing.
A thin precursor film-based model20 is developed using the

method of the weighted residual integral boundary layer
(WRIBL). The advantage of the precursor film lies in the fact
that the singularities associated with the triple contact line are
conveniently avoided. The electrohydrodynamic behavior of
the fluids is modeled using the leaky dielectric theory21. In the
AC electric field, the bottom wall is held at an electric potential,
Φ�

1ðz� ¼ 0Þ ¼ Φ�
0 sinðωt�Þ, where Φ�

0 denotes the amplitude of
the applied electric field, t* denotes dimensional time, and ω
represents the dimensional frequency of the applied AC electric
forcing. On the other hand, in the equivalent DC case,
Φ�

1 ðz� ¼ 0Þ ¼ Φ�
0=

ffiffiffi
2

p
. In both cases, the upper electrode is

grounded, i.e., Φ�
2 ðz� ¼ H0Þ ¼ 0. The governing equations and

relevant boundary conditions are established in the following
section.

Governing equations
The electrohydrodynamics of a sessile droplet is governed by
the continuity and the Navier–Stokes equations with the
electrostatic Maxwell stress incorporated, which are given by

∇ � v!�
1 ¼ 0; and (1)

ρ1
∂ v!�

1

∂t�
þ v!�

1 � ∇ v!�
1

 !
¼ ∇ � T�1 þ ∇ �M�

1: (2)

Here, the Cauchy stress tensor is given by
T�1 ¼ �p�1Iþ μ1ð∇� v!�

1 þ ∇� v!�T
1 Þ, where p�1 denotes the isotropic

pressure field and I is the identity tensor. The Maxwell stress
tensor (M�

1) is the second invariant of the electric field gradient
tensor that takes into account the stresses arising due to the
applied electric field. This is given by

M�
1 ¼ ε0ε1 E

!�
1 E
!�

1 �
1
2
ð E!�

1 � E
!�

1ÞI
� �

; (3)

where E
!�

1 is the electric field in fluid 1 and ε0 denotes the
permittivity of free space. Under the leaky dielectric assump-
tion, both fluids are assumed to be charge-free in the domain.
Thus, E

!�
i ¼ �∇�Φ�

i satisfies Gauss’s law, which for a charge-free
domain reduces to:

∇�2Φ�
i ¼ 0; (4)

subject to the boundary conditions given by Φ�
1 ¼ Φ�

0 sinðωt�Þ at
z* = 0 and Φ�

2 ¼ 0 at z*= H0.
The interface speed (U�) and the unit normal vector ( n!�

) are
given by

U� ¼
∂h�
∂t�

1þ ∂h�
∂x�
� �2 þ ∂h�

∂y�

� �2� �1=2 ; and n!� ¼
� ∂h�

∂x� îx � ∂h�
∂y� îy þ îz

1þ ∂h�
∂x�
� �2 þ ∂h�

∂y�

� �2� �1=2 ;

(5)

respectively. The interfacial tangent vectors ( t
!�

x ) and ( t
!�

y ) are
given by

t
!�

x ¼
îx þ ∂h�

∂x� îz

1þ ∂h�
∂x�
� �2 þ ∂h�

∂y�

� �2� �1=2 ; and t
!�

y ¼
îy þ ∂h�

∂y� îz

1þ ∂h�
∂x�
� �2 þ ∂h�

∂y�

� �2� �1=2 ;

(6)

where, îx , îy and îz are the unit vectors in the x*, y*, and z*

directions, respectively.
The kinematic condition at the material fluid interface (z*= h*) is

given as v�
! � n!� � U� ¼ 0, whence

w� ¼ ∂h�

∂t�
þ u�

∂h�

∂x�
þ v�

∂h�

∂y�
: (7)

Fig. 1 Schematic diagram. A three-dimensional sessile droplet (designated by fluid 1) subjected to a periodic electrostatic field between two
planar electrodes separated by a distance H0. The droplet is hydrodynamically active, while the ambient fluid (designated by fluid 2) is
assumed to be hydrodynamically passive. Note that the precursor film thickness is Oðh�f Þ20.
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At the interface, the tangential stress balance projected along the
x− z and y− z planes and the normal stress balance are given by

n!� � T�1 � t
!�

x ¼ Q� E
!� � t

!�
x ; (8)

n!� � T�1 � t
!�

y ¼ Q� E
!� � t

!�
y ; and (9)

n!� � ðT�1 þM�
1Þ � n!

� � n!� �M�
2 � n!

� ¼ �γ∇�
s � n!

� þ 2s
h�f

h�3f
h�3

� h�2f
h�2

	 

;

(10)

respectively21. Here, Q* denotes the free charge density at the
interface. In the tangential stress balance equations (Eqs. (8) and
(9)), the right-hand side term corresponds to the shear stress
arising as a consequence of the Coulomb force due to the
presence of surface charges. As evident from Eq. (10), a jump in
the normal component of the Maxwell stress between the two
fluids at the interface results in additional stress. The last term in
Eq. (10) is the conjoining-disjoining potential, with s ¼
γ 1� cos θð Þ being the wetting parameter that determines the
equilibrium static contact angle (θ) of the droplet20. The thickness
that minimizes the conjoining-disjoining potential is h�f , which
sets the order of magnitude of the precursor film thickness.
Gauss’s law and the continuity of the electric potential at the
interface, z*= h* yields

ε0ε1∇�Φ�
1 � n!

� � ε0ε2∇�Φ�
2 � n!

� ¼ Q� andΦ�
i ¼ Φ�

2: (11)

The subtleties involved in the derivation of conservation
equations for a surface field, specifically in the context of thin-
film models, were elucidated by Pereira and Kalliadasis22. The
equation governing interfacial charge dynamics is obtained from
the charge conservation on a differential surface of the fluid
interface21 as

∂Q�
∂t� þ ∇�

s � Q� v!�
1s

� �þ Q� ∇�
s � n!

�� �
v!�

1 � n!
�� �� �

¼ σ1 E
!�

1 � n!
� � σ2 E

!�
2 � n!

�
;

(12)

where v!�
1s denotes the surface velocity and is given by

v!�
1s ¼ v!�

1 � ð v!�
1 � n!

�Þ n!�
. The surface gradient operator,

∇�
s ¼ ∇� � ð n!� � ∇�Þ n!�

. The left-hand side of Eq. (12) corre-
sponds to the material derivative of surface charge density as one
moves along the surface, while the right-hand side represents the
net rate of charge influx from the fluid bulk to the interface.
The above governing equations and boundary conditions are

simplified using the thin-film approximation. The characteristic
scales used for non-dimensionalization are as follows:

x� ¼ Λx; y� ¼ Λy; z� ¼ Hz; u� ¼ Uu; v� ¼ Uv; w� ¼ ðδUÞw;
h� ¼ Hh; h�f ¼ Hhf ; t� ¼ ðΛ=UÞt; p� ¼ ðμ1U=HÞp; Φ�

i ¼ Φ0Φi;

Q� ¼ ðε0ε2Φ0=HÞQ:
(13)

Here, Λ is the characteristic length scale in x, y directions, which is
representative of the wetted diameter of the droplet. The equilibrium
height of the droplet in the absence of an electric field, H, is used as
the length scale in the z-direction, such that δ(≡H/Λ)≪ 1 (thin-film
approximation). A characteristic velocity scale, U= δ2γ/μ is used,
which is obtained by requiring the Capillary number, Ca ¼
μ1U=γ ¼ Oðδ2Þ. In other words, the fluids considered here (e.g.,
water, lubricating oils, or liquid metal conductors) correspond to the
large surface tension limit. Although the thin-film model employed in
this study is only expected to be strictly valid for highly wetting
droplets, numerical simulation has shown that it can accurately
predict droplet dynamics for contact angles up to 30∘23,24. In all
simulations, the nondimensional height of the top electrode, β=H0/
H, is set to 3 such that H0≪Λ. The dimensionless length of the
computational domain, L, in the x and y directions are assumed to be

the same, which is set to 2L= 8, with the droplet’s center located at
(0, 0, 0). The complete derivation of the final evolution equations in
the framework of the WRIBL technique is provided in the
supplementary information. The final set of evolution equations for
the nondimensional interface position (h), the depth-integrated flow
rate in the x-direction (qx), and y-direction (qy), and the surface charge
density (Q) are given by

∂h
∂t

þ ∂qx
∂x

þ ∂qy
∂y

¼ 0; (14)

R h
0 δReFð ∂û

∂t þ û ∂û
∂x þ v̂ ∂û

∂y þ ŵ ∂û
∂z Þdz

¼ qx � δEMT1Fjh þ ½ δ3Ca ∂
∂x ð ∂

2h
∂x2 þ ∂2h

∂y2 Þ
�δEMN1 þ S ∂

∂x ð
h3f
h3
� h2f

h2
Þ� R h0 Fdz;

(15)

R h
0 δReFð ∂v̂

∂t þ û ∂v̂
∂x þ v̂ ∂v̂

∂y þ ŵ ∂v̂
∂z Þdz

¼ qy � δEMT2Fjh þ ½ δ3Ca ∂
∂y ð ∂

2h
∂x2 þ ∂2h

∂y2 Þ
�δEMN2 þ S ∂

∂y ð
h3f
h3
� h2f

h2
Þ� R h0 Fdz;

(16)

δOc
∂Q
∂t

þ û
∂Q
∂x

þ v̂
∂Q
∂y

þ Q
∂h
∂x

∂û
∂z

þ Q
∂h
∂y

∂v̂
∂z

� Q
∂ŵ
∂z

	 

¼ ∂ϕ2

∂z
� σ

∂ϕ1

∂z

	 

;

(17)

where F is the weight function, and its expression is given in the
supplementary information; û, v̂, and ŵ represent the leading order
velocities in x, y, and z directions, respectively. The terms
(MN1 ; MN2 ) and (MT1 ; MT2 ) denote the dimensionless normal and
tangential components of the Maxwell stress in the x and y
momentum equations, respectively. The various dimensionless
numbers are the Reynolds number, Re (≡Uρ1H/μ1); the dimension-
less number associated with Ohmic charge conduction,
Oc≡ ε0ε2U/σ2H; E ð� ε0ε2ϕ

2
0=μ1UHÞ that denotes the dimensionless

strength of electric field; S(≡ 2s/μ1Uh*) representing the dimension-
less wetting parameter; σ(≡ σ1/σ2) that denotes the electrical
conductivity ratio. In addition, ε(≡ ε1/ε2) represents the electric
permittivity ratio. Note that the three-dimensional governing
equations are integrated in the z-direction to obtain the set of
equations (14)–(17). This governs the dynamics of a three-
dimensional (3D) droplet and hence is referred to as the “3D model”.
The dynamics of a two-dimensional (2D) droplet extending infinitely
in the third dimension was investigated by Pillai et al.9 and is referred
to as the 2D model. The set of equations (14)–(17) recovers the 2D
model of Pillai et al.9 in the appropriate limit.
The governing evolution equations (14)–(17) are solved using

the following initial conditions:

hðx; y; 0Þ ¼ heqðx; yÞ; qxðx; y; 0Þ
¼ 0; qyðx; y; 0Þ ¼ 0; and Qðx; y; 0Þ ¼ 0; (18)

where heqðx; yÞ is the equilibrium shape of the sessile droplet in the
absence of an electric field, which is obtained by performing a
transient simulation with E=Q= 0 until a steady-state droplet
configuration is achieved. The initial conditions and spatially periodic
boundary conditions used to obtain heqðx; yÞ are given by:

qx;inðx; yÞ ¼ 0; qy;inðx; yÞ ¼ 0; hinðx; yÞ
¼ ð1� x2 � y2Þ þ hf ; if jx2 þ y2j � 1

hf ; if jx2 þ y2j> 1:

�
(19)

qxð�L; yÞ ¼ qxðL; yÞ; qyð�L; yÞ ¼ qyðL; yÞ; hð¼ �L; yÞ ¼ hðL; yÞ;
∂nh
∂xn

ð�L; yÞ ¼ ∂nh
∂xn

ðL; yÞ; n ¼ 1; 2: (20)

qxðx;�LÞ ¼ qxðx; LÞ; qyðx;�LÞ ¼ qyðx; LÞ; hðx;�LÞ ¼ hðx; LÞ;
∂nh
∂yn

ðx;�LÞ ¼ ∂nh
∂yn

ðx; LÞ; n ¼ 1; 2: (21)
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The initial condition ensures that the droplet volume remains
constant when the values of parameters such as the wetting
parameter, S, are changed. The Fourier spectral collocation technique
is used to assure high-order spatial resolution and that the periodic
spatial boundary conditions are satisfied. The NDSolve, a Mathema-
tica v.12.0 function, is used to perform time integration using
adaptive time stepping. A grid convergence test is conducted for a
typical set of parameters in Supplementary Fig. 1. The 3D simulations
are performed for three choices of grid points (Nx ×Ny) in the Fourier
spectral collocation technique, viz., (50 × 50), (60 × 60), and (70 × 60).
As the mean error in droplet deformation between (60 × 60) and
(70 × 60) was found to be less than 1%, we choose (60 × 60) grids for
all 3D simulations.

Reporting Summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

RESULTS AND DISCUSSION
Equivalence
We begin the presentation of our results by answering the key
question raised in this study, i.e., is there an equivalence between
the mean deformation of a droplet under an AC field and its
steady-state deformation under a corresponding RMS DC field? To
answer this, in Fig. 2, we plot the temporal evolution of the
centreline height of the droplet (hc) for both AC and equivalent
RMS DC forcing. In all simulations, the following dimensionless
parameters are held fixed, namely, S= 20, EAC= 10, EDC= 5, and
Re= 1. The left panels (a, c, e) of Fig. 2 correspond to Oc= 0.01,
while the right panels (b, d, f) correspond to Oc= 10. It is observed
that when Oc is small (left panels), the mean droplet deformation
under AC forcing remains the same as under equivalent RMS DC
forcing. However, when Oc is large (right panels), the mean droplet

deformation under AC forcing deviates from that under equivalent
RMS DC forcing, as evident from panels 2b, f. Panel 2d however
shows equal mean droplet deformation for both AC and
equivalent RMS DC forcing. Thus, it can be concluded that the
droplet deformation under AC forcing can, under certain
conditions, be significantly different from the deformation under
DC forcing. We now proceed to explain these observations based
on the charge developed at the interface.

Mechanism
The droplet shape deformation is a combined effect of the normal
as well as the tangential Maxwell stresses acting on the interface.
The normal Maxwell stress acting at the interface primarily
depends on the disparity of electrical permittivity between the
two phases. Thus, ε ≠ 1 is a necessary and sufficient condition for
the existence of the normal Maxwell stress at the interface. The
tangential Maxwell stress, on the other hand, is predominantly
caused by the Coulombic force acting on the surface charges in
response to the tangential component of the electric field. Thus,
the presence of surface charges, as well as a tangential
component of the electric field, is necessary for the tangential
Maxwell stress to come into play. It should be noted that the sign
and magnitude of the surface charge depend on the difference
between conductivity and permittivity ratios in the system, i.e.,
(σ− ε)25.
In Fig. 3, we present the corresponding temporal evolution of

the maximum surface charge, Qmax, for the same set of parameters
used to obtain Fig. 2. We first discuss the DC results in each panel.
The only relevant timescale for the evolution of surface charge in
the DC case is the relaxation timescale, characterized by Oc, which
is the nondimensional timescale associated with charge buildup at
the interface. When Oc is small (left panels), the timescale
associated with charge buildup at the interface is small. This is
evident from the left panels 3(a, e), where it can be seen that the
surface charge for the DC case reaches its steady value quickly as

Fig. 2 Comparison of droplet deformation between AC and equivalent DC fields. Temporal variation of droplet height, hc: (a, c, e) Oc= 0.01
and (b, d, f) Oc= 10. Panels (a, b), (c, d), and (e, f) are for (ε= 10 and σ= 6), (ε= 10 and σ= 10), and (ε= 6 and σ= 10), respectively. Here, for all
the AC cases, Ω= π/50.
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compared to the right panels 3(b, d). Also, the sign and magnitude
of the steady-state surface charge is governed by the term (σ− ε).
Panels 3a, b correspond to ε= 10 and σ= 6, where σ < ε and
therefore the steady-state charge is negative. As ε= σ= 10 in
panels 3c, d, the steady-state value of charge is zero. Panels 3e, f
are for ε= 6 and σ= 10, where σ > ε and therefore the steady-
state value of charge is positive. Now for the AC case, there is an
additional timescale corresponding to the periodic forcing,
characterized by Ω, that influences the maximum attainable
surface charge. It is in fact the competition between the forcing
timescale and the relaxation timescale that determines whether
the maximum surface charge under AC forcing can reach the
equivalent DC steady-state value. It can be seen that when Oc is
small (left panels in Fig. 3), the relaxation timescale is small and
the maximum surface charge reaches its corresponding DC
steady-state value. However, for large Oc (right panel in Fig. 3),
the relaxation timescale becomes comparable to the forcing
timescale and thus precludes the maximum surface charge from
reaching its corresponding steady DC value. Thus, for higher
values of Oc, it is the difference in the magnitude of surface charge
(and the resultant tangential Maxwell stress) between AC and DC
cases that leads to a corresponding deviation in the hc values. In
panel 3d, as σ= ε, the surface charge is zero and the deformation
is solely due to normal Maxwell stress, leading to similar AC and
DC responses. With further increase in Oc, i.e., Oc≫ 1, the interface
charge approaches zero and the system reaches a perfect
dielectric limit.
As discussed in the introduction, for a freely suspended

spherical droplet, Esmaeeli and Halim8 used a 2D Cartesian model
and showed that the shape oscillations under AC electric field
occur about the steady-state deformation observed under an
equivalent RMS DC field. However, the experimental results of
Torza et al.10 and axisymmetric simulations of Sahu et al.7

demonstrated that this is only true when the electrical con-
ductivity ratio equals the permittivity ratio. This motivates us to

investigate whether the deviation observed in the case of a sessile
droplet (as shown in Fig. 2) arises due to the geometrical
dimensionality. Thus, we have performed 2D simulations similar to
that of Pillai et al.9 and compared with the corresponding 3D
simulations. Figure 2 and Supplementary Fig. 2 present the results
from 2D and 3D simulations respectively for the same set of
parameters. It can be seen that our 3D model predicts qualitatively
similar results as given by the 2D model for all parameters
investigated. Comparing all six panels in Fig. 2 and Supplementary
Fig. 2, it is evident that all AC and DC results obtained from the 2D
model match qualitatively with the corresponding 3D model.
Hence, a simpler 2D model proves to be extremely useful in
providing physical insights into the problem, at a much lesser
computational cost. We exploit this observation and employ the
2D model to obtain the rest of the results presented below.
As discussed earlier, Oc= 10 corresponds to the case where

competition between relaxation timescale and forcing timescale
results in a disparity in the maximum surface charge between AC
and DC cases. We now investigate more in detail this case of Oc=
10 to understand the effect of ε and σ on the deviation between
AC and DC forcing. In Fig. 4a, we plot the droplet shape
deformation, Dh, as a function of ε for σ= 10. Here, Dh≡ (hc,s−
hc,0)/hc,0, wherein hc,0 is the height of the droplet at t= 0 and hc,s
denotes the steady-state height of the droplet under DC forcing
and the long-time steady mean height of the droplet under AC
forcing. Similarly, Fig. 4b depicts the droplet shape deformation,
Dh, as a function of σ for ε= 10. It can be observed that when σ=
ϵ, Dh for both AC and DC cases are equal. This is attributed to the
absence of surface charge and consequently no tangential
Maxwell stress at the interface. Further, the deviation of Dh

between AC and DC is negligible when σ > ε. This is due to the fact
that as σ increases, the fluid tends to approach the perfect
conductor limit with more or less uniform electric potential in the
fluid. Thus, even though the charge accumulated is proportional
to (σ− ε), the tangential electric field is small due to weaker

Fig. 3 Interfacial charge buildup in the cases of AC and equivalent DC fields. Temporal variation of the maximum interfacial charge, Qmax: a,
c, e Oc= 0.01 and b, d, f Oc= 10. Panels (a, b), (c, d), and (e, f) are for (ε= 10 and σ= 6), (ε= 10 and σ= 10), and (ε= 6 and σ= 10), respectively.
Here, for all the AC cases, Ω= π/50.
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potential gradients in the fluid, and the resulting tangential
Maxwell stress remains weak. When σ < ε and the difference
between σ and ε increases, the resultant steady-state surface
charge for DC case increases as it is proportional to (σ− ε).
However, the maximum surface charge for the AC case is limited
by the system Oc, due to the competition of the two timescales
(relaxation and forcing) discussed before. This, therefore, results in
an increase in deviation in the Dh values between AC and DC.

Circulation-deformation map
In the seminal work of Torza et al.10 on a spherical droplet placed
in a time-periodic electric field, it was shown that the ε− σ
parameter space can be divided into three regions by two curves
corresponding to zero circulation and zero deformation. The zero
circulation curve, given by σ= ϵ, corresponds to a zero surface
charge. The direction of flow circulation inside the spherical
droplet reverses as one crosses this curve in the ε− σ parameter
space. In the absence of charge convection and fluid inertia, they
also obtained an analytical expression for the zero deformation
curve in the ε− σ parameter space, given by σ2+ σ+ 1− ε= 0.
Above this curve, the spherical droplet deforms to a mean prolate
shape, while below this curve, the droplet deforms to a mean
oblate shape. A prolate configuration corresponds to a deformed
droplet with its major axis in the direction of the field, while the
major axis is in the direction perpendicular to the electric field for
an oblate shape. These theoretical predictions of Torza et al.10

were confirmed by recent numerical investigations7,8, which
showed that a spherical droplet exhibits markedly different
behavior in the three regions of ε− σ parameter space,
demarcated by the two curves. We now proceed to investigate
the zero circulation and zero deformation curves for the sessile
droplet. The zero circulation curve, which corresponds to zero
surface charge is the same for the sessile droplet and is given by
σ= ϵ. Also, an interesting observation from Fig. 4 is that Dh is
found to be greater or less than zero, depending on the choice of
ε and σ. This suggests the existence of a zero deformation curve in
the ε− σ parameter space for the sessile droplet as well. It should
be noted that the zero deformation curve is a consequence of the
effect of normal Maxwell stress at the interface being nullified by
an equal and opposite effect of the tangential Maxwell stress.
While an analytical expression of the zero deformation curve was
possible for a spherical droplet using spherical eigenfunctions as
obtained by Torza et al.10, the same is not possible for a sessile
droplet as the equilibrium shape itself is obtained numerically.
Therefore, the zero deformation curve has to be obtained
numerically via a series of computations. In Fig. 5, we plot the
zero circulation and numerically obtained zero deformation curves
for Oc= 10 (filled circles), Oc= 0.01 (filled squares), and equivalent
RMS DC (dashed magenta line). As expected, the DC and Oc= 0.01
results coincide, in agreement with previous discussions of
equivalence of DC for Oc= 0.01, as observed in Figs. 2 and 3.
For Oc= 10, however, the zero deformation curve deviates from
the equivalent DC case due to the deviation in charge buildup as

discussed earlier. A further increase in Oc will cause the zero
deformation curve to move further toward the bottom left, with
the area under the curve shrinking. Finally, the curve will collapse
to a single point (ε= σ= 1) in the limit of Oc≫ 1, which
corresponds to the limit of a perfect dielectric droplet with zero
surface charge, due to the competition between the timescales
associated with the charge relaxation at the interface and the
electric forcing. Our calculations also revealed (but not shown
here) that the zero deformation curve is only mildly sensitive to
the parameter S, which determines the equilibrium contact angle.
Above the zero deformation curve, Dh > 0, and the AC field

renders the droplet less wetting, with the droplet occupying a
lesser area on the substrate. Conversely, below this curve, Dh < 0,
and the wettability increases with a larger droplet occupying a
larger wetted area on the substrate. The droplet shape profile and
the internal velocity field corresponding to the two regions is
depicted in Fig. 6a, b for (ε= 2, σ= 20) and (ε= 10, σ= 2),
respectively. The dashed curve in Fig. 6a, b is the equilibrium
droplet shape in the absence of electric field, while the solid blue
curve depicts the deformed droplet shape at a time instant
corresponding to one-quarter of the forcing cycle (at t= 39.25Tp,
where Tp= 2π/Ω is the dimensionless time period of forcing field).
As evident from Fig. 6a, the droplet is less wetting in the presence
of AC field for (ε= 2, σ= 20), which lies above the zero
deformation curve. Similarly, the droplet is more wetting for
(ε= 10, σ= 2), which lies below the zero deformation curve.
Further, the earlier discussions imply that the zero deformation
curve will collapse to a single point (ε= σ= 1) for both perfect
dielectric as well as a perfect conducting droplet due to the

Fig. 4 Deviation in droplet deformation between AC and DC fields as ε > σ. Variation of fractional deviation of droplet height, Dh with a ε for
σ= 10 and b σ for ε= 10. Here, Oc= 10 and for all the AC cases, Ω= π/50.

Fig. 5 Circulation-deformation map. Zero circulation line and zero
deformation curve in ε− σ space for Oc= 10 (filled circles) and Oc=
0.01 (filled squares) for AC electric forcing with Ω= π/50. The
corresponding DC field result is shown by the dashed magenta line.
Note that in the DC case, the zero deformation curve is independent
of Oc.
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absence of tangential Maxwell stress in either case. Therefore, in
both these limits, Dh > 0, the sessile droplet will always be
rendered less wetting.

Wetting transition
Based on the understanding of the competition between the two
timescales under AC forcing, we now investigate the possibility to
render a sessile droplet more wetting or less wetting solely by
tuning the forcing frequency. In Fig. 7, the droplet deformation,
Dh, as a function of the forcing frequency, Ω, is plotted for ε= 10,
σ= 6, and Oc= 10. For very low Ω, Dh < 0, and saturates to its
equivalent DC steady-state value. With an increase in Ω, Dh

increases and eventually turns positive. At very large Ω, the
droplet approaches the perfect dielectric limit with zero interfacial
charges, and hence Dh value saturates to the corresponding
perfect dielectric case, independent of Ω.
To summarize, by conducting a large number of numerical

simulations in the framework of a thin precursor film-based
modeling, we show that the equivalence of sessile droplet dynamics
under AC and corresponding RMS DC forcing depends on the
competition between the two timescales, viz., the charge relaxation
timescale, Oc, and the forcing timescale, Ω. The origin of the deviation
in droplet dynamics between DC and AC forcing is shown to arise
due to a disparity in the interfacial charge buildup. Based on these
understandings, a circulation-deformation map for the sessile droplet
in the ε− σ parameter space is presented. Finally, we show the
possibility of employing AC forcing to render a sessile droplet more
wetting or less wetting, solely by changing the forcing frequency.
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